Siedel 1984 Aquacultural-Engineering

download Siedel 1984 Aquacultural-Engineering

of 14

Transcript of Siedel 1984 Aquacultural-Engineering

  • 7/28/2019 Siedel 1984 Aquacultural-Engineering

    1/14

    Aquacu#ural Engineering 3 I 1984) 30 3-3 16

    R ap i d D i f f e r e n t i a t i on o f A r t em i a sp p . P op u l a t i on s b yT h i n L a y e r I s o e le c t ri c F o c u s i n g

    C.R. Siedel and K .L. Sim psonDep artment of F oo d Science and N utr i tion, Universi ty o f Rhod e Island.

    Kingston, Rh ode Island 02 88 I. USA

    A B S T R A C TA r t e m i a spp. o f various geographic origins, ),earl), co llec tion lots, dev elop -m ental s tages , and a b#tary geographic m ixn tre were analyzed b y th inlaver polya crylam ide get isoelectr ic tbcusing ([EF). IE F o f geographicalArtemia samples y ie lded un ique pro f i le s for each popu la t ion in the pHrange em ployed . Par thenogene t ic popu la t ions o f Artemia e x h ib i t e d [E Fpatterns which were, generally, do m bta ted by fe w er prote ins; b isexualpopu la t ions exh ib i ted more even ly d is t r ibu ted , complex pro te in pa t te rns .There wer e similarities refle cte d in II: 'F pro files o f geographically isolatedArtemia desc end ed fro m a co m m on ancestry . Yearly col lec t ions o]"Artemia exh ibi te d no apparen t d i fferences in IE F prote in patterns. Therewere d i fJOrences Hoted in three deve lop m enta l stages o f Artemia. A hhzarymLx'ntre o]" geographic po pu latio ns yi eM ed It: 'F pa tterns bttermediare to#rose o f t t te co m po ne n t pure samples.

    I N T R O D U C T I O NI n t h e p a s t d e c a d e , i s o e l e c t r i c f OC L'S ing ( I E F ) h a s re c e i v e d w i d e a p p l i c a -t i o n in t il e i d e n t i f i c a t i o n a n d / o r c l a r i f ic a t i o n o f m o r p h o l o g i c a l l y s i m i la rm a r i n e s p e c i e s , s u c h a s w h i t e f i s h ( D j u s p s u n d , 1 9 7 6 ) , t r o u t ( C h u a e t a l . ,1 9 7 8 ) , s e a b r e a m ( T a n i g u c h i e t a l . , 1 9 8 2 ) a n d h a k e ( b l a c k i e a n d J o n e s .1 9 7 8 ) . A n u m b e r o f c o m p a r a t i v e s t u d ie s h av e e m p l o y e d [ E F t o s uc c es s-f u ll y d i f f e r e n t i a t e b e t w e e n a s m a n y a s 2 2 fis h s p e c ie s ( H a m i l t o n , 1 9 8 2 :

    T o o m e t a l . , 1 9 8 2 ; Y a m a d a a n d S u z u k i , 1 9 8 2 ).I n v ie w o f t h e d e p e n d e n c e o f t il e a q u a c u l t u r e i n d u s t r y a n d sc i e n ti f i c

    c o m m u n i t y o n A r t e m i a spp . a s a l i ve d i e t f o r l a r v a l f i s h a n d i n v e r t e -3o3

    Aquacultural Engineering 014 4-86 09/8 4/S0 3.00 Elsev ier Applied Sc ienceP u b l i s h e r s L t d , E n g l a n d , 1 9 8 4 . P r i n t e d i n G r e a t B r it a in

  • 7/28/2019 Siedel 1984 Aquacultural-Engineering

    2/14

    304 C . R . S i e d e l , K . L . S i m p s o n

    bra t e s , t he ne e d a r i s e s t o i de n t i fy a r e l i a b l e A r t e m i a p r o d u c t o f h i g hf e ed q u a li ty . H o w e v e r , t h e o u t c o m e o f a r e se a r ch e f fo r t t o b i o c h e m i c a l lyc h a r ac t er iz e a n u m b e r o f A r t e m i a p o p u l a t i o n s s t r o n g l y s u g g e s t s t h a ti n t e r - p o p u l a t i o n v a r i a b il it y e x i st s w i t h i n t h e g e n u s , e s p e ci al ly w i t hr e g ar d t o f a t t y a c id s , a m i n o a c id s a n d c h l o r i n a t e d h y d r o c a r b o n s ( O i n e ye t a l . , 1 9 8 0 ; S c h a u e r e t a l . , 1 9 8 0 ; S e i d e l e t a l . , 1982) . B io log i c a l f e e d ings t u d i e s w e r e p e r f o r m e d w h o s e r e s u lt s r e v e al e d si g n i fi c a n t d i f f e r e n c e s int h e g r o w t h a n d s u r v i v a l o f l a r v a e f e d c e r t a i n A r t e m i a p o p u l a t i o n s a sa t o t a l d i e t ( J o h n s e t a l . , 1 9 8 0 ; K l e in - M a c P h e e e t a l . , 1 9 8 2 ) . H e n c e , t h en o n - s t a n d a r d i z e d b i o c h e m i c a l m a k e - u p p r e s e n t in A r r e m i a p o s e sa d e f i n i t e r i s k t o c o n s u m e r l a r v a e i n c u l t u r e f a c i l i t i e s , w h i l e c r e a t i n gi n c o n v e n i e n c e a n d / o r s e r i o u s s to c k lo s se s f o r t h e i n d i v id u a l s i n v ol v ed .

    T h i s p a p e r e v a lu a t e s I E F i n t h i n l ay e rs o f p o l y a c r y l a m i d e g el a sa r a p i d m e t h o d f o r i d e n t i f y i n g A r t e m i a s p p . p o p u l a t i o n s a n d t h ep o t e n t i a l f o r q u a n t i f y i n g t h e s e I E F r e s u lt s us in g so f t l as er d e n s i t o m e t r y .T h e r e i s a n e e d t o i d e n t i f y A r t e m i a a t t h e g e o g r a p h i c p o p u l a t i o n l e v e li n o r d e r t o h e l p i n s u r e a sa l e a n d n u t r i t i o n a l l y s o u n d la rv a l d i e t . T h e r ei s a l s o s c i e n t i f i c b e n e f i t g a i n e d b y i d e n t i f y i n g n e w l y - a c q u i r e d A r t e m i ap o p u l a t i o n s o r a n c e s t o r s t h e r e o f , a n d , in t u r n , t e s ti n g t h e ir f e ed v a lu ef o r a q u a c u l t u r a l l y i m p o r t a n t s p e c i e s .

    M A T E R I A L S A N D M E T H O D SA r t e m i a c u l t u r e

    D ry A r r e m i a c y s t s , o b t a i n e d f r o m t h e E P A L a b o r a t o r y , N a r r a g a n s e t t ,R h o d e I s l a n d , w e r e h y d r a t e d i n 30 ~'0 0 , U V - t r e a t e d , f i l te r e d s e a w a t e rf r o m N a r r a g a n s e t t B a y , R h o d e I s l a n d , in 2 0 0 m l s e p a r a t o r y f u n n e l ss u p p l i e d w i t h v i g o r o u s a e r a t i o n . A r t e m i a we re ha rve s t e d a t t i l e i n s t a rI s ta g e o f d e v e l o p m e n t ( H e a t h , 1 9 2 4 ) , a p p r o x i m a t e l y 3 0 h l at er . N a u p l i in o t u s ed i m m e d i a t e l y w e re f r o z e n u n d e r a n i tr o g e n a t m o s p h e r e .

    T w o p o p u l a ti o n s o f A r t e m i a w e r e l a b o r a t o r y c u l t u r e d t o 7 d a y s p o s t-h a t c h a n d 14 d a y s p o s t - h a t c h . D e - f a t t e d ri ce b r a n w a s f e d d u r i n g t h ec u l t u r e p e r i o d . A d e t a i l e d d e s c r i p t i o n o f t h e m a s s c u l t u r e o f A r t e m i ao n r i ce b r a n m a y b e f o u n d in R o n s iv a U i ( 1 9 8 3 ) .

    O n e g r a m ( w e t w e i g h t ) A r t e m i a n a u p l i i w a s h o m o g e n i z e d w i t h 3 m lo f a 1% g l y c in e s o l u t i o n a d j u s t e d t o p H 7 -0 0 ( + 0 - 0 5 ) u s in g a P o l y t r o nU l t ra s o n ic H o m o g e n i z e r ( B r i n k m a n n I n s t r u m e n t s , W e s tb u r y , N e w

  • 7/28/2019 Siedel 1984 Aquacultural-Engineering

    3/14

    A rernia analys is b y th in layer isoelectr ic foc us in g 305York). The homogenate was filtered through a medium porositysintered glass funnel, the surface of which was thinly coated with HyfloSuper Cel. Samples were analyzed for protein concentration and appro-priate dilutions were made with 1% glycine (pi-I = 7.00) to yieldsamples of 4.00 (+0-10) mg protein m1-1. This concentration was foundto be very satisfactory, for IEF analysis. Diluted samples were sealedunder nitrogen and stored at 4C for no longer than five days.G e l p r e p a r a t i o n

    Thin layer polyacrylamide gels used as tile IEF medium were preparedby adding the following reagents sequentially: distilled water (20.5ml), 50% v/v glycerol (7-5 rot), 20% acrylamide in distilled water: 0.8%methylene-A,N'-bisacrylamide in distilled water (12.5mi ), carrierampholyte (Pharmacia Fkqe Chemicals, Piscataway, New Jersey) pH4.0-6.5 (3.0 ml). This mixture was deaerated under a vacuum for 10rain, 10% ammonium persulfate in distilled water (0.13 ml) was added,and deaerat ion was continued I min longer. The gel solution wasrapidly transferred, by careful pouring, into a preformed 260 X 125 cmglass mold, with a 1.0 mm top edge opening. Polymerization wascomplete after 45 min at room temperature and, at that time, the gelwas carefully demolded.

    Isoelectric focusing

    IEF was accomplished using a Multiphor IEF basic unit in combinationwith a 2000-V constant power supply (model 2103), both supplied byLKB Instruments Inc., Gaithersburg, Maryland. The gel was cooled to4C during electrofocusing. Prepared samples were applied in 10/~1volume to 1.0 X0.5 mm sample application tabs (LKB InstrumentsInc.), placed on tile gel surface approximately 1.0 cm from the cathodeedge. Electroly te filter paper wicks, 21.5 cm X 1-0 cm 1.0 mm (MRACorp., Clearwater, Florida) were evenly wetted with 1 M H3PO4 and I MNaOH for anode and cathode edges, respectively.Initially, 20 mA constant current was applied to the gel. After 10rain, 25 W constant power was applied, and the mA limit was raised to200. 30 min later, the sample applicat ion tabs were carefully removedand, approximately 90 min after tab removal, the protein system

  • 7/28/2019 Siedel 1984 Aquacultural-Engineering

    4/14

    306 C. R. S iedel , K. L . S impsonattained equilibrium. The voltage limit was set at 1000 V throughoutthe experiment.

    The gel gradient was determined with a surface pH electrode (IngoldElectrodes, Andover, Massachusetts) at 1.0 cm intervals. Immediate lyafterwards, the gel was immersed in a Coomassie Brilliant Blue G-250staining solution. The staining procedure was modified from Righettiand Drysdale (1974). Following destaining, gels were immersed ina preserving solution, air-dried, wrapped in cellophane and stored ina humidity chamber at 4C until analyzed by densitometry. The proteinzones of gels stored in this manner have been found to be stable for sixmonths (Toom e t a l . , 1982).

    Qu antitative de nsitome tryStained protein bands were scanned using an Ultro Scan laser densito-meter (LKB Instruments Inc.). A model 3390A reporting integrator(Hewtett-Packard, Avondale, Pennsylvania) indirectly monitored lightabsorbance, as the 633 nm, fixed wavelength laser passed over each 9.0cm sample lane, from anode to cathode edge at a speed of 6 mm min-LEach sample lane of two replicate gels were scanned, in the mannerdescribed, three times within the inner 2/3 of the lane and the mean ofthese integrated values was calculated for each protein band. This way,true bands could be distinguished from artifacts such as bubbles,scratches, dust or stain particles. Area percent values were assigned toproteins, identified on the basis of isoelectric point.

    Visual examinat ion was employed to interpret stained gels along withdensi tometric analysis; the former was most valuable in detecting 'falsebands' (i.e. artifacts) f rom true scan-integration data and the latter wereessential in quantifying sample protein bands.

    Experimental studies performed

    Four IEF studies were performed; for each study, two replicate gelswere run in the pH 4-0-6.5 range (see Table 1). The first ('geograptlic')study compared instar I nauplii from China (CHN), France (FRN),Australia (AUS), Reference A r t e m i a cysts (RAC) and San FranciscoBay (SFB), San Pablo Bay, California (SPB) and Great Salt Lake, Utah(GSL) populations. The second ('temporal') study group included instar

  • 7/28/2019 Siedel 1984 Aquacultural-Engineering

    5/14

    TABLE1

    D

    pooAemiaCeoU

    Geacogn

    Ln

    Y

    Cmmeza

    A

    ao

    Su

    h

    e

    sue

    goa

    AaaSkB

    l1

    '~

    WodO

    LdKwVebn

    A

    G

    A~aa

    CnTesn

    1

    GeWaba-C

    ETesn

    CN

    G

    PesR

    coCn

    Fa

    Ld

    1

    Ncmmecayawae

    FR

    G

    ReeAemiacsz

    AemiaeeeceG

    Bgum

    R

    GDB

    UASFasB

    2

    3

    1

    MeaameSFasBBaIn

    S1:B-2018

    T

    Nwk

    SB3

    T

    SFmcsB

    2

    1

    MeaameSFasBBaIn

    SB2

    T

    Nwk

    SIqnsB

    3

    3

    1

    MeaameS

    asBBaIn

    SB3

    GT

    Nwk

    SB3

    T

    SmPaoky

    1

    1

    LvnWodSFasBBaIn

    SB

    GT

    Nwk

    GeSL

    1

    S

    BnSnmpCO

    /G7

    T

    GeSLk

    1

    .G7

    G"DB

    GeSL

    IOJ

    [G7

    T

    aE

    measugop(5gacsuTempasu

    =doe

    ttldy;

    1{=baymixue

    sudtTRhb

    o

    aecbaomaeansueunAemiaaafosoc(SmpoaB

    198o)

    E" n o,q O ~

  • 7/28/2019 Siedel 1984 Aquacultural-Engineering

    6/14

  • 7/28/2019 Siedel 1984 Aquacultural-Engineering

    7/14

    A rremia analys is by th in laver isoelecrr ic foc us in g 309T A B L E 2

    Isoelectric Focusing Profiles o f A r t e m i a Nauplii in the pH 4-30-6.70 Range ShowingVariation Between Duplicate Gels (Results Expressed As Relative Area Percent)

    P I A U S C H N F R z V G S L - 7 7 S P B S F B - 3 1 5 0 R A C4-304-35 14.404.60 I 54.75 4 4 3 5 2 4 14 11 i 14.805.00 10 9 6 i1 8 85.10 16 155-15 9 6 26 17 13 11 7 85-20 14 95.25 22 20 l l I0 23 36 34 315.275.30 23 20 18 26 14 15 13 8 12 185.33 8 65.35 13 175-40 6 55.45 8 7 8 7 7 85.48 7 4 10 10 7 65.50 8 8 4 55.55 11 11 9 6 1 15.58 24 19 13 11 5 25.60 4 15.63 5 5 4 35.70 4 7 5 5 ~ 3 v 15.83 2 5 2 15 -906.07 2 4 1 16-10 4 6 5 6 3 4 1 3 1 16.17 2 56.556-63 i 2 1 1

    33 35 3

    10 1118 2010 137 116 43 43 1

    11 93 I

    12 10

    2 21 1

    1 1

    "~ 5 45 43 2

    3 7 4

    23 168 126 11

    6 106 7

    10 1114 12

    6 4

    4 4

    similarities were observed h~ IE F profiles for geogr aphic ally isolatedA r t e m i a with a common ancestry (SFB, SPB, RAC); however , each ofthe three IEF patterns was electrophoret ical ly dis t inct .

  • 7/28/2019 Siedel 1984 Aquacultural-Engineering

    8/14

    310 C. R. Siedel, K. L. SimpsonResults for IEF of temporal collections of SFB Arternia (lots 2018,

    3348, 2149, 3150, 3490) and GSL Ar temia (lots from 1970, 1977,1978) in the pH 4.0-6.5 range revealed no intrapopulation differences(see Fig. 2). Both qualitative and quanti tat ive data supported thesefindings.

    Quantitative results for ttle developmental stage study are presentedin Table 3. For the GSL-77 and RAC populations. IEF profiles demon-strated a general increase in ttle low isoelectric point (P~) proteins in theinstar VII and XIV Ar temia compared to the newly-hatched animals.One protein (Pt = 4.37) was found to occur in tile instar XIV Ar temiafrom GSL-77 whictl was not detected in other GSL-77 groups; tworelatively major proteins (P[ = 4.90; PI = 4.95) were present in instarXIV animals from RAC, but absent in other groups from that poptt-lation.The binary mixture study revealed IEF protein patterns that wereintermediate to those of the pure GSL-77 and RAC samples. Tile effectof mixing was most dramatic in proteins which focused at Pt values of5.25 and 5.27 (see Fig. 3). In the RAC sample, tile P[ = 5.27 protein(s)contribut ed 91% of the two-band total, and tile Pt = 5.25 protein(s),9%. As the mixture contained a greater proportion ot" GSL-77 and lesser

    0-

    1 -

    2

    Eu4-t.-

    ~ 6 -07 -

    8-

    F i g . 2 .

    9 -

    III

    !3 3 4 8 2 1 4 9 3 1 5 0 3 4 9 0

    I

    1.6.5fI

    - 6 - 0

    5 - 5

    5 " 0

    i

    2 0 1 8 7 0 7 7 7 8S F B G S L

    -4.5

    Cathode

    PI

    Anode

    Visual IEF patterns of yearly collections of Artemia nauplii in the pH4.00-6.70 range (sketched t'rom experimental gel).

  • 7/28/2019 Siedel 1984 Aquacultural-Engineering

    9/14

    .4rrernia analysis by thin laye r isoelecrric fbcusg ng 311T A B L E 3

    I s o e l e c t r i c F o c u s i n g P r o f i l e s o f A r r e m i a a t T h r e e D e v e l o p m e n t a l S t ag e s ( p H R a n g e4 . 0 0 - 6 - 6 0 ; R e l a t i v e A r e a P e r c e n t S h o w n )

    G S L - 7 7 R A CP! /a up l i i 7 -day 14 -day P~ /a u p l i i 7 -day 14 -day

    2 , " ~ " ) ,2 ,4 . , 0 - _ 1 3 4.35 . 6 __ 64 . 2 5 - 1 3 4 - 4 0 6 1 9 l 04 - 3 0 - 1 2 4 . 6 0 4 1 1 34 . 3 2 - 1 2 4 - 7 5 5 5 14 . 3 5 - 5 4 4 - 9 0 - - 1 34 . 3 7 - - 2 4 - 9 5 - - 1 64 . 4 0 - 1 5 t 3 5 . 2 5 2 3 1 2 1 84 . 7 5 9 ~ I 5 - 2 7 9 1 3 1 95 . 1 5 9 5 I 5 - 3 0 8 1 0 65 - 2 5 3 1 2 3 2 4 5 . 4 5 6 t r a c e a 2,5 . 3 0 1 4 1 7 7 5 .48 5 t r a c e a t r a c e a5 .33 9 12 7 5.55 10 3 75 - 4 5 7 3 2 5 . 6 0 f 2 2 t r a c e a5 - 4 8 6 1 2 5 . 9 0 3 t r a c e a t r a c e a5 .5 5 7 6 2 6- 55 4 "~ 15 . 6 3 4 3 I5 . 7 0 2 4 76 . 1 0 2 I t r a c e aa D e n o t e s < 0 .5 ?2 - or" t o t a l p r o t e i n s r e p o r t e d .

    p r o p o r t i o n o f R A C n a u p l i i , t h e c o n t r i b u t i o n o f P~ = 5 . 2 7 p r o t e i n ( s )w a s g r a d u a l l y r e d u c e d , a n d P l = 5 . 2 5 p r o t e i n ( s ) w a s g r a d u a l l y i n c r e a s e du n t i l , i n t i l e G S L - 7 7 s a m p l e p a t t e r n , t i l e P I = 5 . 2 5 p r o t e i n ( s ) c o n t r i b u t e d1 0 0 % o f t h e t w o - b a n d t o t a l .

    D I S C U S S I O NA s a r a p i d i d e n t i f i c a t i o n m e t h o d f o r A r t e m i a p o p u l a t i o n s , I E F r e p r e -s e n t s a n a d v a n c e m e n t o v e r t h e r e s u l t s o f A b r e u - G r o b o i s a n d Beardmore( 1 9 8 0 ) w h o s e e l e c t r o p h o r e t i c c h a r a c t e r i z a t i o n o f A r t e m i a i s o z y m e s w a s

  • 7/28/2019 Siedel 1984 Aquacultural-Engineering

    10/14

    312 C. R. S iedel , K. L . S im ps on

    ~ 91"fo

    NAC

    ~ 8 3 %

    751oRAC 2 5 % GSL-7751% ,9 - , .

    50%RAC 50"/.GSL-776 6 % ~ 34%

    25%RAC 75%GSL-77100%_ ~

    GSL-77F ig . 3 . D e n s i t o me t r ic s c a n a n aly sis o f a b i n a r y m i x t u r e o f R A C a n d G S L - T 7A r t e m i a nauplii showing the effect of mixing on two proteins. Peak at left repre-

    sents protein(s)with Pt = 5,25; peak at r ight represents protein(s)with PI = 5.27.

    u n a b le t o d i f f e r e n t i a t e b e t w e e n S F B , S P B . R A C a n d A U S p o p u l a ti o n s .T h e u s e o f I E F e n a b l e d a p o p u l a t i o n - s p e c i f i c i d e n t i f ic a t i o n o f t h e s ev e ng e o g r a p h i c A r t e m i a p o p u l a t i o n s a n a l y z e d .T e m p o r a l s a m p l e a n a ly s i s b y I E F l e n d s f u r t h e r c re d e n c e t o t h eg e o g r a p h i c p o p u l a t i o n r e su l ts , s i nc e n o y e a r l y i n t r a p o p u l a t i o n v a r ia t io nw a s r e f l e c t e d f o r e i t h e r S F B o r G S L - 7 7 A r t e m i a c o l le c t i o n s. T e m p o r a ls a m p l e r e s u l t s f o r A r t e m i a a gr ee w i t h t h o s e o f T o o m e t al. ( 1 9 8 2 ) w h o

  • 7/28/2019 Siedel 1984 Aquacultural-Engineering

    11/14

    A rtemia analysis by th in layer i soelectr ic focu sing 313reported no seasonal variability to exist in Atlantic croaker, blue crab,Southern flounder, brown shrimp or red snapper when they weresampled monthly over a twelve-month period, and subjected to IEFanalysis.Heath (1924) described the morphological changes that A r r e r n i aundergo in their development from newly-hatched nauplius through tomature adult. For each of their 13-15 instar stages, a host of bio-chemical changes has also been known to occur as a result of geneticand/or environmental factors (Bagshaw, 1980; Clegg and Conte, 1980).The IEF results for instar I, VII and XIV animals from RAC andGSL-77 A r t e m i a populations may vary due to the increased digestiveenzyme activity found to be present at certain A r t e m i a life stages.There is strong evidence that the digestive enzymes o f A r t e m i a includean acid protease (Warner and Shridhar, 1980, T. Nagatani, personalcommunication), thus, possibly explaining the increase in low PIproteins for the instar VII and XIV groups of both populations. Theappearance o f one or more of the three electrophoretically distincthemoglobin molecules synthesized by A r t e m i a (Bowen e t a l . , 1969,1978) after hatching into a nauplius, may also be partially responsiblefor the observed increase in low PI proteins.

    The fact that binary mixtures o f A r t e r n i a were detected by IEF, andthese results were verified using quantitative dens itometry , representsa valuable contribution to the description of the genus. Only twoaccounts of quantitative dens itometry of IEF results for marine speciesidentification were found in the literature (Hamilton, 1982: Toom e t a l . ,1982). IEF is largely being used as a qualitative taxonomic index at thepresent time. With the use of soft laser densitometry, quantitativeapplications of IEF will become more important in the future. The useof a rapid identification technique, as reported here, along with A r r e m i aquality indices such as polyunsaturated fatty acid levels and chlorinatedhydrocarbon levels provide aquaculture and aquatic research scientistswith valuable tools to select the best larval diet.

    ACKNOWLEDGEMENTSWe gratefully acknowledge the A r t e m i a Reference Center, Ghent,Belgium lbr providing the A r t e m i a cysts used in this research andmembers of the Culture Team at the EPA Environmental Research

  • 7/28/2019 Siedel 1984 Aquacultural-Engineering

    12/14

    314 C. R. Siedel. K. L. SimpsonL a b o r a t o ry " i n N a r r a g a n s e t t , R h o d e I s la n d f o r h e l p i n g w i t h Artemiah a t c h i n g a n d c u l t u r e .

    T h i s p u b l i c a t i o n w a s p r e s e n t e d a t th e 4 3 r d A n n u a l M e e t in g o f t h eI n s t i t u t e o f F o o d T e c h n o l o g i s t s , N e w O r l ea n s , L o u i s i a n a , 19-22 J u n e1 9 8 3 . It is t h e r e s u lt o f re s e a r c h s p o n s o r e d b y N O A A O f f i c e o f S e aG r a n t , U S D e p a r t m e n t o f C o m m e r c e , u n d e r g r an t n o . N A 8 1 A A - D -0 0 0 7 3 , a n d U S E P A g ra n t n o . C R 8 0 6 7 3 5 - 0 3 - 0 . R h o d e I sla n d A g ri-c u l t u ra l E x p e r i m e n t S t a t i o n c o n t r i b u t i o n n o . 2 1 6 3 .

    I n t e r n a t i o n a l i n t er d i s ci p l in a r y s t u d y o n Artemia s t r a i n s c o o r d i n a t e db y t h e Arremia R e f e r e n c e C e n t e r , S t a t e U n i v e r s i ty o f G h e n t , B e l g iu m .

    R E F E R E N C E SAbreu-Grobois, R. A. & Beardmore, J. A. (1980). International study of Artemia.II. Gen etic characterization o f Artemia p o p u l a t i o n s - a n e l e c t r o p h o r e t i c

    approach. In: The Brine Shrimp Artemia, Vol. I, eds. G. Persoone, P. Sorgeloos,O. Roels and E. Jaspers, Universa Press, Wetteren, pp. 133-46.

    Bagshaw, J. C. (198 0). Biochemistry o f Artemia. In : The BrOw Shrimp Artemia,Vol. II, eds G. Persoone, P. Sorgeloos. O. Roels and E. Jaspers. Universa Press,Wetteren. pp. 3-10.

    Bow en, S. T., Lebherz, H. G., Po oh , M.-C., Chow , V. H. S. & Grigliatti, T . A.(1969) . The hemoglobins of Artemia salina - I. Determina tion o f phen otype bygenotype and environment. Comp. Biochem. Physiol., 3 1 , 7 3 3 - 4 7 .

    Bow en, S. T.. D urkin, J. P., Sterling, G. & C lark, L. S. (19 78 ). Artemia hemoglobins:genetic variation in parthogenetic and zygogenetic populations. Biol. Bull., 155,273-87 .Chua, K. E., Crossman, E. J. & Gih nou r, C. A. (19 78 ). Lac tate dehydrogenase(LDH) isozymes in muscle of freshwater fish by isoelectric focusing in thin-layerpolyacrylam ide gel. Science Tools, 25 (1) , 9-11.

    Clegg, J. S. & Conte, F. P. (1980). A review of the cellular and developmentalbiology of Artemia. In : The Brine Shrimp Artemia, Vol. II, eds G. Persoone,P. Sorgeloos, O. Roels and E. Jaspers, Universa Press, Wetteren, pp. 11-54.

    Djupsund. B. M. (1976 ) . Proteintaxon om ical s tudies of wh itefish and tapeworm swith thin layer electrofocusing. LKB Application Note 243.Ham ilton, W. D. (I 98 2). Fish species ide ntific atio n b y thin layer agarose isoelectricfocusing and densitometric scanning. J. Assoc. Of/. AnaL Chem., 65 (1) , 119-22 .Heath, H . (19 24 ). The external dev elop m ent of certain p hyllo pod s. J. Morphology,38 (4), 453-8 3 .

  • 7/28/2019 Siedel 1984 Aquacultural-Engineering

    13/14

    Ar rem ia analysis by th in layer i soelecrrfc fb cu sm g 3 15Johns , D . M. , Pe te r s , M. E . & Beck . A . D . (1980) . In t e rna t iona l s tudy o f A r t em i a .

    VI . Nu t r i t i ona l va lue o f geograph ica l and t em pora l s t r a ins o f Ar t e m i a : Ef f e c t s o nsurvival and gro w th o f two species o f brach yu ran larvae . In : /Tw Br i n e S h r i m pArtemia , Vol . I I I , eds G. Persoone. P . Sorgeloos. O. Roels and E. Jaspers ,Univer sa P ress , W et t e r en , pp . 2 91 -304 .

    Kle in -M acPhee , G . , How el l, W. H. & B eck , A . D . (198 2) . In t e rna t iona l s tudy o fAr t e m i a . XX . C om par i son o f a r e f e rence and g eograph ica l s tr a ins o f Ar t e m i a sp p.a s f o o d f o r w i n t e r f l o u n d e r (Pseudopleuronectes american,Ls) larvae. A q u a -cu l ture , 2 9 , 2 7 9 - 8 8 .

    M ack ie , I. M. & Jones , B . W. (197 8) . Th e use o f e l ec t ropho res i s o f the w a te r -so lub ie(sarco ptasm ic) p rote ins o f f ish mu scle to d i f fe ren t ia te the c losely re la ted specieso f h a k e (Mer lucc ius sp . ), C omp. Biochem . Plo ' s io l . , 5 9 B , 9 5 - 8 .

    O lne y, C. E., Sc hau er . P . S . , M cLean. S . , Yo u, Lu & Sim pson , K. L. (198 0) . In ter -n a t i o n a l s t u d y o f Ar t e m i a . V I I I . C o m p a r i so n o f c h l o r i n a t e d h y d r o c a r b o n s a n dheavy meta l s in the d i f f e r en t s t r a ins o f newly ha tched A r t e m i a a n d l a b o r a t o r yreared mar ine f i sh . In : T h e Br i n e S h r i m p Ar temia , V o l . l I l . eds G . Pe r soo ne ,P . Sorgeloos, O. Rods and E. Jaspers . Universa Press , Wet teren , pp . 343-52.

    Righet t i , P . G. & Drysdale . J . W. (1974) . I soelect r ic focusing m gels . J . Chromatogr, .9 8 , 2 7 1 - 3 2 1 .

    Ronsival l i , P . C. (1983) . The br ine shr imp A r t e m i a as a p ro te in source fo r humans .MS Thesis , Univers i ty of Rhode Is land, Kingston, pp . 1-64.Schauer . P . S . , Johns , D . M. , Otney , C . E . & S impson , K . L . (1980) . In t e rna t ionaIS t u d y o f Ar t e m i a . IX . L ip id leve l, ene rgy con ten t and f a t ty acid co m po s i t ion o fthe cys t s and new ly ha tched naup l ii f rom f ive geograph ica l s t ra ins o f Ar t e m i a .In : The Br ine S t t r imp Artemia , Vol . I I I , eds G. Persoone, P . Sorgeloos, O. Roelsand E. Jaspers , Universa Press . Wet teren , pp . 365-73.

    Se ide l, C . R . . Jo lm s , D . M. . Sch auer . P .S . & O lney , C . E . 11982) . In t e rna t ion a l s tu dyo f Ar t e m i a . XXV I . F oo d va lue o f naup l ii f rom re fe rence A r t e m i a cys t s and tou rgeograph ica l co l l ec t ions o f A r t e m i a for mud crab larvae . M ar. Ecol. Pr og Ser , ,8 , 3 0 9 - 1 2 .

    S impson , K . L . & Beck , A , D . (1980) . Workshop I . Charac te r i za t ion o f A r r e m ias t r a ins fo r app l i ca t ion in aquacu l tu re . In : T h e B r o w S h r i m p Artemia , Vol . I I I ,eds G. Perso one . P . Sorg eloos. O. Roe ls and E. Jaspers . Universa Press , W et teren ,p p . 4 0 9 - 1 1 .

    Tan iguch i , N ., Sum antad ina ta , K . , Suzu k i . A . & Yam ada . J . ( 1982) . G ene t i c varia -t ions in i soe fec t r i c focus ing pa t t e rn o f sa r cop lasmic p ro te in o f b l ack seabream.Bull . Jap. Soc. Sci . Fish., 4 8 ( 2 ), 1 3 9 - 4 1 .

    T oo m , P . M.. Ward, C. F . & Weber , J . R. (1982 ) . Ide nt i f ic a t io n of f i sh species byisoelect r ic focusing. In : C h e m i s tr y a n d B i o c h e m i s t r y o j ' Ma r i n e Fo o d Pro d u c t s.eds R. E. Mar t in , G. J . F l ick . C. E. Hebard and D. R. Ward, AVI Publ ish ing Co. ,W e s t p o r t , C o n n e c t i c u t , p p . 5 1 - 6 5 .

  • 7/28/2019 Siedel 1984 Aquacultural-Engineering

    14/14

    316 C. R . S iedel , K. L . S impsonWarner , A . H. & Shr idhar , V . (1980) . Ch arac te r iza t ion o f an ac id p ro tease f rom

    e n c y s t e d e m b r y o s o f A r t e m i a . In : The B r i n e S h r i m p Artemia , Voi . [ I , edsG. Persoone, P . Sorgeloos , O. Roels and E. Jaspers , Universa Press , Wetterenp p . 3 5 5 -6 6 .Yam ada , J . & Suzu k i , A. (1982 ) . Iden t i f ica t ion o f f ish species by th in layer iso-e lec t ric focus ing o f sa rcop lasmic p ro te in . Bull . Jap. Soc. Sci . Fish., 4 8 ( I ) . 7 3 -7 .