Click to edit Master title style -...
Embed Size (px)
Transcript of Click to edit Master title style -...

Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
1
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
1
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
1
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
1
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
1
Climate Change and Methane Emissions: Using Integrated Analysis Tools to Advise Policy
Marcus C. Sarofim

Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
2
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
2
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
2
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
2
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
2
Overview
• Climate Change Background– The Science– The Politics
• The Role of Methane– Conventional Wisdom– Research results (political, economic, and
scientific)– Policy recommendation: decouple CO2 from
CH4 policy

Click to edit Master title style
•••••
3
Click to edit Master title style
•••••
3
Click to edit Master title style
3
Click to edit Master title style
3
Click to edit Master title style
3
The Earth’s Radiative Balance
Emitted by Atmosphere
Absorbed byAtmosphere67
165
Incoming Solar Radiation
342 Wm-2
AtmosphericWindow
40
30
235342
OutgoingLongwaveRadiation235 Wm-2
Greenhouse Gases
324 BackRadiation
40350
390 SurfaceRadiation
Absorbed by Surface
324Evapo-
transpiration
ThermalsAbsorbed by Surface
168 24 78
30
Reflected Solar
107 Wm-2 107
Reflected byClouds, andAtmosphere
77
77
2478
Reflected by Surface
30
Radiation
Latent Heat
Figure by MIT OCW, based on Kiehl and Trenberth 1997.

Radiative Forcing ComponentsRF Terms
Long-lived
greenhouse gases
Ozone Stratospheric
Land use Black carbonon snow
Tropospheric
Halocarbons
CO2
CH4
N2O
RF values (Wm-2) Spatial scale LOSU
High
High
Med
Low
Low
Low
LowGlobal
Global
Global
Global1.66 [1.49 to 1.83]
0.48 [0.43 to 0.53]0.16 [0.14 to 0.18]0.34 [0.31 to 0.37]
-0.05 [-0.15 to 0.05]0.35 [0.25 to 0.65]
0.07 [0.02 to 0.12]
-0.2 [-0.4 to 0.0]
-0.5 [-0.9 to -0.1]
-0.7 [-1.8 to -0.3]
0.01 [0.003 to 0.03]
0.12 [0.06 to 0.30]
0.1 [0.0 to 0.2]
Continental
Continentalto global
Continentalto global
Continentalto global
Local toContinental
Med- Low
Med- Low
Stratospheric waterVapour from CH4
Surface albedo
Direct effectTotal
Aerosol Cloud albedoeffect
Linear contrails
Solar irradiance
Total netanthropogenic
Nat
ural
Ant
hrop
ogen
ic
Radiative Forcing Wm-2-2 -1 0 1 2
{
{
1.6 [0.6 to 2.4]1.6 [0.6 to 2.4]
Figure by MIT OCW, based on IPCC.

Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
5
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
5
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
5
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
5
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
5
Politics
• UN Framework Convention on Climate Change– Stabilization of Greenhouse Gases at a level avoiding
dangerous anthropogenic interference– No binding commitment
• Kyoto Protocol– “Annex B” nations have commitments in 2008-2012– Multiple gases: CO2, CH4, N2O, HFCs, PFCs, SF6
• Cap and trade: using Global Warming Potentials

Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
6
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
6
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
6
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
6
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
6
Global Warming Potentials (GWPs)
∫∫=
dttCOa
dttxaxGWP
CO
x
)]([*
)]([*)(
22
EPPA, Kyoto, and US inventories all use IPCC 1996 100 year GWPs
IPCC TAR 20 year 100 year 500 year IPCC 1996 (100 year)
CO2 1 1 1 1
CH4 62 23 7 21
N2O 275 296 156 310

Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
7
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
7
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
7
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
7
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
7
Anthropogenic Emissions by GWP weight
GHG emissions, 2000Total: 10.3 GtC eq.
CO2
CH4
N2O
(emissions data from the MIT EPPA model)

Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
8
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
8
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
8
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
8
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
8
Methane: Arguments against GWP based Trading• Conventional Wisdom
– Capture “What” flexibility by trading among GHGs• Results of this study
– CO2 constraints have negative interactions with economic distortions
– Methane is undervalued for reasons of chemistry and timing
– Methane emission inventories are much less accurate than fossil CO2 emission inventories
– Methane constraints are politically more palatable to developing nations

Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
9
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
9
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
9
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
9
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
9
The MIT Integrated Global Systems Model

Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
10
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
10
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
10
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
10
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
10
Anthropogenic Methane SourcesBiological Sources:
Anaerobic decomposition
Fossil Sources
Total: 300 to 400 Tg/year (2 to 3 GtCeq)
Data Source: US EPA bottom-up inventoryExploded slices indicate methane capture potential
CO2 Sources:
Fossil Fuels: 7 GtC/yr (85% of energy in 2000 is from fossil fuels)
Cement: 0.3 GtC/yr
Land-Use Change: 0.5 – 2.7 GtC/year
Agriculture(rice, livestock)
GasCoal
Landfills
Manure
Oil
Other(Combustion,w astew ater)

Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
11
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
11
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
11
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
11
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
11
Global Marginal Abatement Curves (2010)
0
10
20
30
40
50
60
70
80
90
100
0 100 200 300 400 500 600 700 800
CE Reduction (MMT) (single gas)
Mar
gina
l con
sum
ptio
n lo
ss (1
997$
/ton)
CH4
CO2
1) Many low cost methane abatement opportunities are available (Kyoto Protocol in 2010 even including the US would have required ~ 500 MMT carbon equivalent reduction)
2) Because of CO2 constraint interactions with tax distortions, GWP based inter-gas trading leads to non-optimal solutions
0
10
20
30
40
50
60
70
80
90
100
0 100 200 300 400 500 600 700 800
Carbon Equivalent Reduction (MMT)
Car
bon
Equi
vale
nt P
rice
(199
7$/to
n)
CO2
CH4

Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
12
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
12
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
12
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
12
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
12
Non-CO2 gas reductions: Impacts on climate
CO2ONLY scenario: CO2emissions from 550 ppmscenario, all other gases as reference
US Climate Change Science Program Level 2 scenario: 550 ppm CO2stabilization, separate emissions paths for other Kyoto gases (CH4, N2O, HFCs, PFCs, SF6), meeting an overall radiative forcing target
0
0.5
1
1.5
2
2.5
3
3.5
4
2000 2020 2040 2060 2080 2100
Year
T C
hang
e Si
nce
2000
(°C
) Reference
CO2ONLY
OtherGases
550 ppm
Other Gases scenario: CO2emissions from reference, all other gases from 550 ppmscenario

Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
13
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
13
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
13
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
13
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
13
Climate Impacts of CH4 reductionResults in 2100 Constraining CH4
emissions to be constant at 2005 levels
A GWP equivalent scenario, constraining CO2 only
% reduction in T rise 14.9% 4.0%
Global ozone conc. (ppb) 36.8 40.1
CH4 lifetime (years) 9.0 10.8
• Methane reductions alone can reduce temperature rise by 15% overthe century
• 100 year Global Warming Potentials seriously undervalue CH4 for century scale temperature reduction– Chemistry: ozone and lifetime feedbacks
– Emission timing effects

Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
14
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
14
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
14
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
14
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
14
Methane ChemistryCH4
OH ·
CH3· + H2O
O2
CH3O2 · NO
O2
CH3OOH
OH ·
HO2 ·
OH ·
CH3O ·
HCHO
OH · or hv
CO + (H2, HO2 ·,H2O)
OH ·, O2
CO2 + HO2·
Deposition
NO2
NO2
NO2 + hv -> NO + OO + O2 -> O3
HO2· + NO -> NO2 + OH·
Net: CH4 + 8O2 + hv ->
CO2 + 4O3 + 2H2O

Methane Inventories: Bottom upEQUATION 10.19
ENTERIC FERMENTATION EMISSIONS FROM A LIVESTOCK CATEGORY
Emissions = EF(T)N(T)
106 ]]Where:
CH4 Rice = annual methane emissions from rice cultivation, Gg CH4 yr-1
EFijk = a daily emission factor for i, j, and k conditions, Kg CH4 ha-1 day-1
Aijk = annual harvested area of rice for i, j, and k conditions, ha yr-1
i, j, and k = represent different ecosystems, water regimes, type and amount of organic amendments, and other conditions under which CH4 emissions from rice may vary
tijk = cultivation period of rice for i, j, and k conditions, day
Where:
Emissions = methane emissions from Enteric Fermentation, Gg CH4 yr-1
EF(T) = emission factor for the defined livestock population, Kg CH4 head-1 yr-1
N(T) = the number of head of livestock species/category T in the country
T = species/category of livestock
EQUATION 5.1CH4 EMISSIONS FROM RICE CULTIVATION
CH4 Rice = (EFi.j.k ti.j.k Ai.j.k 10-6) i.j.k∑
Image by MIT OCW.

Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
16
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
16
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
16
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
16
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
16
Methane Inventories: Inverse Modeling
• 92 Methane monitoring sites• Observed winds• Chemistry model• Estimates of OH sink

Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
17
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
17
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
17
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
17
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
17
Methane InventoriesInverse
Modeling Results
Bottom-up methodologies
EPA (2006)
30
22
156
75
3
287
Anthro.CH4emissions in 2000 Chen & Prinn
(2006)EDGAR 32FT2000
Rice 112 39
Biomass burning
48 22
Animals + waste
185 147
Energy 48 94
Other 37 19
Total 430 321
IPCC Guidelines for GHG inventories are based on bottom-up approaches.
But if bottom-up inventories are inaccurate, their use in trading regimes is questionable
Contrast: Fossil CO2
Similar Problems: N2O, land use change CO2
Therefore: until methodology is improved, regulatory methods other than economic instruments (tax, cap & trade) should be used for methane control.

Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
18
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
18
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
18
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
18
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
18
Political Analysis• Kyoto Protocol
– All Gases: CO2, N2O, industrial gases by 100 year GWPs– Limited Nations: EU, Japan, NZ, Canada, Russia
• ~20% of global CH4 emissions• CDM extension to non-Annex B
• Methane to Markets Initiative– Methane only– Non-Kyoto participants: US, China, India, Brazil, Mexico, and
Australia• M2M nations emit ~60% of global CH4
– Drawbacks• “Voluntary”, “non-binding”: depends on “public-private partnerships”• Target is only 50 MMT Carbon equivalent reduction
• Evidence of OECD historical CH4 reductions

Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
19
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
19
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
19
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
19
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
19
Different Strategies?• Methane
– Short lifetime– Cheap abatement– Most emissions are hard to quantify– Recommend
• Command and Control instruments like best practices• Near term implementation
• Carbon Dioxide– Long lifetime– Long term zero emission target– Capital intensive– Fossil emissions are well quantified– Recommend
• Near term price signals• Long term research initiatives

Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
20
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
20
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
20
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
20
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
20
Cautions
• Possible delay of CO2 abatement• Potential increased policy complexity• Loss of “what” flexibility

Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
21
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
21
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
21
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
21
Click to edit Master title style
• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level
21
Conclusions
• Policy Advice– Uncouple methane policy and CO2 policy– Implement methane policies immediately
• Using a mix of policy instruments– Use a different strategy for CO2
• Methodology– Importance of integrated approach: science,
economics, and policy evaluated together