Ch11 Gauss Siedel

Post on 06-Jul-2018

226 views 0 download

Transcript of Ch11 Gauss Siedel

  • 8/17/2019 Ch11 Gauss Siedel

    1/22

    The Islamic University of Gaza

    Faculty of EngineeringCivil Engineering Department

    Numerical AnalysisECIV 3306

    Chapter 11Special Matrices and Gauss-Siedel

  • 8/17/2019 Ch11 Gauss Siedel

    2/22

    Introduction

    • Certain matrices have particular structures that canbe exploited to develop efficient solution schemes.

    • A banded matrix is a square matrix that has allelements equal to zero, with the exception of a bandcentered on the main diagonal. These matricestypically occur in solution of differential equations.

    • The dimensions of a banded system can bequantified by two parameters: the band width BWand half-bandwidth HBW. These two values arerelated by BW=2HBW+1.

  • 8/17/2019 Ch11 Gauss Siedel

    3/22

    Banded matrix

  • 8/17/2019 Ch11 Gauss Siedel

    4/22

    4

    Tridiagonal Systems•

    A tridiagonal system has a bandwidth of 3:

    4

    3

    2

    1

    4

    3

    2

    1

    44

    333

    222

    11

    r r

    r

    r

    x x

    x

    x

    f e g f e

    g f e

    g f

    • An efficient LU decomposition method, called Thomas

    algorithm , can be used to solve such an equation. Thealgorithm consists of three steps: decomposition, forwardand back substitution, and has all the advantages of LUdecomposition.

  • 8/17/2019 Ch11 Gauss Siedel

    5/22

    Fig 11.2

  • 8/17/2019 Ch11 Gauss Siedel

    6/22

    Cholesky Decomposition

    6

    This method is suitable for only symmetric systemswhere:

    T ij jia a and A A

    11 12 13 11 11 21 31

    21 22 23 21 22 22 32

    31 32 33 31 32 33 33

    0 0

    0 * 0

    0 0

    a a a l l l l

    a a a l l l l

    a a a l l l l

    11

    21 22

    31 32 33

    0 0

    [ ] 0

    l

    L l l

    l l l

    * T A L L

  • 8/17/2019 Ch11 Gauss Siedel

    7/22

    Cholesky Decomposition

    1

    1 1,2, , 1

    i

    ki ij kj j

    ki

    ii

    a l l l for i k

    l

    12

    1

    k

    kk kk kj j

    l a l

  • 8/17/2019 Ch11 Gauss Siedel

    8/22

    Pseudocode for Cholesky ’ s LUDecomposition algorithm (cont ’ d)

  • 8/17/2019 Ch11 Gauss Siedel

    9/22

    Gauss-Siedel

    • Iterative or approximate methods provide analternative to the elimination methods. The Gauss-Seidel method is the most commonly used iterative

    method.• The system [A]{X}={B}is reshaped by solving the

    first equation for x 1, the second equation for x 2,and the third for x

    3, …and n th equation for x

    n. We

    will limit ourselves to a 3x3 set of equations.

  • 8/17/2019 Ch11 Gauss Siedel

    10/22

    Gauss-Siedel

    33

    23213131

    22

    32312122

    11

    31321211

    a xa xab x

    a

    xa xab x

    a

    xa xab x

    3333232131

    2323222121

    1313212111

    b xa xa xa

    b xa xa xa

    b xa xa xa

    Now we can start the solution process by choosing

    guesses for the x’

    s. A simple way to obtain initialguesses is to assume that they are zero. Thesezeros can be substituted into x 1 equation tocalculate a new x 1 =b 1 /a 11 .

  • 8/17/2019 Ch11 Gauss Siedel

    11/22

    Gauss-Siedel

    • New x 1 is substituted to calculate x 2 and x 3. Theprocedure is repeated until the convergencecriterion is satisfied:

    snew

    i

    old

    i

    new

    iia

    x

    x x %100,

  • 8/17/2019 Ch11 Gauss Siedel

    12/22

    Jacobi iteration Method

    An alternative approach, called Jacobi iteration,

    utilizes a somewhat different technique. This

    technique includes computing a set of new x ’s on the

    basis of a set of old x ’s. Thus, as the new values are

    generated, they are not immediately used but are

    retained for the next iteration.

  • 8/17/2019 Ch11 Gauss Siedel

    13/22

    Gauss-Siedel

    The Gauss-Seidel method The Jacobi iteration method

  • 8/17/2019 Ch11 Gauss Siedel

    14/22

    Convergence Criterion for Gauss-Seidel Method

    • The gauss-siedel method is similar to the technique offixed-point iteration.

    • The Gauss-Seidel method has two fundamentalproblems as any iterative method:

    1. It is sometimes non-convergent, and

    2. If it converges, converges very slowly.• Sufficient conditions for convergence of two linear

    equations, u(x,y) and v(x,y) are:

    1

    1

    y

    v

    x

    v

    yu

    xu

  • 8/17/2019 Ch11 Gauss Siedel

    15/22

    Convergence Criterion for Gauss-SeidelMethod (cont ’ d)

    • Similarly, in case of two simultaneous equations, theGauss-Seidel algorithm can be expressed as:

    1 121 2 2

    11 11

    2 211 2 1

    22 22

    12

    1 2 11

    21

    1 22 2

    ( , )

    ( , )

    0

    0

    b au x x x

    a a

    b av x x x

    a a

    au u

    x x a

    av v

    x a x

  • 8/17/2019 Ch11 Gauss Siedel

    16/22

    Convergence Criterion for Gauss-SeidelMethod (cont ’ d)

    Substitution into convergence criterion of two linearequations yield:

    In other words, the absolute values of the slopes must beless than unity for convergence:

    That is, the diagonal element must be greater than the off-diagonal element for each row.

    1,122

    21

    11

    12

    a

    a

    a

    a

    2122

    1211

    aa

    aan

    i j j

    jiii aa1

    ,

    equationsnFor

  • 8/17/2019 Ch11 Gauss Siedel

    17/22

    Gauss-Siedel Method- Example 1

    10

    x20 x304717

    x30 x103193

    x20 x10857

    x

    x

    x

    471

    319

    857

    x

    x

    x

    102030

    307 10

    20103

    21

    31

    32

    3

    2

    1

    3

    2

    1

    ...

    ...

    ...

    ..

    .

    ....

    ..

    • Guess x1, x2, x3= zero for the first guessIter. x 1 x2 x3 | a,1 |(%) | a,2 | (%) | a,3 | (%)

    0 0 0 0 - - -

    1 2.6167 -2.7945 7.005610 100 100 1002 2.990557 -2.499625 7.000291 12.5 11.8 0.076

  • 8/17/2019 Ch11 Gauss Siedel

    18/22

    Improvement of Convergence UsingRelaxation

    • Where is a weighting factor that is assigned a

    value between [0, 2]• If = 1 the method is unmodified.• If is between 0 and 1 (under relaxation) this is

    employed to make a non convergent system toconverge.

    • If is between 1 and 2 (over relaxation) this isemployed to accelerate the convergence.

    1new new old i i i x x x

  • 8/17/2019 Ch11 Gauss Siedel

    19/22

    Gauss-Siedel Method- Example 2

    3862

    3473

    2028

    321

    321

    321

    x x x

    x x x

    x x x

    1 2 3

    1 2 3

    1 2 3

    8 2 20

    2 6 38

    3 7 34

    x x x

    x x x

    x x x

    Rearrange so thatthe equations are

    diagonally dominant

    8

    22032

    1

    x x x

    6

    23831

    2

    x x x

    7

    33421

    3

    x x x

  • 8/17/2019 Ch11 Gauss Siedel

    20/22

    Gauss-Siedel Method- Example 2

    iteration unknown value a maximum a 0 x 1 0

    x 2 0

    x 3 0

    1 x 1 2.5 100.00%x

    2 7.166667 100.00%x

    3 -2.7619 100.00% 100.00%

    2 x 1 4.08631 38.82%x

    2 8.155754 12.13%x

    3 -1.94076 42.31% 42.31%

    3 x 1 4.004659 2.04%x

    2 7.99168 2.05%

    x 3 -1.99919 2.92% 2.92%

  • 8/17/2019 Ch11 Gauss Siedel

    21/22

    Gauss-Siedel Method- Example 2

    The same computation can be developed with relaxation where = 1.2

    First iteration:

    Relaxation yields:

    Relaxation yields:

    Relaxation yields :

    5.28

    )0(20208

    220 321

    x x

    x

    3)0(2.0)5.2(2.11 x

    1 32

    38 2 38 2(3) 07.333333

    6 6

    x x x

    8.8)0(2.0)333333.7(2.12

    x

    3142857.27

    8.8)3(3347334 21

    3

    x x x

    7771429.2)0(2.0)3142857.2(2.13 x

  • 8/17/2019 Ch11 Gauss Siedel

    22/22

    Gauss-Siedel Method- Example 2

    Iter. unknown value relaxation a maximum a 1 x 1 2.5 3 100.00%

    x 2 7.3333333 8.8 100.00%

    x 3 -2.314286 -2.777143 100.00% 100.000%

    2 x 1 4.2942857 4.5531429 34.11%x

    2 8.3139048 8.2166857 7.10%x

    3 -1.731984 -1.522952 82.35% 82.353%

    3 x 1 3.9078237 3.7787598 20.49%x

    2 7.8467453 7.7727572 5.71%x

    3 -2.12728 -2.248146 32.26% 32.257%

    4 x 1 4.0336312 4.0846055 7.49%x

    2 8.0695595 8.12892 4.38%x

    3 -1.945323 -1.884759 19.28% 19.280%