Chap4 Field Effect Transistors

64
Chap4 - 1 Jaeger/Blalock 11/15/03 Microelectronic Circuit Design McGraw-Hill Chapter 4 Field-Effect Transistors Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 

Transcript of Chap4 Field Effect Transistors

Page 1: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 1/64

Chap4 - 1 Jaeger/Blalock 11/15/03

Microelectronic Circuit DesignMcGraw-Hill

Chapter 4

Field-Effect Transistors

Microelectronic Circuit Design 

Richard C. Jaeger 

Travis N. Blalock 

Page 2: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 2/64

Chap4 - 2 Jaeger/Blalock 11/15/03

Microelectronic Circuit DesignMcGraw-Hill

Chapter Goals

• Describe operation of MOSFETs and JFETs.

• Define FET characteristics in operation regions of cutoff, triode andsaturation.

• Develop mathematical models for i-v characteristics of MOSFETs and

JFETs.• Introduce graphical representations for output and transfer characteristic descriptions of electronic devices.

• Define and contrast characteristics of enhancement-mode anddepletion-mode FETs.

• Define symbols to represent FETs in circuit schematics.

• Investigate circuits that bias transistors into different operating regions.

• Learn basic structure and mask layout for MOS transistors and circuits.

• Explore MOS device scaling

Page 3: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 3/64

Chap4 - 3 Jaeger/Blalock 11/15/03

Microelectronic Circuit DesignMcGraw-Hill

Chapter Goals (cont.)

• Contrast 3 and 4 terminal device behavior.

• Describe sources of capacitance in MOSFETs and JFETs.

• Explore FET modeling in SPICE.

Page 4: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 4/64

Chap4 - 4 Jaeger/Blalock 11/15/03

Microelectronic Circuit DesignMcGraw-Hill

Types of Field-Effect Transistors

• MOSFET (Metal-Oxide Semiconductor Field-Effect

Transistor)

 –  Primary component in high-density VLSI chips such as

memories and microprocessors

• JFET (Junction Field-Effect Transistor)

 –  Finds application especially in analog and RF circuit

design

Page 5: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 5/64

Chap4 - 5 Jaeger/Blalock 11/15/03

Microelectronic Circuit DesignMcGraw-Hill

MOS Capacitor Structure

• First electrode - Gate : Consists of 

low-resistivity material such as

highly-doped polycrystalline

silicon, aluminum or tungsten

• Second electrode - Substrate or 

Body: n- or  p-type semiconductor 

• Dielectric - Silicon dioxide: stablehigh-quality electrical insulator 

 between gate and substrate.

Page 6: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 6/64

Chap4 - 6 Jaeger/Blalock 11/15/03

Microelectronic Circuit DesignMcGraw-Hill

Substrate Conditions for Different Biases

Accumulation

V G << V TN 

Depletion

V G < V TN 

InversionV G > V TN  

Page 7: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 7/64

Chap4 - 7 Jaeger/Blalock 11/15/03

Microelectronic Circuit DesignMcGraw-Hill

Low-frequency C-V Characteristics for MOS

Capacitor on P-type Substrate

• MOS capacitance is non-

linear function of voltage.

• Total capacitance in any

region dictated by theseparation between capacitor 

 plates.

• Total capacitance modeled as

series combination of fixedoxide capacitance and

voltage-dependent depletion

layer capacitance.

Page 8: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 8/64

Chap4 - 8 Jaeger/Blalock 11/15/03

Microelectronic Circuit DesignMcGraw-Hill

 NMOS Transistor: Structure

• 4 device terminals:

Gate(G), Drain(D),

Source(S) and Body(B).

• Source and drain

regions form pn 

 junctions with substrate.

• vSB , v DS  and vGS always

 positive during normal

operation.• vSB must always reverse

 bias the pn junctions

Page 9: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 9/64

Chap4 - 9 Jaeger/Blalock 11/15/03

Microelectronic Circuit DesignMcGraw-Hill

 NMOS Transistor: Qualitative I-V

Behavior 

• V GS << V TN : Only small leakage

current flows.

• V GS < V TN : Depletion region formed

under gate merges with source anddrain depletion regions. No current

flows between source and drain.

• V GS > V TN : Channel formed between

source and drain. If v DS 

> 0, finite i D

 

flows from drain to source.

• i B = 0 and iG = 0. 

Page 10: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 10/64

Chap4 - 10 Jaeger/Blalock 11/15/03

Microelectronic Circuit DesignMcGraw-Hill

 NMOS Transistor: Triode Region

Characteristics

 Di

 

i D

 K n

' W 

 LvGS 

V TN 

v DS 

2

 

 v DS 

for vGS 

V TN 

v DS 

0

where K n

 K n

' W 

 L

 K n

'  nC 

ox

"    A V2

C ox

" ox

T ox

 ox

oxide permittivity

F/cm

T ox

oxide thickness (cm

Page 11: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 11/64

Chap4 - 11 Jaeger/Blalock 11/15/03

Microelectronic Circuit DesignMcGraw-Hill

 NMOS Transistor: Triode Region

Characteristics (cont.)

• Output characteristicsappear to be linear.

• FET behaves like a

gate-source voltage-controlled resistor 

 between source anddrain with

 Ron

1

 K n' W 

 LV 

GS V 

TN   

 

Page 12: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 12/64

Chap4 - 12 Jaeger/Blalock 11/15/03

Microelectronic Circuit DesignMcGraw-Hill

MOSFET as Voltage-Controlled Resistor 

Example 1: Voltage-Controlled Attenuator

vO

vS 

Ron

 Ron

 R 1

1 K n R V 

GGV 

TN   

 

 

vO

vS 

1

1500 A

V2

2000  

 1.51  

 V

0.667

To maintain triode region operation,

0.667vS 

(1.51)V or vS

0.750 V 

v DS 

vGS 

V TN 

or vO

vGG

V TN 

If  K n = 500A/V2, V TN = 1V, R = 2k  and

V GG = 1.5V, then,

Page 13: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 13/64

Chap4 - 13 Jaeger/Blalock 11/15/03

Microelectronic Circuit DesignMcGraw-Hill

MOSFET as Voltage-Controlled Resistor 

(contd.)

Example 2: Voltage-Controlled High-Pass Filter

Voltage Transfer function,

T s V 

Os

V S 

s s

 s o

where, cut-off frequency

 o

1

 RonC 

 K n(V 

GS V 

TN )

If  K n = 500A/V2, V TN  = 1V, C = 0.02F

and V GG = 1.5V, then,

 f  o

500 A

V2

1.51  

 V

2 (0.02 F) 1.99 kHz

To maintain triode region operation,

vS 

V GG

V TN 

0.5 V

Page 14: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 14/64

Chap4 - 14 Jaeger/Blalock 11/15/03

Microelectronic Circuit DesignMcGraw-Hill

 NMOS Transistor: Saturation Region 

• If v DS increases above triode region limit,

the channel region disappears - also said to

 be “pinched-off.” 

• Current saturates at a constant value,

independent of v DS. 

• Saturation region operation mostly used for 

analog amplification.

Page 15: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 15/64

Chap4 - 15 Jaeger/Blalock 11/15/03

Microelectronic Circuit DesignMcGraw-Hill

 NMOS Transistor: Saturation Region

(contd.)

i D

 K 

n'

2

 L

vGS 

V TN 

 

 2

for  v DS 

vGS 

V TN 

v DSAT 

vGS 

V TN 

is called the saturation or 

 pinch-off voltage

Page 16: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 16/64

Chap4 - 16 Jaeger/Blalock 11/15/03

Microelectronic Circuit DesignMcGraw-Hill

Transconductance of a MOS Device

• Transconductance relates the change in drain current to a

change in gate-source voltage

• Taking the derivative of the expression for the drain

current in the saturation region,

 g m

di Ddv

GS  Q pt 

 g m

 K n' W 

 L(V 

GS V 

TN )

2 I  D

V GS 

V TN 

Page 17: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 17/64

Chap4 - 17 Jaeger/Blalock 11/15/03

Microelectronic Circuit DesignMcGraw-Hill

Channel-Length Modulation

• As v DS increases above v DSAT  , the 

length of the depleted channel

 beyond pinch-off point, DL,

increases and actual L decreases.

• i D increases slightly with v DS  

instead of being constant.

i D

 K 

n

'

2

 L

vGS 

V TN 

 

 2

1 v DS 

 

 

channel length modulation

 parameter 

Page 18: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 18/64

Chap4 - 18 Jaeger/Blalock 11/15/03

Microelectronic Circuit DesignMcGraw-Hill

Depletion-Mode MOSFETS

•  NMOS transistors with

• Ion implantation process is used to form a built-in n-typechannel in the device to connect source and drain by a

resistive channel

•  Non-zero drain current for vGS = 0; negative vGS required toturn device off.

V TN 

0

Page 19: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 19/64

Chap4 - 19 Jaeger/Blalock 11/15/03

Microelectronic Circuit DesignMcGraw-Hill

Transfer Characteristics of MOSFETS

• Plots drain current versus gate-source voltage for a fixed

drain-source voltage

Page 20: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 20/64

Chap4 - 20 Jaeger/Blalock 11/15/03

Microelectronic Circuit DesignMcGraw-Hill

Body Effect or Substrate Sensitivity

•  Non-zero vSB changes threshold

voltage, causing substrate

sensitivity modeled by

where

V TO = zero substrate bias for V TN (V)

 body-effect parameter FF = surface potential parameter (V)

V TN V TO   vSB 2  F  2  F 

 

V

Page 21: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 21/64

Chap4 - 21 Jaeger/Blalock 11/15/03

Microelectronic Circuit DesignMcGraw-Hill

Enhancement-Mode PMOS Transistors:

Structure

•  p-type source and drain regionsin n-type substrate.

• vGS < 0 required to create p-typeinversion layer in channelregion

• For current flow, vGS < vTP 

• To maintain reverse bias onsource-substrate and drain-substrate junctions, vSB < 0 andv DB < 0

• Positive bulk-source potentialcauses V TP to become morenegative

Page 22: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 22/64

Chap4 - 22 Jaeger/Blalock 11/15/03

Microelectronic Circuit DesignMcGraw-Hill

Enhancement-Mode PMOS Transistors:

Output Characteristics

• For , transistor is

off.

• For more negative vGS , drain

current increases inmagnitude.

• PMOS is in triode region for 

small values of V  DS and in

saturation for larger values.

V GS 

V TP 

Page 23: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 23/64

Chap4 - 23 Jaeger/Blalock 11/15/03

Microelectronic Circuit DesignMcGraw-Hill

MOSFET Circuit Symbols

• (g) and (i) are the

most commonly

used symbols in

VLSI logic design.

• MOS devices aresymmetric.

• In NMOS, n+ 

region at higher 

voltage is the drain.

• In PMOS p+ region

at lower voltage is

the drain

Page 24: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 24/64

Chap4 - 24 Jaeger/Blalock 11/15/03

Microelectronic Circuit DesignMcGraw-Hill

Process-defining Factors

• Minimum Feature Size F : Width of smallest line or space that can

 be reliably transferred to wafer surface using a given generation of lithographic manufacturing tools

• Alignment Tolerance T: Maximum misalignment that can occur 

 between two mask levels during fabrication

Page 25: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 25/64

Chap4 - 25 Jaeger/Blalock 11/15/03

Microelectronic Circuit DesignMcGraw-Hill

Mask Sequence for a Polysilicon-Gate

Transistor 

• Mask 1: Defines active area or thin oxide region of transistor 

• Mask 2: Defines polysilicon gateof transistor, aligns to mask 1

• Mask 3: Delineates the contactwindow, aligns to mask 2.

• Mask 4: Delineates the metal pattern, aligns to mask 3.

• Channel region of transistor 

formed by intersection of firsttwo mask layers. Source andDrain regions formed wherever mask 1 is not covered by mask 2

n+ n+

n+n+n+ n+

(a) (b)

(c) (d)

Page 26: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 26/64

Chap4 - 26 Jaeger/Blalock 11/15/03

Microelectronic Circuit DesignMcGraw-Hill

Basic Ground Rules for Layout

• F = 2L 

• T = F/2 = L Lcould be1, 0.5,

0.25 m, etc.Polysilicon Gate

AluminumInterconnection

Contact

Active Region

OxideMetal

n+

2 L 2 L 2 L1 L 1 L

12 L

L

L

L

L

L

L

B

B'

W

L

Polysilicon BelowMetal

n+

Oxide

Metal

n+

Page 27: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 27/64

Chap4 - 27 Jaeger/Blalock 11/15/03

Microelectronic Circuit DesignMcGraw-Hill

Internal Capacitances in Electronic

Devices

• Limit high-frequency performance of the electronic device

• Limit switching speed of circuits in logic applications

• Limit frequency at which useful amplification can beobtained in amplifiers.

• MOSFET capacitances depend on operation region and are

non-linear functions of voltages at device terminals.

Page 28: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 28/64

Chap4 - 28 Jaeger/Blalock 11/15/03

Microelectronic Circuit DesignMcGraw-Hill

 NMOS Transistor Capacitances: Triode

Region

C ox” = Gate-channelcapacitance per unitarea(F/m2).

C GC = Total gate channel

capacitance.C GS  = Gate-source

capacitance.

C GD = Gate-drain

capacitance.C GSO and C GDO = overlap

capacitances (F/m).

C GS 

C GC 

2C 

GSOW C 

ox" WL

2C 

GSOW 

C GD

C GC 

2C 

GSOW C 

ox" WL

2C 

GSOW 

Page 29: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 29/64

Chap4 - 29 Jaeger/Blalock 11/15/03

Microelectronic Circuit DesignMcGraw-Hill

 NMOS Transistor Capacitances: Triode

Region (cont.)

C SB = Source-bulk capacitance.

C  DB = Drain-bulk capacitance.

 AS  and A

 D= junction bottom area

capacitance of the source and

drain regions.

 P S and P  D = perimeter of the

source and drain junction

regions.

C SB

C  J  A

S C 

 JSW  P 

C  DB

C  J  A

 DC 

 JSW  P 

 D

Page 30: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 30/64

Chap4 - 30 Jaeger/Blalock 11/15/03

Microelectronic Circuit DesignMcGraw-Hill

 NMOS Transistor Capacitances:

Saturation Region

• Drain no longer connected to channel

C GS  2

3C 

GC C GSO

C GD

C GDO

Page 31: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 31/64

Chap4 - 31 Jaeger/Blalock 11/15/03 Microelectronic Circuit DesignMcGraw-Hill

 NMOS Transistor Capacitances: Cutoff 

Region

• Conducting channel

region completely

gone.

C GB = Gate-bulk 

capacitance

C GBO = gate-bulk 

capacitance per unit

width.

C GS 

C GSO

C GD C 

GDOW 

C GB

C GBO

Page 32: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 32/64

Chap4 - 32 Jaeger/Blalock 11/15/03 Microelectronic Circuit DesignMcGraw-Hill

SPICE Model for NMOS Transistor 

Typical default values used by SPICE:

 K n or  K  p: KP = 20 A/V2 

:  GAMMA= 0  : LAMBDA = 0

V TO = 1 V or  V TO = -1 V

 n  or    p  UO = 600 cm2/V-s

2F  F : PHI = 0.6 V

C GDO = C GSO = C GBO = C  JSW = 0

T ox: TOX = 100 nm

Page 33: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 33/64

Chap4 - 33 Jaeger/Blalock 11/15/03 Microelectronic Circuit DesignMcGraw-Hill

Bias Analysis Approach

• Assume a region of operation (generally the saturation

region)

• Use circuit analysis to find V GS  

• Use V GS  to calculate I  D , and I  D to find V  DS  

• Check validity of operation region assumptions

• Change assumptions and analyze again if required.

 NOTE: An enhancement-mode device with V  DS = V GS is

always in saturation

Page 34: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 34/64

Chap4 - 34 Jaeger/Blalock 11/15/03 Microelectronic Circuit DesignMcGraw-Hill

Four-Resistor and Two-Resistor Biasing

• Provide excellent bias for transistors in discrete circuits.

• Stabilize bias point with respect to device parameter and

temperature variations using negative feedback.

• Use single voltage source to supply both gate-bias voltage

and drain current.

• Generally used to bias transistors in saturation region.

• Two-resistor biasing uses fewer components than four-

resistor biasing

Page 35: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 35/64

Chap4 - 35 Jaeger/Blalock 11/15/03 Microelectronic Circuit DesignMcGraw-Hill

Bias Analysis: Example 1

(Four-Resistor Biasing)

Problem: Find Q-pt ( I  D , V  DS  )

Approach: Assume operating

region, find Q-point, check to see if result is consistent with operation

region

Assumption: Transistor is saturated, I G= I  B = 0

Analysis: First, simplify circuit, split

V  DD into two equal-valued sources and

apply Thévenin transformation to findV  EQ and R EQ for gate-bias voltage

Page 36: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 36/64

Chap4 - 36 Jaeger/Blalock 11/15/03 Microelectronic Circuit DesignMcGraw-Hill

Bias Analysis: Example 1

(Four-Resistor Biasing - cont.)

V  EQ

V GS 

 I  D

 RS 

Since I G = 0,

V  EQ

V GS 

 K 

n R

2

V GS 

V TN 

 

 2

4 V GS 

25106

 

 3.9104

 

 

2V 

GS 1

 

 2

 

V GS 

2 0.05V GS  7.21 0

V GS 

2.71V,2.66V

Since V GS < V TN  for V GS = -2.71 V 

and MOSFET will be cut-off,

V GS 2.66 V  and  I  D 34.4   A

Also, V  DD

 I  D

( R D

 RS )V 

 DS 

and V  DS 

6.08 V 

V  DS > V GS -V TN . Hence

saturation region assumption iscorrect.

Q-pt: (34.4 A, 6.08 V) with

V GS 

= 2.66 V

Page 37: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 37/64

Chap4 - 37 Jaeger/Blalock 11/15/03 Microelectronic Circuit DesignMcGraw-Hill

Bias Analysis: Example 2

(Four-Resistor Biasing)

• Estimate value of  I  D and use it

to find V GS and V SB 

• Use V SB to calculate V TN  • Find I  D’  using above 2 steps

• If  I  D’  is not same as original I  D 

estimate, start again.

Analysis with body effect usingsame assumptions as in example 1:

V GS 

V  EQ

 I  D

 RS 

622000 I  D

V SB

 I  D

 RS 

22000 I  D

V TN 

V TO

 ( V SB

2  F 

2  F 

)

V TN 

10.5( V SB

0.6 0.6)

 I  D

'25106

 

2

V GS 

V TN 

 

 2

Iterative solution can be found by

following steps:

Page 38: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 38/64

Chap4 - 38 Jaeger/Blalock 11/15/03 Microelectronic Circuit DesignMcGraw-Hill

Bias Analysis: Example 2

(Four-Resistor Biasing - cont.)

The iteration sequence leads to I  D = 88.0 A

V  DS 

V  DD

 I  D

( R D

 RS )10 40000 I 

 D6.48V

V  DS 

>V GS 

-V TN 

. Hence saturation region assumption is correct.

Q-pt: (88.0 A, 6.48 V)

Page 39: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 39/64

Chap4 - 39 Jaeger/Blalock 11/15/03 Microelectronic Circuit DesignMcGraw-Hill

Bias Analysis: Example 3

(Two-Resistor Biasing)

Assumption:  I G = I  B = 0, transistor issaturated (since V  DS =V GS )

Analysis:

V  DS 

V  DD

 I  D

 R D

 

V GS 

V  DD

 K 

n R

 D

2V 

GS V 

TN 

 

 2

V GS 

3.32.6104

 

 104

 

 

2V 

GS 1

 

 2

V GS 0.769V, 2.00V

Since V GS <V TN  for V GS = -0.769 V

and the MOSFET will be cut-off,

V  DS >V GS -V TN . Hence saturation

region assumption is correct.

Q-pt: (130 A, 2.00 V)

V GS  2.00 V  and  I  D 130   A

Page 40: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 40/64

Chap4 - 40 Jaeger/Blalock 11/15/03 Microelectronic Circuit DesignMcGraw-Hill

Bias Analysis: Example 4 ( Biasing in

Triode Region)

Assumption:  I G = I  B = 0, transistor 

is saturated (since V  DS = V GS )

Analysis: V GS = V  DD = 4 V

 I  D

2502

 AV2

(41)2 1.13mA

V  DD

 I  D

( R D

 RS )V 

 DS 

4 1600 I  D

V  DS 

V  DS 

2.19 V 

Also

But V  DS < V GS -V TN . Hence,

saturation region assumption isincorrect. Try again using the triode

region equation: 

4V  DS 

16002502

 A

V2(41

V  DS 

2)V 

 DS 

V  DS  2.3 V  and  I  D 1.06 mA

V  DS <V GS -V TN , transistor is in triode

region

Q-pt: (1.06 mA, 2.3 V) 

Page 41: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 41/64

Chap4 - 41 Jaeger/Blalock 11/15/03 Microelectronic Circuit DesignMcGraw-Hill

Bias Analysis: Example 5 (Two-Resistor 

 biasing for PMOS Transistor)

Assumption:  I G = I  B = 0, transistor 

is saturated (since V  DS = V GS )Analysis: 

V GS 

(470k ) I G

V  DS 

0

Also

15V(220k ) I  D

V  DS 

0

15V(220k )502 A

V2V 

GS 2

 

 2

V GS 

0

V GS 

0.369V, 3.45V

Since V GS = -0.369 V is less than V TP = -2V,

V GS = -3.45 V

 I  D = 52.5 A and V GS = -3.45 V

Hence saturation assumption is correct.

Q-pt: (52.5 A, -3.45 V)

V  DS  V GS V TP 

Page 42: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 42/64

Chap4 - 42 Jaeger/Blalock 11/15/03 Microelectronic Circuit DesignMcGraw-Hill

MOSFET as a Current Source

• Ideal current source

gives fixed output

current regardless of 

voltage across it.

• MOSFET behaves as as

an ideal current source if 

 biased in the pinch-off 

region (output current

depends on gate-sourceterminal voltage).

Page 43: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 43/64

Chap4 - 43 Jaeger/Blalock 11/15/03 Microelectronic Circuit DesignMcGraw-Hill

 NMOS Current Mirror 

Assumption:  M 1 and M 2 have identical V TN , K n’ ,   

and W/L and are in

saturation.

 I  REF 

 K 

n

2

 L

V GS1

V TN  2 1 V 

 DS1

 

 

 I O

n

2

 L

V GS2

V TN  2 1 V 

 DS2

  

But V GS 2

V GS 1

and

 I O

 I  REF 

1 V  DS2

1 V  DS1

 I  REF 

Thus, the output current precisely

mirrors the reference current if 

V  DS1 = V  DS2. 

Page 44: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 44/64

Chap4 - 44 Jaeger/Blalock 

11/15/03

Microelectronic Circuit Design

McGraw-Hill

 NMOS Current Mirror: Example

Given data:  I  REF  = 50 A , V O = 12 V, V TN = 1 V , K n = 150 A/V2, =

0.0133 V-1

Determine: V GS , V  DS1, I O

Analysis: 

V  DS 1

V GS 1

V TN 

2 I 

 REF 

 K n

(1 V  DS 1

)

Using trial-and-error,

V  DS 1

1V 2(50 A)

150 A

V2

(1 0.0133

VV 

 DS 1)

Hence, V  DS1 = 1.81 V. Also, V  DS2 = 12 V

   I O

(50 A)

1 0.0133

V(12V)

 

1 0.0133

V(1.81V)

 

 

56.6  A

Page 45: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 45/64

Chap4 - 45 Jaeger/Blalock 

11/15/03

Microelectronic Circuit Design

McGraw-Hill

MOS Current Mirror Ratio

 K n1  K n' W  L

 1 2 K n'

 K n2

 K n' W 

 L

 

 2

10 K n'

 

 I O

 I  REF 

W / L 2

W / L 1

1 V  DS2

1 V 

 DS1

5 I  REF 

1 V  DS2

1 V 

 DS1

 

  I O

5 I  REF 

Thus, the ratio between I O and I  REF  

can be modified by changing the

W/L ratios of the current mirror transistors (ignoring differences due

to V  DS   mismatch)

Page 46: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 46/64

Chap4 - 46 Jaeger/Blalock 

11/15/03

Microelectronic Circuit Design

McGraw-Hill

MOS Current Mirror Output Resistance

• Output current changes with v DS  due to channel length

modulation. 

• Output resistance is given by

• In the current mirror, vO = v DS2 

 Ro iOv

O Q pt 

 

 

1

 

iO

 K 

n

2

 L

vGS2

V TN 

 

 21 v

O

 

 

 Ro

  I 

O

1  I O

 

 

1

1  I 

O

  I O

1

  I O

Page 47: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 47/64

Chap4 - 47 Jaeger/Blalock 

11/15/03

Microelectronic Circuit Design

McGraw-Hill

Current Mirror Layout

Two possible layouts

for a current mirror 

Page 48: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 48/64

Chap4 - 48 Jaeger/Blalock 

11/15/03

Microelectronic Circuit Design

McGraw-Hill

Design of Multiple Current Mirrors:

Example

 I  D2

 I  REF 

W / L 2W / L

1

50  A

 I  D3

 I  REF 

W / L 3

W / L 1

125  A

 I  D5

 I  REF 

W / L 5W / L

4

25  A

Choose R to set I  REF = 25 A

 R 10V 

GSP V GSN 

 I  REF 

Page 49: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 49/64

Chap4 - 49 Jaeger/Blalock 

11/15/03

Microelectronic Circuit Design

McGraw-Hill

Design of Multiple Current Mirrors

(cont).

   R101.711.4525

V

 A 274k 

 

V GSP 

V TP 

2 I 

 D

 K  p

1.71V and V GSN 

V TN 

2 I 

 D

 K n

1.45V

R can be replaced by transistor  M 6 for better 

integration. We know that V GS6 = -6.84 V and I  D 

= 25 A and M 6  is in saturation

   I  D

 K 

 p'

2W  L

 

 V 

GS V 

TP  2 and W  L

 

 

1

13.6

Page 50: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 50/64

Chap4 - 50 Jaeger/Blalock 

11/15/03

Microelectronic Circuit Design

McGraw-Hill

MOS Transistor Scaling

• Drain Current:

• Gate Capacitance and Circuit Delay:

where t  is the circuit delay in a logic circuit.

 K n* 

n

 ox

T ox

 

W / 

 L/ 

 

 

 

n

 ox

T ox

 

 L

 

 

  K 

n

i D* 

n

 ox

T ox / 

 

 

W / 

 L/ 

 

 

vGS 

 

v

TN 

 

v

 DS 

 

 

v DS 

 

i D

 

C GC * (C 

ox" )*W * L*

 ox

T ox

 

W / 

 L/ 

 

 

C GC 

 

t *C GC 

*DV *

i D

* C GC 

 DV / 

i D

 

 

 

Page 51: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 51/64

Chap4 - 51 Jaeger/Blalock 

11/15/03

Microelectronic Circuit Design

McGraw-Hill

MOS Transistor Scaling (cont.)

• Circuit and Power Densities:

• Power-Delay Product:

• Cutoff Frequency:

 f T   improves with square of channel length reduction

 P *V  DD

*i D* V 

 DD 

i D

 

 

 2

 P *

 A

* P *

*

 L

* P / 2

(W / )( L/ ) P 

WL P 

 A

 PDP * P *t * P  2

 

 

 PDP 

 3

 f  T 

12 

 g mC 

GC 

12 

 n L2

V GS 

V TN 

 

 

Page 52: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 52/64

Chap4 - 52 Jaeger/Blalock 

11/15/03

Microelectronic Circuit Design

McGraw-Hill

MOS Transistor Scaling (cont.)

• High Field Limitations: –  High electric fields arise if technology is scaled down

with supply voltage constant.

 –  Cause reduction in mobility of the MOS transistors,

 breakdown of the linear relationship between mobilityand electric field, and carrier velocity saturation.

 –  Ultimately results in reduced long-term reliability and breakdown of gate oxide or  pn junction.

 –  Drain current in saturation region is linearized to

i D

C ox" W 2

(vGS 

vTN 

)vSAT 

where, vSAT is the carrier 

saturation velocity

Page 53: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 53/64

Chap4 - 53 Jaeger/Blalock 

11/15/03

Microelectronic Circuit Design

McGraw-Hill

MOS Transistor Scaling (cont.)

• Sub-threshold Conduction:

 –  I  D decreases exponentially for 

V GS < V TN.

 –  Reciprocal of the slope in

mV/decade gives the turn off 

rate for the MOSFET.

 –  V TN should be reduced if 

dimensions are scaled down,

 but curve in sub-thresholdregion shifts horizontally

instead of scaling with V TN .

Page 54: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 54/64

Chap4 - 54 Jaeger/Blalock 

11/15/03

Microelectronic Circuit Design

McGraw-Hill

Junction Field-Effect Transistor (JFET)

Structure 

• Much lower input current andmuch higher input impedance than

the BJT.

• In triode region, JFET is a voltage-

controlled resistor,

 r = resistivity of channel

 L = channel length

W = channel width between pn 

 junction depletion regions

t = channel depth

• Inherently a depletion-mode device

• n-type semiconductor block 

houses the channel region in n-

channel JFET.• Two pn junctions form the gate.

• Current enters channel at the drain

and exits at source.

 RCH 

 r t  LW 

Page 55: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 55/64

Chap4 - 55 Jaeger/Blalock 

11/15/03

Microelectronic Circuit Design

McGraw-Hill

JFET with Gate-Source Bias

• vGS = 0, gate isolated from channel.

• V  P < vGS  <0, W’ < W, and channel

resistance increases; gate-source

 junction is reverse-biased, iG almost 0.

• vGS = V  P < 0, channel region pinched-

off, channel resistance is infinite.

Page 56: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 56/64

Chap4 - 56 Jaeger/Blalock 

11/15/03

Microelectronic Circuit Design

McGraw-Hill

JFET Channel with Drain-Source Bias

• With constant vGS , depletion regionnear drain increases with v DS .

• At v DSP = vGS - V  P , channel is totally pinched-off; i D is saturated.

• JFET also suffers from channel-length modulation like MOSFET atlarger values of v DS .

Page 57: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 57/64

Chap4 - 57 Jaeger/Blalock 

11/15/03

Microelectronic Circuit Design

McGraw-Hill

 N -Channel JFET

i-v Characteristics

Transfer CharacteristicsOutput Characteristics

Page 58: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 58/64

Page 59: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 59/64

Chap4 - 59 Jaeger/Blalock 

11/15/03

Microelectronic Circuit Design

McGraw-Hill

 P -Channel JFET

• Polarities of n- and p-type regions of the n-channel

JFET are reversed to get the p-channel JFET.• Channel current direction and operating bias voltages

are also reversed.

Page 60: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 60/64

Chap4 - 60 Jaeger/Blalock 

11/15/03

Microelectronic Circuit Design

McGraw-Hill

JFET Circuit Symbols

• JFET structures are symmetric like MOSFETs.

• Source and drain determined by circuit voltages.

Page 61: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 61/64

Chap4 - 61 Jaeger/Blalock 

11/15/03

Microelectronic Circuit Design

McGraw-Hill

JFET Capacitances and SPICE Modeling

• C GD and C GS are determined by depletion-

layer capacitances of reverse-biased pn 

 junctions forming gate and are bias

dependent.

• Typical default values used by SPICE: V  p = -2 V

= C GD = C GD = 0

Transconductance parameter BETA

BETA = I  DSS  /V  P 2 = 100 A/V2

Bi i JFET d D l ti M d

Page 62: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 62/64

Chap4 - 62 Jaeger/Blalock 

11/15/03

Microelectronic Circuit Design

McGraw-Hill

Biasing JFET and Depletion-Mode

MOSFET: Example

• Assumptions: JFET is pinched-off, gate-channel junction is reverse-biased,

reverse leakage current of gate, I G = 0

 N -channel JFET Depletion-mode MOSFET

Bi i JFET d D l ti M d

Page 63: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 63/64

Chap4 - 63 Jaeger/Blalock 

11/15/03

Microelectronic Circuit Design

McGraw-Hill

Biasing JFET and Depletion-Mode

MOSFET: Example (cont.)

• Analysis:

Since  I S 

 I  D

, VGS

 I  D

 RS 

V GS 

 I  DSS 

 RS 

1V 

GS 

V  P 

 

 

2

5103A

 

 1000 1

V GS 

5V

 

 

2

  V GS 1.91V

, 13.1V

Since V GS = -13.1 V is less than V  P = -5 V, V GS = -1.91 V and, I  D = I S =

1.91 mA. Also,

V  DS 

V  DD

 I  D

( R D

 RS )12(1.91mA)(3k ) 6.27V

V  DS >V GS -V  P . Hence pinch-off region assumption is correct and gate-source junction is reverse-biased by 1.91V.

Q-pt: (1.91 mA, 6.27 V)

Page 64: Chap4 Field Effect Transistors

7/27/2019 Chap4 Field Effect Transistors

http://slidepdf.com/reader/full/chap4-field-effect-transistors 64/64

End of Chapter 4