1-s2.0-S1872206711605019-main

download 1-s2.0-S1872206711605019-main

of 16

description

ewwerwer

Transcript of 1-s2.0-S1872206711605019-main

  • ChineseJournalofCatalysis34(2013)492507

    a v a i l a b l e a t www. s c i e n c ed i r e c t . c om

    j o u r n a l h omep a g e : www. e l s e v i e r. c om / l o c a t e / c h n j c

    Review(SpecialColumnonProgressinCatalysisinChinaduring19822012) Advancesinselectivecatalytictransformationofployolsto valueaddedchemicalsMAJipinga,YUWeiqianga,WANGMina,JIAXiuquana,b,LUFanga,XUJiea,*aDalianNationalLaboratoryforCleanEnergy,StateKeyLaboratoryofCatalysis,DalianInstituteofChemicalPhysics,ChineseAcademyofSciences, Dalian116023,Liaoning,China

    bUniversityofChineseAcademyofSciences,Beijing100049,China

    A R T I C L E I N F O

    A B S T R A C T Articlehistory:Received2November2012Accepted14December2012Published20March2013

    Inthisreview,wediscussrecentprogressinthecatalytictransformationofpolyolstovalueaddedchemicals, including 5hydroxymethylfurfural (HMF), ethylene glycol (EG), 1,2propylene glycol(1,2PG)and1,3propyleneglycol(1,3PG).ThechallengesandsolvingofthesynthesisofHMFfromdifferentcarbohydrates,suchasfructose,glucoseandcelluloseareanalyzed.FortheconversionofHMF,wefocusonthecatalyticoxidationofHMFto2,5diformylfuranand2,5furandicarboxylicacidand their applications topolymers.Advances in the catalytic hydrogenolysis ofpolyols includingcellulose,sugaralcoholsandglyceroltodiolssuchasEG,1,2PGand1,3PGarereviewed,andthereactionmechanismswerediscussed.Researchtopicsaresuggestedforfutureresearchfromthisreviewontheselectivecatalytictransformationofployolstovalueaddedchemicals.

    2013,DalianInstituteofChemicalPhysics,ChineseAcademyofSciences.PublishedbyElsevierB.V.Allrightsreserved.

    Keywords:Biomass CatalysisFuranderivativePolyolRenewableresource

    1. Introduction

    Diminishing fossil fuel reserves and the adverse effects oftheiruseon theglobal environmentandclimateareofmajoracademic,economicandpoliticalconcerns.Tosolvetheenergyand environmental problems, the catalytic conversion of biomass resources into nonpetroleum derived fuels and chemicals is attractive [112]. Biomass is obtained from biologicalphotosynthesisusingreadilyavailableatmosphericCO2,waterandsunlightandit isabundantinnature.It isnotonlyanenergy carrierbut also a renewableorganic carbon source.Theuse of biomass as feedstocks for the production of fuels andchemicals is necessary for a sustainable chemistry industry[13].

    Carbohydrateswithplentifuloxygenatomsandlongcarbonchainsarethemaincomponentsofplantderivedbiomass.Thedirecttransformationandutilizationofcarbohydratesarevery

    difficultbecauseofthestronghydrogenbondsinthem.Ausefulway toget selectedchemicals fromthemisbycatalyticdehydrationandhydrogenolysis.

    In thisreview,wediscuss recentprogresson the transformationofpolyols to selectedvalueadded chemicalsbydehydrationandhydrogenolysisprocesses.We focuson thedehydration of carbohydrates to 5hydroxymethylfurfural (HMF)and its further conversion to 2,5diformylfuran (DFF) and2,5furandicarboxylic acid (FDCA)by selective oxidation. Progressinthecatalytichydrogenolysisofpolyolsincludingcellulose,sugaralcoholsandglyceroltodiolssuchasethyleneglycol(EG), 1,2propylene glycol (1,2PG) and 1,3propylene glycol(1,3PG)isreviewed.

    2. CatalyticconversionofcarbohydratestoHMF

    HMFisaversatileplatformchemicalthatisreadilyobtained

    *Correspondingauthor.Tel/Fax:+8641184379245;Email:[email protected] ThisworkwassupportedbytheNationalNaturalScienceFoundationofChina(21233008,21203183,and21103174). DOI:10.1016/S18722067(11)605019|http://www.sciencedirect.com/science/journal/18722067|Chin.J.Catal.,Vol.34,No.3,March2013

  • MAJipingetal./ChineseJournalofCatalysis34(2013)492507

    by the dehydration of sixcarbon containing sugars [14]. Itsselective oxidation products, such as DFF and FDCA, are important polymericmonomers, especially for FDCA,which is apromising alternative to petroleumbased terephthalic acid(PTA).Levulinicacid(LA),therehydrationproductofHMF,andits derivatives were reviewed very recently by Wu andcoworkers [15]. The reduction products of HMF, including2,5dimethylfuran(DMF),2,5dimethyltetrahydrofuran,2,5bis(hydroxymethyl)furan and 2,5bis(hydroxymethyl)tetrahydrofuran,arebiofuelsorbiofueladditives[16].However,becausetherearefewworkspublishedonthesynthesisofDMFsinceareview in2011[17],LAand itsderivativesand thereductionproductsofHMFwillnotbediscussedinthisreview.

    Sincethelastdecadeofthe19thcentury,growinginterestshavebeenpaidtoHMF.Intensiveinvestigationshaveproducedthe correct structure, synthesis methods, and physical andchemicalproperties.Atpresent,themainmethodtosynthesizeHMFistheconversionofcarbohydrates,suchasfructose,glucose,sucrose, inulinandcellulose,bycatalysisusingBrnstedacids or Lewis acids. Several recent reviews focused on thecatalystorsolventsystems[1829].TherearefewdiscussionsofthechallengesandsolvingofthesynthesisofHMFfromdifferent carbohydrates. In this review,we focus our discussionon the difficulties, challenges and solving of the synthesis ofHMFfromdifferentstructuralhexoses.

    2.1. Fromfructose

    TheproductionofHMFfromfructoseiseasycomparedwithother hexoses. Two main side reactions (Fig. 1) exist in thedehydration of sugar to HMF [19]. One is the rehydration ofHMFtolevulinicacidandformicacid.Thissidereactioncanbeavoidedinanhydroussystems.Theotheristhepolymerizationor crosspolymerizationofHMFor intermediates to insolublehumins. Unfortunately, this type of side reactions cannot beavoided either in aqueous systems or anhydrous systems.Therefore, thekey to theefficient synthesisofHMF is thedesignofnovel efficient catalystsor reactionmedia to suppressthese side reactions, or the timely removal of HMF or waterfromtheacidiccatalyticsystems.

    ThedesignofnovelcatalystsisawaytoenhancetheyieldofHMF. A novel carbonbased solid acid (GluTsOH) preparedfromglucoseandptoluenesulfonicacid, reportedbyWangetal. [30] in 2011, is one of themost efficient catalysts for theconversionoffructoseintoHMF.TheyieldofHMFwasasmuchas91%usingdimethylsulfoxide(DMSO)assolventat130 oCafter 1.5 h. This remarkable performance was ascribed to abetteraffinitytofructoseandasynergiceffectbetweensurfacecarboxylic acid and the sulfonic acid groups. Yang et al. [31]

    alsoreportedanefficientcatalyst,whichistantalumhydroxidetreatedwithphosphoricacid(TAp).TheyieldofHMF(90%)wasobtained inawater/2butanolbiphasic systemat160 oCafter100min,andtherewasnolossinactivityafterreusefor15times.

    Thereactionmediumplaysabigrole in fructosedehydration. Bicker et al. [32] investigated sulphuric acid catalyzedfructose dehydration in sub and supercritical fluids, such assupercritical acetonewater (90/10, v/v), and obtained 99%conversionwith77%selectivityforHMF.Theyfoundnosolidbyproducts in the subor supercritical solvents. In2006,Moreau et al. [33] reported that the ionic liquid1H3methylimidazolium chloride can act as a catalyst andsolventatthesametime.TheyieldofHMFwasasmuchas92%at90oCin45min.Lietal.[34]obtained97%HMFyieldin8min using 1butyl3methylimidazolium chloride ([BMIM]Cl)with9mol%hydrochloricacidcatalyst.Afructoseconversionof98.6%with aHMFyieldof83.3%wasachieved in10minreaction time at 80 oC in [BMIM]Cl using a sulfonic ion exchangeresinascatalyst[35].Veryrecently,Laiandcoworkers[36]reportedthatalcohol,esp.isopropylalcohol,isanefficientandgreensystemforfructosedehydrationthatgave83%yieldofHMF at 120 oC in 2 h. Alcohol as the solvent not only cansuppresstherehydrationofHMFbutalsocanmaketheseparationofHMFfromthereactionsystemeasier.

    Thetimelyremovalofproductorwaterfromtheacidcatalytic reactionmedium is anotherway to increase theyieldofHMF. In2006,Dumesicandcoworkers[37]reportedahighlyefficient waterorganic biphasic system for the synthesis ofHMF from fructose (Fig.2).TheHCl catalyzeddehydrationoffructoseproceededintheaqueousphaseandtheproductHMFwas efficiently and rapidly extracted into themethyl isobutylketone(MIBK)organicphase,thuspreventingtherehydration

    Fig.1.ProductionofHMFandsidereactions[19].

    Batch reactor

    Evaporator

    Extactor

    Organic phase

    Aqueous phase Fig.2.ProductionofHMFfromDfructosewithcountercurrentextraction and evaporation steps (the aqueous phase contains fructose,DMSO, PVP, and catalyst; the organic phase contains MIBK and2butanol)[37].

  • MAJipingetal./ChineseJournalofCatalysis34(2013)492507

    of HMF. For example, 80% conversion of fructose with 75%selectivitytoHMFwasobtainedusingwater/DMSO(8/2,w/w)as the aqueousphase andMIBK/2butanol (7/3,w/w) as theorganicphaseat180oCin2.53min.Theadditionofaninorganic salt to the aqueous phase can increase the distributionratioofHMFintheorganicphasebythesaltingouteffect[38].Among thedifferentorganic solvents, includingprimaryalcohol,secondaryalcohol,ketoneandcyclicether,tetrahydrofuranshowed the best performance with a selectivity to HMF asmuchas83%.The removalofwater also can suppressundesiredreactions,e.g.,rehydrationofHMForthecondensationofpartiallydehydratedintermediates.Shimizuetal.[39]reportedtwowaystoexecutethisidea:oneistousemildevacuationat0.097MPa,andtheotheristodecreasetheparticle(bead)sizeof the resin (Amberlyst15). Both ways efficiently increasedHMFyieldinfructosedehydration.

    A reduced reaction time is one solution to circumvent thetwo side reactions to enhanceHMFyield.Amicroreactor hastheadvantageofashortreactiontimeandthesameresidencetime of feedstocks and products. In 2009, Tuercke et al. [40]usingamicroreactorcontinuousequipmentinsteadofabatchreactor,showedthatat185oCunder1.7MPaO2pressure,after1 min the conversion of fructose was as much as 99% with99%selectivityforHMF.Ahighlyefficientheatingmethodcanreducethereactiontime.Comparedwithconventionalheatingmethods,suchasoilorsandbathheating,microwaveirradiationcangiveafastheatingrateandcanavoidthepartialoverheatingthatcanexistunderconventionaloilbathconditions.Qiet al. [41]described that fructose conversionandHMFyieldswithmicrowaveheating(91.7%and70.3%,respectively)werehigher than thosewith sand bath heating (22.1% and 13.9%respectively) under the same conditions. Li et al. [42] foundthatthecombinationofanionicliquidandmicrowaveirradiationisanefficientsystemforthedehydrationofhighlyconcentratedfructosetoformHMFintheabsenceofacatalyst.

    2.2. Fromglucose

    Compared with fructose, glucose has the advantages ofabundanceandlowcost.However,therateofglucosedehydrationandtheselectivityforHMFarelow.Therefore,thesynthesisofHMFfromglucoseisamorechallengingtopic.Atpresent,most researchers believed that there are three stages in theglucose dehydration process. First, there is glucopyranosemutarotationtoglucopyranoseviaalinearaldosestructure,thenthere isglucopyranoseisomerizationtofructofuranoseviaa linearenol structure, and finally, there is fructofuranosedehydrationtoHMF.Themutarotationandisomerizationprocesses are the key steps in glucose dehydration. In reportedworks, there are three types of catalyst for the key steps, includingaLewisacid,baseandglucoseisomerase.

    LewisacidssuchasCrCl2[4347],CrCl3[4446,48,49],SnCl4[50], SnCl2 [51], GeCl4 [52] in ionic liquid, andAlCl3 in awater/2secbutylphenol biphasic system [53], Sn zeolite insaturatedaqueoussaltsolutionsatlowpH[54],SnMontinthesinglephasemediumoftetrahydrofuran/DMSO[55],acomposite of MgCl2 with silica gel in acetonitrile [56], and wa

    tercompatiblelanthanidebasedLewisacids[57]canpromoteglucoseisomerizationtofructose. In2007,Zhaoetal. [43]reported an efficient method to synthesize HMF from glucosecatalyzed by CrCl2 in 1ethyl3methyl imidazolium chloride([EMIM]Cl)thatgave70%yieldofHMF.Itwasproposedthatthemutarotation of glucopyranose to glucopyranose andthe isomerization of glucopyranose to fructofuranose wererealizedviatheeffectofhydrogenbondactionandcomplexingactionwith the help of [EMIM]CrCl3. A year later, Yong et al.[44] found thatNheterocyclic carbene (NHC)promoted catalyst system, NHC/Cr2+ (or Cr3+), in the ionic liquid1butyl3methylimidazolium chloride ([BMIM]Cl) can efficiently convert glucose to HMF with a yield of 81% (78%).IIgenetal. [46]reported thatCrCl2 (orCrCl3) incholinechloride also can catalyze glucose to HMF with a yield of 45%(31%).

    CrCl2orCrCl3displayedgoodperformanceintheconversionofglucosetoHMFinionicliquid.However,itspracticalapplicationislimitedbecauseofthetoxicityofCr.Alowertoxicityornontoxic catalytic system for the synthesis of HMF is morepromising. In 2009, Han and coworkers [50] found that theLewis acid SnCl4 can convert glucose to HMF in1ethyl3methylimidazolium tetrafluoroborate ([EMIM]BF4).Under optimized conditions, the yield of HMF was 61%. 1HNMRandHPLCwereusedtoconfirmtheisomerizationprocessof glucose to fructose. New evidence indicated that the formationofafivememberedringchelatecomplexoftheSnatomandglucosemayplayakeyroleintheformationofHMF.Followingthiswork,solidLewisacids,suchasSnandSnMontcatalystswere reportedbyNicolla et al. [54] andWang et al.[55], respectively. The GeCl4/[BMIM]Cl catalytic system reported by Zhao and coworkers also exhibited good performance[52].Stahlbergetal.[58]foundthatacatalyticsystemoflanthanide metal salts in ionic liquid such asYb(OTf)3/[BMIM]Cl can convert glucose to HMF. The authorsbelieved that the mechanism of the lanthanide catalyst wasdifferentfromtheCrsaltsinionicliquid.Veryrecently,asmuchas 62% and 70% HMF yields were obtained, catalyzed byAlCl3/HCl [53] and MgCl2 with silica gel [56], respectively. Amoderately high HMF yield of 42% was obtained undernearneutral conditions (pH = 5.5) using watercompatiblelanthanidebasedLewisacidsascatalysts[57].

    Abaseisanothertypecatalystfortheisomerizationofglucose to fructose. Takagaki et al. [59] reported a combinationcatalystofasolidbaseandsolidacidforthesynthesisofHMFfromglucose.First,theisomerizationofglucosewascatalyzedby thesolidbasehydrotacite (HT),and then the intermediateproduct fructose was converted to HMF using the solid acidAmberlyst15ascatalyst.Theconversionofglucosewas60%andtheyieldofHMFwas46%.ThiscatalyticsystemalsocancatalyzesucroseandcellobiosetoHMFusingDMFassolvent.58% and 52% conversion with 93% and 67% selectivity forHMFwereobtainedat120oCafter3h,respectively.Bothacidicsitesandbasicsitesarepresentonthesurfaceofm/cZrO2andTiO2,whichfavortheconversionofglucoseintoHMF.Especially, the existence of plentiful basic sites on the surface ofm/cZrO2cancatalyzetheisomerizationofglucosetofructose

  • MAJipingetal./ChineseJournalofCatalysis34(2013)492507

    [60,61]. More recently, Yan et al. [62] reported the catalyticconversion of glucose to HMF over SO42/ZrO2 andSO42/ZrO2Al2O3catalysts in DMSO. The yield of HMF (48%)wasobtainedwiththeZr/Almolarratioof1at130oCin4h.

    Glucose isomerase also can efficiently convert glucose tofructose.In2010,Huangetal.[63]examinedthecombinationofanenzymeandacidcatalystforconvertingglucosetoHMF.They found that boric acid can promote the isomerization ofglucosetofructosewhichwasdehydratedtoHMFcatalyzedbyHCl.AHMFyieldof63%wasachievedat190oCin45min.AHMF yield of asmuch as 42% from glucose and asmuch as66%fromsucrosewerereportedbyStanhlbergetal. inimidazoliumbasedionicliquidswithboricacidasapromoter[64].

    2.3. Fromcellulose

    Cellulose is themost abundant component in biomass resources. However, it is hard to dissolve cellulose inwater orcommon organic solvents due to the strong hydrogen bondinteractionbetween themolecular chains.Thedegradationofcelluloseusuallyneedsharshconditions,andthepracticalapplicationisprohibitedbytheinefficientprocess.Therefore,thekey factor in the efficient utilizationof cellulose is to destroythehydrogenbondbetween themolecularchains topromoteitsdissolutioninsolvents.ThesynthesisofHMFfromcelluloseisamostchallengingworkandamultifunctionalcatalyticsystemfordissolution,hydrolyzation,isomerization,anddehydrationisneeded.

    Increasingattentionhasbeenpaidtotheuseofanionicliquid as themedium for cellulose conversion due to the usefulpropertiesofanionicliquid,suchasthermalstability,chemicalstability,solubility,strongpolarity,nonvolatility,andespecially its catalytic properties for many reactions [49, 6570]. In2002,Rogersandcoworkers[71]reportedthattheionicliquid[AMEM]Cl can dissolve cellulose. Then Schuth and coworkers[72]foundthatcellulosecanbedegradedtoglucosecatalyzedbyasolidacid.

    Suetal.[73]investigatedthesynthesisofHMFfromcellulose using a CuCl2CrCl2 combined catalyst in ionic liquid[EMIM]Cl.TheyieldofHMFwas55%.Qietal.[74]reporteda

    twostepmethodofthesynthesisofHMFfromcelluloseusingthe ionic liquid [EMIM]Classolvent.Asmallamountofwaterwasaddedstepbysteptoenhancethestabilityoftheintermediate glucose product under the reaction conditions. The hydrolyzationofcellulosewascatalyzedbyacidicresin.Theacidic resin was removed before the addition of the Lewis acidCrCl3. Then, the in situ generated glucose was converted toHMFwithayieldof73%underoptimizedconditions.Zhangetal. [75] found that thewater in an ionic liquidwater systemwas not only a solvent of the cellulose but also a reactant ofcellulosehydrolyzationaswellasacatalyst.Thereducedsugarsyieldwasasmuchas97%at140oCin3hwhen4equivalentwaterwasadded.Moreover,cellulosecanbedirectlyconverted to HMF in the presence of CrCl2. Zhao and coworkers[49]studiedamicrowaveassistedmethodtoenhancetherateof degradation of cellulose in the ionic liquid using CrCl3 ascatalyst.TheHMFyieldwas62%after2minatthemicrowavepower of 400 W. Wu et al. [76] also investigated microwaveassistedLewisacidCrCl3catalyzedcellulosetoHMFandreported 55% yield of HMF under optimized conditions. Thecatalytic systems reported by Binder andRaines [77] can directlyconvertuntreatedcornstalktoHMFwithaHMFyieldof48% catalyzed by 10 mol% CrCl3 and 10 mol% HCl usingDMALiCl/[EMIM]Classolvent.

    2.4. Proposedpathwayofhexosedehydration

    A pathway of fructose dehydration to HMF was first reportedbyHaworthandJonesin1944[78].Fromthenon,twoviews on the pathway of sixcarbon sugar dehydration wereconsidered (Fig.3).Onewas thecyclicpathwayvia the intermediateof frutofuranosyl.Theotherwas the acyclicpathwayvia the intermediateofenol.Antaletal. [79]andNewthetal.[80] inferredthat thesynthesisofHMF fromfructosewasviathecyclicintermediates.Thereasonswere:a)itiseasytoconvert2,5anhydroDmannose(theenol intermediateofthecyclic dehydration pathway) toHMF, b) synthesis ofHMF fromfructose iseasybut fromglucose it isveryhard,andc)whenthe reaction was performed in deuterated water, no carbondeuterium bond was formed in the structure of HMF,

    Fig.3.Mechanismforthedehydrationofhexoses[19].

  • MAJipingetal./ChineseJournalofCatalysis34(2013)492507

    which was formed via ketoenol tautomerism in the acyclicpathway. Also, the (4R,5R)4hydroxy5hydroxymetyl4,5dihydrofuran2carbaldehyde intermediate was identifiedfromthe1Hand13CNMRspectrareportedbyAmarasekaraandcoworkers[81].

    Mutarotationandisomerization(Fig.4)arethekeystepsintheprocessofglucoseconversionwhenanionicliquidisusedasthesolventandinthepresenceofacatalyticamountoftheLewisacidmetalchloride[43].Glucopyranosewasfirstconvertedtoglucopyranoseviasinglenuclearglucopyranose[EMIM]MClxandstraightglucose[EMIM]MClxcomplexes.Afterthat,glucopyranosewasisomerizedtofructofuranoseviathelinear enol structure of a single nucleus straight glucose[EMIM]CrCl3 complex. Then fructofuranose was finallyconvertedtoHMF.Theintermediatefructosewasalsodetectedby Han and coworkers [50] and Zhao and coworkers [52].However, thecomplexes formedduringglucose isomerizationtofructoseonlyconsistofglucoseandmetalchloride.In2010,Pidkoetal.[47]furtherconfirmedthatinthepresenceofCrCl2,the facile reactionsof sugar ringopening and closure involvecoordinationtoasingleCrcenter.TheratedeterminingHshiftreaction was facilitated by the selforganization of the LewisacidicCr2+centersintoabinuclearcomplexwiththeopenformofglucose,whichwasduetothedynamicnatureoftheCrcomplexesand thepresenceofmoderatelybasicsites in the ionicliquid.Xrayabsorption(XAS)datashowedthat therewasnochemicalbond formationbetween themetal centersandcati

    onic[RMIM]+partoftheionicliquidsolvent.TheoreticalresultswereingoodagreementwiththeexperimentalXASdata[82].Stahlberetal.[64]reportedmetalfreedehydrationofglucoseto HMF with boric acid as the promoter. Deuteriumlabelingstudies elucidated that the isomerization proceeded via anenediolmechanism.

    ForsolidLewisacids,suchasSnandSnMont, thatcatalyzedglucoseisomerizationtofructose,ithasbeenestablishedthatanintramolecularhydrideshiftoccurred[54,55,83].Basecatalyzed isomerization takes place by a proton transfermechanismthroughaseriesofenolateintermediatesgeneratedafter thedeprotonationof thecarbonyl carbon inwater,which is known as the Lobry de Bruynvan Ekenstein transformation[59,83].

    3. CatalyticoxidationofHMFtofuranderivatives

    The oxygenated derivatives of HMF are very important.Representative oxygenated products are 5hydroxymethyl2furancarboxylic acid (HMFCA), DFF, 5formyl2furancarboxylicacid(FFCA),andFDCA(Fig.5).HerewemainlyreviewthesynthesisofDFFandFDCA,andalsotaketheirapplicationstopolymersintoconsideration.

    3.1. CatalyticoxidationofHMFtoDFF

    DFFisoneoftheimportantoxygenatedproductsofHMF.It

    OHO

    HO OHOH

    OH

    Glucose(-glucopyranose anomer)[EMIM]MClx

    MCl

    ClClIm

    Mutarotation

    OHOHO OH

    HO

    OH

    H

    MCl

    ClClIm

    OHOHO OH

    O

    OHH

    [EMIM]MClx

    OHO

    HO OH

    OH

    Glucose(-glucopyranose anomer)

    OH

    Fig.4.Interactionsbetweenmetalhalideandglucosein[EMIM]Cl[43].

    Fig.5.ProductsofHMFoxidation.

  • MAJipingetal./ChineseJournalofCatalysis34(2013)492507

    hasthetypicalchemicalpropertiesofanaldehyde.Itsapplications (Fig.6) asan intermediate for the synthesisofpharmaceuticals[84],antifungalagent[85],macrocyclicligand[86,87],and organic conductor [88] have been described. DFF is alsousedasanimportantmonomerforfuranbasedpolymers.Forexample, Gandini and coworkers [89] described a polymericShiff base containing DFF and pphenylenediamine. Amarasekaraetal.[90]reportedthesynthesisandcharacterizationofaDFFurearesin.Veryrecently,Xuandcoworkers[91]synthesized a newblueemitting fluorescentmaterialwithquantumyieldasmuchas57%.FuranbasedporousorganicframeworksarealsosynthesizedusingDFFasthekeybuildingblocks[92].

    DFFcanbe synthesizedby the selectiveoxidationofHMF.Conventionally, DFF are synthesized by stoichiometric andelectrooxidationmethods[9395].TheyieldofDFFisusuallylowundercatalyticconditions.Fromtheviewpointofeconomicandsustainabledevelopment,thecatalyticoxidationofHMFtoDFFwithdioxygenisenticing.

    Intheearly1990s,Sheldonetal.[96]reportedthecatalyticoxidationofHMFtoDFFusingtitaniumsilicalitezeolite(TS1)as catalystwithhydrogenperoxideasoxidant inmethanolorwater.TheyieldofDFFwasonly25%.Theyfurtherusedchloroperoxidase as catalyst and the selectivity of DFF was60%74%[97].In2008,Amarasekaraetal.[98]reportedtheoxidationofHMFbyMn(III)saleninaphosphatebuffersolutionCH2Cl2 biphasic solvent system. The yield of DFF was63%89% with sodium hypochlorite as oxidant under roomtemperature.

    In1993,Verdegueretal.[99]reportedtheoxidationofHMFcatalyzed by Pt/C. The product distribution depended on thesolvent,pH,temperature,oxygenpressureandcatalyst.A19%yieldofDFFwasobtainedunderhightemperatureandneutralconditions. The Co/Mn/Br catalytic system was also used tocatalyze theoxidationofHMF, and63%yieldofDFFwasobtained under 7 MPa air pressure in acetic acid in 2 h [100].However,bromineisverycorrosive,whichlimitedtheapplicationofthiscatalyticsystem.

    Inthe lateof1990s,Moreauetal. [101]reportedthecatalytic oxidation ofHMF toDFFwithV2O5/TiO2 as catalyst andoxygenasoxidant.A91%conversionofHMFand93%selectivityforDFFwasobtainedunder1MPaoxygenintoluenein2h.However,toomuchcatalystwasneededandthemassratioofcatalysttosubstratewasasmuchas2/1.WithVOPO42H2O(VOP)ascatalyst,84%conversionofHMFand97%selectivityofDFFwasobtainedat150oCinDMSOin6h[102].OthermetalmodifiedVOPdidnotshowbetteractivity.In2009,Navarroet al. [103] studied the aerobicoxidationofHMFwithhomogeneouspyridinevanadylcomplexesinahomogeneousphase,withCu andV in poly(4vinylpyridine) crosslinkedwith33%divinylbenzene (PVP) and supported on organofunctionalizedSBA15 mesoporous materials. It was found that pyridinevanadylcomplexes inthepolymeric formshowedhigherperformance than those supported on organofunctionalizedSBA15. In 2011, Xu and coworkers [91] reported that 99%conversion and selectivity can be obtained with aCu(NO3)2/VOSO4 catalytic system under mild conditions. VVspecies was the active species. It was demonstrated thatCu(NO3)2 facilitates the generation of VV species from VOSO4and a VV/VIV redox cycle was involved. Recently, Liu andcoworkers [104] also found that HMF oxidation to DFF proceeds via the redoxmechanism involvingVV/VIV redox cyclesandthereoxidationofVIVtoVVbyO2wastheratedeterminingstep.

    Considering thedifficult separationofHMF from the reactionmixture,theinsituoxidationofHMFinthedehydrationofcarbohydratewouldmaketheseparationeasier.Hallidayetal.[105] reported a onepot twostepmethod to synthesizeDFFwithfructoseasthesubstrate.FructosewasfirstdehydratedtoHMFcatalyzedbyacidicionexchangeresin.Then,theacidicionexchangeresinwasisolatedfromthereactionmixtureandthevanadiumbasedcatalystwasthenaddedtocatalyzetheoxidationofHMFtoDFF.TheyieldofDFFwas45%basedonfructoseat150oCunder0.1MPa.Carlinietal. [102]triedtosynthesize DFF from fructose using VOP as catalyst, but no DFF

    O

    N

    Me

    Et

    NH

    EtMe

    NH

    EtMe

    N

    Me

    Et

    O CHHC N* N *n

    O CCH NH

    HN

    O

    O

    NHNH

    *

    ** H

    *

    n

    OOO

    macrocyclic ligands

    2,5-diformylfuran-urea resin

    Shiff base

    starting material for synthesis of the pharmaceuticals and antifungal agent

    Cross-linking agent for poly(vinyl alcohol)

    DFF

    N

    N

    O

    O

    nO

    blue fluorescent material

    O HC

    HC N NAr

    furan-based imine-linked porous organic frameworks

    Fig.6.ApplicationsofDFF.

  • MAJipingetal./ChineseJournalofCatalysis34(2013)492507

    was found either inwater or awatermethyl isobutyl ketonebiphasic solvent system. In 2011, Takagaki et al. [106] foundthat fructose and glucose can be converted to DFF with thecombinationofHT,Amberlyst15andRu/HTascatalysts.Theyields ofDFF from fructose and glucosewere49%and 25%,respectively.Xiangetal.[107]investigatedthesynthesisofDFFfrom glucose using the onepot twostep approach overCrCl36H2O/NaBr/NaVO32H2O catalysts. A DFF yield of 55%basedonglucosewasobtained.ItwasfoundthatNaBrinhibited theoxidationofHMF, andNaVO32H2Ohas anegative impact in the dehydration of glucose. Very recently, Fu andcoworkers [108] demonstrated the direct synthesis of DFFfromfructoseviaacidcatalyzeddehydration.Successiveaerobicoxidationintheonepotreactionwassuccessfullycatalyzedby a combination of Fe3O4SBASO3H and KOMS2. Stepwiseadditionofthecatalystsgave2,5DFFin80%yield.

    3.2. CatalyticoxidationofHMFtoFDCA

    FDCA is used in pharmaceuticals. For example, its diethylester has a similar anesthetic effect to cocaine. Calcium2,5furandicarboxylate can inhibit the growth of Bacillusmagaterium [29]. Besides, FDCA is like terephthalic acid in itsconjugatedstructureandisoelectronicproperty(Fig.7).FDCAisalsousedasthebuildingblockforthesynthesisofpolyestersorcopolyesters[109123].1n2004,itwasidentifiedasoneofthe twelvebiomassderivedplatformchemicalsby theUnitedStatesDepartmentofEnergy (DOE) [124].Thus the synthesisofFDCAisconsideredarepresentativebiorefineryprocess.

    FDCA can be produced by the oxidation of HMF by traditionalstoichiometricandcatalyticmethods.Thestoichiometricoxidation process usually leads to formation of abundant byproductsofinorganicsaltsormetaloxide,resultinginlowatomutilization.CatalyticaerobicoxidationofHMFtoFDCAismoreattractiveforitshighutilizationofreactantatoms,andwateristhe only byproduct. This is a clean, environmentally friendlyandsustainablewaytosynthesizeFDCA.

    Co/Mn/Brisanefficientcatalyticsystemforthelargescale

    production of terephthalic acid. Itwas introduced by Partenheimeretal. [100] for theaerobicoxidationofHMFtoFDCA.After promotion by a cocatalyst, the yield of FDCA reached61%at125oCafter3hunder7MPaO2.TheselectivityofFDCAand FFCA catalyzed by homogeneous Co(OAc)2/Zn(OAc)2/NaBrwasimprovedinthepresenceoftheHTFA(1wt%) as additive [125]. However, HBr was generated in thecatalyticprocess,whichiscorrosive.

    Sofar,reportedworksontheoxidationofHMFtoFDCAarestillfocusedonnoblemetalcatalysts,includingPt,Au,andRu.SomeresultsaresummarizedinTable1.TheoxidationofHMFcatalyzed by Ptbased catalysts favorably proceeds to FDCAwhenthereactionwasperformedunderoxygenpressureandacontrolledpHvalue [126]. Since the1980s, gold catalysishasbeen made much progress in a variety of fields [127,128].Therehavebeen reportsofAu catalyzed aerobicoxidationofHMFtoFDCA.

    Taarning et al. [129] reported the oxidation of HMF catalyzedbyAu/TiO2usingmethanol as solvent.A stoichiometricesterofFDCAwasformedinthepresenceofcatalyticamountsof sodiummethoxide (8mol%).Gorbanevetal. [130] carriedoutaerobicoxidationofHMFtoFDCAinaqueousmediacatalyzed byAu/TiO2 at ambient temperature. The yield of FDCAwas71%underoptimumconditions(2MPa,n(NaOH):n(HMF)=20,30oC,18h).

    Casanovaetal. [131]carriedoutaerobicoxidationofHMFinaqueoussolutioncatalyzedbyAuondifferentsupports, including TiO2, CeO2, active carbon, and Fe2O3. Among these,Au/TiO2andAu/CeO2werethebettercatalysts.ComparedwithAu/TiO2,Au/CeO2showedbetteractivityandselectivity.Undertheoptimizedconditions(130oC,1MPaO2,n(NaOH):n(HMF)=4),theyieldofFDCAwasasmuchas99%.ThekineticsoftheAu catalytic reaction showed that the oxidation of hydroxylgroup was the rate determining step (Fig. 8). However, thestabilityandreusabilityofAu/CeO2stillremainquestions.ThedeactivationofAu/CeO2wasnotcausedbytheleachingofAu,butwasprobablyduetotheenrichmentoforganiccarbononthecatalyst.AsubsequentstudydemonstratedthatnanoscaleCeO2 supported Au can catalyze aerobic oxidation of HMF tothecorrespondingesterofFDCAinalcoholintheabsenceofabase[132].Undermoderateconditions(65130C,1MPaO2),as much as 99% dimethyl furan2,5dicarboxylate was obtained.Thetestingofthestabilityandrecyclingofthecatalyst

    Fig.7.MolecularstructureofFDCAandPTA.

    Table1 RepresentativecatalyticconversionofHMFtoFDCAcatalyzedbydifferentnoblemetalcatalysts.Catalyst S/C(n/n) Solvent Base t/h T/oC P/MPa Yield(%) Ref.Pt/Al2O3 31 H2O pH=9 6 60 0.02 >90 [126]Au/TiO2 308 MeOH 7.5mol%NaOMe 3 130 0.4 98 [129]Au/TiO2 100 H2O 20equiv. 18 30 2 71 [130]Au/CeO2 640 H2O 4equiv. 5 130 1 96 [131]Au/TiO2 640 H2O 4equiv. 8 130 1 84 [131]Au/CeO2 300 MeOH free 5 130 1 98 [132]Au/TiO2 300 MeOH free 24 130 1 96 [132]AuCu/TiO2 100 H2O 4equiv. 4 110 1 99 [133]Au/HT 40 H2O free 7 95 flow >99 [134]Ru(OH)x/MgOLa2O3 20 H2O free 6 140 0.25 >95 [135]Ru(OH)x/HT 20 H2O free 6 140 0.25 >99 [136]

  • MAJipingetal./ChineseJournalofCatalysis34(2013)492507

    system indicated that deactivationwasmainly caused by theenrichmentoforganiccarbononthecatalyst.

    Pasini et al. [133] reported a dualmetal AuCu/TiO2 catalyzedaerobicoxidationofHMF.Underoptimumconditions,theyield of FDCA reached as much as 99%. Compared withAu/TiO2,bimetallicAuCu/TiO2 issuperior inactivityandstability,owingtotheformationofaAuCualloy.Guptaetal.[134]carried out aerobic oxidation of HMF to FDCA under atmosphericandbasefreeaqueousconditionsbyusingalkalinehydrotalcitesupportedAuascatalyst.Undertheoptimizedconditions(n(HMF):n(metal)=40,O2flowrate=50ml/min,95C,7h),99%ofFDCAwasobtained.

    BesidesAu,thenoblemetalRuisalsogoodatcatalyzingtheoxidation of alcohol. Gorbanev et al. [135] studied aqueous,basefreeaerobicoxidationofHMFtoFDCAcatalyzedbyRuondifferent supports, including TiO2, Al2O3, Fe3O4, ZrO2, CeO2,MgO,La2O3,MgAl2O4,HT,HydroxyapatiteandMgOLa2O3.ThealkalineMgOLa2O3supportedRucatalystwaspreferred,anditgavemorethan90%FDCAunder2.5barO2in6hat140C.Afurther study of Ru(OH)x/MgO, Ru(OH)x/MgAl2O4 andRu(OH)x/HTdemonstratedthatthealkalinesupportwaspartlydissolvedunderthereactionconditionsandthismadethesolution alkaline, which in turn facilitated HMF conversion toFDCA[136].ThekineticsofthereactionofRucatalystsystemdemonstrated that the oxidation of hydroxyl group and aldehydegrouparecompetitivereactions,which isquitedifferentfromthatoftheAucatalystsystem(Fig.9).

    Tostudytheactivityofdifferentnoblemetalcatalystsunderidentical conditions, Davis et al. [137] evaluated the aqueousphase oxidation of HMF to FDCA catalyzed by the Pt, Pd, Aucatalystsystems.Underthetestconditions(22C,0.69MPaO2,0.15mol/L HMF, 0.3mol/L NaOH), Pt/C, Pd/C, Au/C (WGC)(providedbytheWorldGoldCouncil),Au/C(sol),Au/TiO2gaveTOFsof0.08,0.15,5.0,2.3,1.6s1,respectively.Underthesame

    conditions, Pt and Pd successfully catalyzed the oxidation ofHMFCAtoFDCA,butAudidnot,implyingthatthepathwayofhydroxyl group oxidation catalyzed by Pt and Pd is differentfromthatcatalyzedbyAu.WiththeAucatalyst,theoxidationofHMFCAtoFDCArequiredahigherO2pressureandbaseconcentration.IncontrasttotheO2pressure,theconcentrationofthebaseexertedalargerinfluenceontheoxidationofHMFCA.

    Catalytic aerobic oxidation of in situ generated HMF fromfructosedehydrationtoFDCAwasalsostudied.In2000,Krogeretal. [138]usedbothamembranereactorandbatch reactor.Fructose dehydration was catalyzed by acid in the aqueousphase.TheinsitugeneratedHMFwasquicklyextractedtotheorganicphaseMIBKand furtheroxidized toFDCA.Bothreactors were shown to be practical in the direct production ofFDCAstartingwithfructoseasfeedstockandtheyieldofFDCAreached25%.In2003,Ribeiroetal.[139]reportedtheconversion of fructose into FDCA in aqueous media catalyzed byCo(acac)2/SiO2, inwhich the acidic support SiO2 acted as theactivecenterfordehydration,andCowasresponsibleforoxidation.Theconversionoffructosewasashighas72%,andtheselectivityforFDCAwasasmuchas99%under160C,2MPaO2for65min.

    4. Polyols

    Polyols arewidelyused as chemicals and asprecursors inthesynthesisoffuelsandvalueaddedcompounds.Thecatalyticconversionofbiomassresourcetoproduce importantpolyols can provide a sustainable and clean route comparedwiththepetroleumbasedroute.

    4.1. Cellulosetosugaralcohols

    Sugar alcohols, such as sorbitol andmannitol, are consid

    Fig.8.ReactionpathwayforaqueousHMFaerobicoxidationcatalyzedbyAu/support[131].

    OOOH

    OOO

    OOO

    OH

    OOOH

    OH

    OOO

    OHHO

    HMF

    DFF

    HMFCA

    FFCA FDCA

    Fig.9.ReactionpathwayforaqueousHMFaerobicoxidationcatalyzedbyRu/support[136].

  • MAJipingetal./ChineseJournalofCatalysis34(2013)492507

    ered new bioplatform compounds, which are widely used ingas fuels (H2, synthesis gas), liquid alkanes, liquid fuels andoxygenates and forproducing chemicals like ethyleneEGandPG. Cellulose is composed of Dglucose units connected by14glycosidic bonds. The structure is similar to sugar alcohols,therefore,thedirectconversionofcellulosetosugaralcoholswouldhavehighatomeconomyandhighenergyefficiency.

    The catalytic conversionof cellulose to sugar alcohols is atwostepprocess,whichincludesthehydrolysisofcellulosetosugarandsubsequentlyhydrogenationofthesugartothesugaralcohol(Fig.10).Fukuokaandcoworkers[140]firstreportedthatcellulosecanbeefficientlyconvertedintosugaralcoholsoversupportedmetalcatalysts,and31%yieldofsugaralcoholswasobtainedoverPt/Al2O3 catalysts in24h at190 Cand5MPa H2. They suggested that cellulose first underwent a hydrolysisreactiontogenerateglucoseovertheacidsitesofthesupport, usingH2 derived in situ. Then, hydrogenation of thegeneratedglucosewasconductedonthePtmetalcatalyst.Liuandcoworkers[141,142]havealsobeeninterestedincelluloseconversion.Theyfirststudiedcellobioseasamodelcellulosetostudythecleavageofglycosidicbonds.Thesorbitolyieldcanbe100% over a Ru/C catalyst at 120 C and 4 MPa. The resultinspired themto the furtherstudyof thedirectconversionofcellulose to sugar alcohols, and they obtained 30% and 10%yieldsofsorbitolandmannitol,respectively,under6MPaand245 CoverRu/C.Theyproposed that thehotwaterwas thekey factor for cellulose conversion, as the acid sites that promoted the hydrolysis of cellulose were reversibly formed insitufromhotwater,whichcangenerateH+ionsabove200C.

    Wangandcoworkers[143]haveusedanefficientRu/CNTcatalysttostudytheeffectofthecrystallinityofthecelluloseontheyieldofsorbitol,and36%and69%ofsorbitolyieldwereobtainedwith85%and33%crystallinity,respectively.Selsandcoworkers [144] considered that solid cellulose substratescannot easily diffuse into conventional solid catalysts. Therefore,theydevelopedakindofcatalystusingcarbonnanofibersgrown on Al2O3supported Ni, which gave 50.3% sorbitolyield. Zhang and coworkers [145] developed an efficient bifunctionalnickelphosphidecatalyst for theconversionof cellulose.Thesorbitolyieldachieved48.4%at225Cand6MPaH2.TheexcessofPprovidedtheacidityandtheNi2Pprovidedthemetallicsites.Slesandcoworkers[146]usedwatersolubleheteropolyacidsandaRu/Ccatalysttorapidlyandselectivelytransform cellulose to sugar alcohols. The conversion ofballmilledcellulosewas100%with85%yieldofsugaralcoholat190Cand9.5MPaH2.Palkovitsetal.[147]havealsoshownthat heteropoly acids combined with supported Ru catalysts

    candirectlyconvertcellulosetosugaralcoholswithayieldof81% and above 90% carbon efficiency. Some representativeresultsaresummarizedinTable2.

    4.2. PolyolstoEGand1,2PG

    EG and 1,2PG are widely used for agricultural adjuvants,liquid fuels, pharmaceuticals, and emulsifiers, surface activeagents,dehumidifyingagents,antifreezeagents,lubricantsandsolvents.Furthermore,EGand1,2PGareimportantrawmaterials for the synthesis of polyester fibers and resins, likepoly(ethylene terephthalate) (PET) and poly(ethylene naphthalate)(PEN).Inaddition,1,2PGisalsousedforthesynthesisoflacticacid,whichisthekeyintermediatefortheproductionofbiodegradablepolymers(suchaspolylacticacid).Currently,theproductionof thesediols is frompetroleumfeedstocksbythehydrationofpropyleneoxideorethyleneoxide.The catalyticconversionofbiomasstoEGand1,2PGhasattractedcon

    O OOOH

    HOHOHO OH

    OHOH

    OH

    n

    Glucose

    OOH

    OH

    OH

    OHHO

    O OHOH

    HOHO

    OH

    Sorbitol

    OHOH

    OH

    OH

    OHHO

    Mannitol

    OHOH

    OH

    OH

    OHHO

    Cellulose

    orH2O H2Catalyst Catalyst

    Fig.10.Catalyticconversionofcelluloseintosugaralcohols.

    Table2 Recentreportsonthecatalyticconversionofcellulosetosugaralcohols.Catalyst Pressure(MPa) T/C

    Time(h) Yield(%) Ref.

    Pt/Al2O3 5(rt) 190 24 Sorbitol(25)Mannitol(6) [140]Ru/C 6 245 0.5 Sorbitol(34.6)Mannitol(11.4) [142]Ru/CNT 5 185 24 Sorbitol(69)Mannitol(4) [143]Ni/CNF 6 230 4 Sorbitol(50.3)Mannitol(6.2) [144]Ni2P/AC 6(rt) 225 1.5 Sorbitol(48.4)Mannitol(4.7) [145]Ru/C+HPA 9.5 190 1 Sugaralcohols(85) [146]Ru/C+HPA 5(rt) 160 7 Sugaralcohols(81) [147]Table3 RepresentativereportsonthecatalyticconversionofglyceroltoEGand1,2PGCatalyst Conditions Conv.(%)

    EGSel.(%)

    1,2PGSel.(%) Ref.

    Ru/C+A15 120C,8MPa,10h 79.3 6.8 74.9 [148]Ru/C+Nb2O5 180C,6MPa,8h 44.6 29.1 60.9 [149]Ru/CsPW 180C,0.5MPa,10h 21.0 0 96.0 [150]Ru/bentoniteTiO2 150C,0.2MPa(rt),7h 69.8 9.9 80.6 [151]RuRe/ZrO2 160C,8MPa,8h 38.9 2.0 56.2 [152]Pt/Hydrotalcite 220C,3MPa,20h 92.1 3.9 93 [153]Rh/SiO2 120C,8MPa(rt),10h 19.6 0 34.6 [154]Pd/CoO 180C,4MPa(rt),24h 70.7 86.5 9.2 [155]RaneyNi 180C,N2(0.1MPa),1h100 55 43 [156]NiCe/AC 200C,5MPa,6h 90.4 10.7 65.7 [157]Ni/NaX 200C,6MPa,10h 94.5 11.1 72.1 [158]Copperchromite 200C,200Pa,24h 54.8 85 [159]Cu/SiO2 200C,9MPa,12h 73.4 3.6 94.3 [160]CuOZnO 180C,8MPa,90h 19 100 [161]CuZnO 200C,4.2MPa,12h 22.5 1.3 83.6 [162]Ag/Al2O3 220C,1.5MPa,10h 46 2 96 [163]

  • MAJipingetal./ChineseJournalofCatalysis34(2013)492507

    siderable interests and several routes fromglycerol, sugaralcoholorcellulosehavebeendeveloped.

    4.2.1. FromglycerolGlycerol has been prioritized as one of twelve bio

    massderivedbuildingblocksby theDOE[124].Theswiftdevelopmentofbiodieselhasresultedinlargeamountsofglycerol byproduct. The low price andwide availability havemadeglycerol a potential feedstock for the production of valuablechemicals and various utilization have been developed. Thecatalytic hydrogenolysis of glycerol is onemethod, andmanyefficient catalyst systems are available for the conversion ofglycerol to 1,2PG and EG. Table 3 summarizes recent representativeresults.

    Duetotheirhighactivity,aseriesofnoblemetals (Ru,Rh,Pt,Pd)supportedondifferentsupports,suchasactivecarbon[148, 164166], SiO2[154], CaO [155], Clay [167], TiO2[151,168,169],ZrO2[152,170],Al2O3[171],Fe2O3[172],werepreparedandstudied in thehydrogenolysisofglycerol.SomeresultsareshowninTable3.Tomishigeandcoworkers[148]andLingaiahandcoworkers [149] studiedaRu/Ccatalyst for thehydrogenolysisreactionandfoundthattheadditionofAmberlyst resin (e.g. Amberlyst70 cationic exchange resin)or solidacid(e.g.Nb2O5)greatlyenhancedthecatalystperformance.Anacidcatalyzedmechanismwasproposedinwhichthereactionproceedsbythedehydrationofglyceroltoacetoloveracidsitesand then hydrogenation to 1,2PG on themetal catalyst (Fig.11(a)). Based on this acidcatalyzed mechanism, bifunctionalmetalacidcatalystswereused for thehydrogenolysisofglycerol. For example, a heteropoly salt of cesium phosphorustungsten(CsPW)supportingRuwasusedbyKozhevnikovandcoworkers[150].Theselectivityof1,2PGobtainedwasabove90%overthesecatalysts.

    Inadditiontotheacidcatalyzedmechanism,thealkalineeffect on glycerol hydrogenolysis has also been studied. Marisandcoworkers[165]usedNaOHorCaOasthebasicadditivesduringtestingofthecatalyticperformanceofRu/CandPt/Cinglycerolhydrogenolysis.Theresultsshowedthattheadditivesincreasedthereactionrate.Chenandcoworkers[173]reportedthatglycerolwashydrogenolyzedto1,2PGwithhighselectivity and high conversion over a Ru/TiO2 catalyst in basicaqueous solution. Hou and coworkers [153,174] have developedasolidbasesupportedcatalystforglycerolhydrogenolysis. A 93% selectivity for 1,2PGwith 92.1% glycerol conver

    sion over Pt/HT was obtained. From these studies, abasecatalyzedmechanismhasbeenproposed,whichisshowninFig.11(b).Glycerolisfirstdehydrogenatedtoglyceraldehydeon themetal catalystwith the promotion of the base. 1,2PGwas formed by the base catalyzed dehydration of glyceraldehydeandsubsequenthydrogenation,whileEGwasgeneratedby the retroaldol reaction with subsequent hydrogenation.Althoughthenoblemetalbasedcatalystsarehighlyactive,theyareexpensive,andmoreover,someofthesecatalystspromotetheexcessivecleavageofCCbonds,resultinginlowselectivitytothedesiredproducts.

    Nonnoblemetalcatalystshaverecentlyalsobeenreportedforglycerolhydrogenolysisbasedonboththeacidandalkalinecatalyzedmechanisms.Nickel isanonnoblemetal,and ithasexcellent hydrogenation ability. Therefore, Nibased catalystsforglycerolhydrogenolysishavedeveloped,includingRaneyNi[156],Ni/SBA15[175]andNi2P/SiO2[176].Xuandcoworkers[157,158,177] have recently reported two kinds of Nibasedbifunctional catalysts, Ni/AC catalyst and Ni/NaX catalyst,which were efficient in glycerol hydrogenolysis. The Ni/ACcatalysts were prepared by a novel procedure via impregnation, carbothermal reduction and KBH4treatment. Throughthis procedure, the acidity (and activity) of the catalyst wasimproved as compared with other preparation methods.Ni/NaXisanotherefficientcatalytsforglycerolhydrogenolysisandaselectivityfor1,2PGwasasmuchas80.4%with86.6%glycerolconversion.Thesetwocatalystsforglycerolhydrogenolysisworkedbytheacidcatalyzedmechanism.

    Cubased catalysts are another series of nonnoble metalcatalysts,andmanycatalystshavebeenreportedwithCuastheactivemetal (CuCr [159,178], Cu/SiO2[160] and CuZn [162,179,180]) for the hydrogenolysis of glycerol. These Cubasedcatalysts displayed excellent selectivity to 1,2PG due to theselective cleavage of CO bonds over CC bonds. Zhang andcoworkers[163]usedAg/Al2O3tocatalyzetheglycerolconversionandabout46mol%conversionand96mol%1,2PGselec

    HOOH

    OHH+ O

    OHH2O+

    OHOH

    -H2O +H2

    OHOH

    OOH

    OH

    -H2

    OHO +H2

    OHOH

    -H2O

    OOH

    +H2 HOOH

    Base Base

    (a)

    (b)HO

    OHOH

    Fig.11.ReactionrouteforthecatalyticconversionofglyceroltoEGand1,2PG[147,148,152,173].

    Fig.12.Catalyticconversionofsorbitol to1,2PGandEG. (Sorbitolasrepresentativefeedstock).

  • MAJipingetal./ChineseJournalofCatalysis34(2013)492507

    tivitywereachievedat220oCand1.5MPainitialH2pressure.TheperformanceissimilartoCubasedcatalysts,butAg/Al2O3needs no preproduction and does not need a high hydrogenpressure. Themechanisms over these Cu and Agbased catalystsaresimilartotheacidandalkalinecatalyzedmechanisms.

    4.2.2. FromsugaralcoholsSugaralcoholsarealsoimportantsourcesforproducingEG

    and1,2PG(Fig.12).Themoststudiedsugaralcoholsaresorbitolandxylitol.Asinthecurrentstudiesofsugaralcoholhydrogenolysis, Ni or Rubased catalystswerewidely explored,such as Ni/kieselguhr (SiO2) [181], Ni/Al2O3 [182], NiRe/C[183],NiPt/NaY [184],Ru/C [185] andRu/nanofibers [186].Inaddition,alkaliadditiveswereneededtogivethebasicenvironmentforCCbondcleavage.IthasbeenreportedthatxylitolandsorbitolcanbeconvertedtoEGand1,2PGusingNiorRubasedcatalystsinthepresenceofCaOorCa(OH)2[184,186].ThemorebasicNaOCH3andKOHhavealsobeenusedtopromote thehydrogenolysisofxylitolandsorbitol [182,183].Liuandcoworkers[185]reportedthat increasingthepHvalueinthe aqueous solution from 7 to 12.3 increased the combinedselectivity of EG and 1,2PG. However, further increasing pHvalueto13orabovebyusingKOHorNaOHledtocomplicatedproductsdue to the rapid reactionsof xylitolwithOH in thesolutions.Ithasbeenproposedthatthehydrogenolysisofpolyols generally involves twokey steps: first, thedehydrogenation of polyols to carbonyl intermediates on metal catalysts,andthen,thesubsequentCCbondcleavageoftheintermediatesinthebasicmedia,mostlikelyviatheretroaldolcondensation [185] (Fig. 13). Competitive reactions with the basesdecide the final selectivities of the glycols. The alkali has animportant promoting effect, but an alkali reactionmedia cancausecorrosionoftheequipment,andalsocauseenvironmental problems. Therefore, developing the basefree catalyzedconversionofsugaralcoholsto1,2PGandEGisofinterest.

    4.2.3. FromcelluloseAsthemostabundantbiomass,thedirectconversionofcel

    lulose toEG and 1,2PG is a promising alternative route (Fig.14).So far, theonlyefficient reportedcatalyst system for thisreactionisthetungstenbasedcatalystdevelopedbyZhangandcoworkers[187191]andLiuandcoworkers[192].ZhangandcoworkersfirstreportedthatahighyieldofEG(around60%)canbeobtainedfromcelluloseoveraNiW2C/ACcatalyst[187,

    188].Thisisapromisingsubstituteforthepreciousmetalcatalystincelluloseconversion.Basedontheseresults,theysubsequently developed tungstencontaining catalysts, including3Dmesoporouscarbonsupportedtungstencarbide(EGselectivity, 72.9%) [189], SBA15 supported nickeltungsten bimetalliccatalysts(EGyield,75.4%)[190]andtungstenphosphidecatalyst(EGyield,46%).Liuandcoworkers[192]havefurtherdevelopedthetungstentrioxidepromotedselectiveconversionof cellulose into1,2PGandEGona rutheniumcatalyst.TheyfoundthatWO3crystallitesefficientlypromotedthehydrolysisof cellulose to sugar intermediatesandalsopromoted the selective cleavage of the CC bonds. Recently, Zhang andcoworkers[193195]extendedthefeedstockfrommicrocrystallinecellulosetolignocelluloses(suchascornstalk,birchandotherwoodybiomass) and JerusalemArtichokeTuber. Thesestudies provide a better understanding of the biomass transformation.

    4.3. Catalyticconversionofglycerolto1,3PG

    1,3PGisanimportantdiolforsynthesizinghighlyvaluablepolyesters, especially poly(trimethylene terephthalate) (PTT),which has excellent chemical resistance, light stability, elasticrecoveryanddyeability.1,3PGisgenerallyproducedfromthehydroformylation of ethylene oxide to 3hydroxylpropionaldehyde followed by hydrogenation, or from the hydration ofacrolein and subsequent hydrogenation. Recently, the directproduction of 1,3PG from a biomassderived feedstock hasreceivedmuchattention,andfermentationmethodshavebeenwidely used for glycerol conversion. However, the biologicalprocesshasalowmetabolicefficiencyandpoorcompatibility.Therefore,achemicalcatalyticprocesstoproduce1,3PGfrom

    Fig.13.Proposedrouteforthehydrogenolysisofsugaralcoholtoglycols[185].

    O OOOH

    HOHOHO OH

    OH

    OH

    OH

    nSugar

    OOH

    OH

    OH

    OHHO OH

    OHOH

    OH

    Cellulose

    H2O, H2 H2Catalyst Catalyst +

    EG 1,2-PG Fig.14.CatalyticconversionofcelluloseintoEGand1,2PG.

    Table4 Summaryoftheproductionof1,3PGfromglycerolhydrogenolysis. Catalyst Solvent Conditions Sel.(%)

    Yield(%) Ref.

    Pt/WO3/ZrO2 DMI 170oC,8MPa 24.2 [196]Pt/WO3/ZrO2 DMIH2O 170oC,5.5MPa 34.9 11.0 [197]Pt/WO3/ZrO2 H2O 130oC,4MPa 45.6 32.0 [198]Pt/WO3/TiO2/SiO2 H2O 180oC,5.5MPa 50.5 7.7 [199]PtsulfatedZrO2 DMI 170oC,7.3MPa 83.6 55.6 [200]IrReOx/SiO2 H2O+H2SO4 120oC,8MPa 49.0 38.0 [201]CuH4SiW12O40/SiO2 210oC,0.54MPa 32.1 26.8 [202]PtH4SiW12O40/SiO2 H2O 200oC,5MPa 27.2 24.1 [203]DMIstandsfor1,3dimethyl2imidazolidinone.

  • MAJipingetal./ChineseJournalofCatalysis34(2013)492507

    glycerol would be more applicable and cleaner. In the earlydays, homogeneous catalysts were used to produce 1,3PGfromglycerol.Duetoseparationproblems,developingefficientheterogeneous catalyst systems for the catalytichydrogenolysisofglycerolinto1,3PGisdesirable.Theproductionof1,3PGoveraheterogeneouscatalystismorechallengingthanthatof1,2PG.Thereareseveralefficientcatalystsystems.SomerepresentativeonesarelistedinTable4.

    ThePt/WO3/ZrO2catalystwasstudiedbyseveralgroups.Itisanefficientcatalystinthecatalyticconversionofglycerolto1,3PG,andthebestyieldof1,3PGoverthiscatalystwas32%[198].Sasakiandcoworkers[196]showedthatPtwasthemosteffectiveactiveamongthescreenednoblemetalcatalystsandfoundthatthesequentialimpregnationprocesswasimportantas it provided the active sites for hydrogenolysis of glycerol.Based on this catalyst system, Ding and coworkers [199] developed a bifunctional catalyst Pt/WO3/TiO2 on silica, andfound that theexistenceofTiO2species improved thedispersionofthePtmetal,andtheWO3speciesincreasedtheacidity.Lee and coworkers [200] have developed another PtbasedcatalystbyusingsulfatedzirconiatosupportthePtmetal.TheyfoundthatPtandsulfateionswerestabilizedinthemoreactivetetragonal zirconia phase. The yield of 1,3PGwas as high as55.6%. Another efficient system is the IrRe catalyst system.Tomishigeandcoworkers[201,204]preparedaReOxmodifiedIr/SiO2 catalyst. 38% yield of 1,3PGwas obtainedwith 81%conversionofglycerol.Inaddition,thecombinationofaheteropolyacidwithametalcatalystwasappliedtotheconversionof glycerol to 1,3PG, such as CuH4SiW12O40/SiO2 [202],PtH4SiW12O40SiO2 [203] and Pt/H3PW12O40/ZrO2 [205]. Theheteropoly acid provides the appropriate acid sites and acidstrength,andasupportedheteropolyacidavoidsaseparationprocessandreducetheuseofcorrosiveliquids.

    Manystudieshaverevealedthatanaqueousphasefavoredthe formationof1,2PG,whileapolaraprotic solvent favored1,3PGgeneration.Therefore,organicsolvents(e.g.DMF)wereused to produce 1,3PG [196,197,200]. However, the use ofpolaraproticorganicsolventsisrestrictedastheyarenotenvironmentally benign. Therefore, methods to produce 1,3PGfrom glycerol without utilizing these organic solvents have

    attracted attention. A solventfree system was developed byZhuandcoworkers[202]and32.1%selectivityfor1,3PGwasobtained in thevaporphase reaction.However, the vaporization of glycerol at elevated temperatures in the presence ofcoppermetalreadilyledtobyproducts.Waterisacheapgreensolvent,andsynergyispossibleifwaterisselectedasthereactionmedium.Anotherimportantconsiderationisthehighwater content of the crude glycerol from biodieselmanufacture.Ding and coworkers [197,199] demonstrated selective dehydroxylationofglycerolto1,3PGconductedinwatersolutions.Theirresultsshowedthatwateristhepreferredsolventforthiscatalyst.

    Thecurrentunderstandingoftheglycerolto1,3PGconversionisthatitistherouteoftheremovalofthesecondhydroxylgroup of glycerol and then hydrogenation to 1,3PG (see Fig.15).Thekeyintermediatein1,3PGfromglycerolhydrogenolysisis3hydroxypropanal,whichindicatedthattheremovalofthesecondhydroxylgroupofglycerolistherequiredreaction.This reaction can be greatly promoted by an acid catalyst.Therefore, the presence of acid sites is important. Acid additives(e.g.H2SO4),supportedhetropolyacids,supportedacidicoxidesoracidicsupportareusedinthereactiontoimprovetheyieldof1,3PG.

    Qinandcoworkers[198]haveproposedthatthedeoxygenation of glycerol occurs via an ionic mechanism overPt/WO3/ZrO2(Fig.16).Inthismechanism,protonsandhydrideionsaregeneratedfromH2byheterolyticcleavageofhydrogenmoleculesonthecatalyst.TheH+reactswithglycerol,whichisfollowedbythereactionwithH.Thehighselectivityof1,3PGwasattributedtothepreferentialdehydrationofthesecondaryhydroxylgroup.

    Tomishigeandcoworkers[201]proposedareactionmechanismwithaIrReOXcatalyst(Fig.17).OneoftheterminalhydroxylgroupsofglycerolfirstadsorbsonReOxsurfacetoform2,3dihydroxypropoxide.ThenHactivatedby Irmetal attacksthe secondary carbon to give 3hydroxypropoxide. Then thehydrolysisreactionforms1,3PG.Thegrowthofoxidizedmetalclusters was sufficient to give the preferred formation of theterminal alkoxide, which is the key for a high selectivity of1,3PG.

    Fig.15.Catalyticconversionofglycerolto1,3PG.

    Fig.16.Proposedrouteforglycerolto1,3PGviatheionicmechanism[198].

    Fig.17.Proposedrouteforglycerolto1,3PGoveraIrReOx/SiO2catalyst[201].

  • MAJipingetal./ChineseJournalofCatalysis34(2013)492507

    5. Conclusionsandoutlooks

    Chemicalsfrombiomasshaveattractedincreasingresearchinterest because of diminishing fossil fuel reserves and environmentalproblems.Atpresent,ascomparedtothelargescalepetroleum industries, it is less economical tomake chemicalsfrom biomass because fossil oils are still available in largequantities.However,inthelongterm,theproductionofchemicals frombiomass is themost economical and renewable alternativeforasustainablesociety.Muchefforthavebeenmadeinfundamentalresearch,buttherearestillissuestobesolvedbeforebiomasscanbeused.Theutilizationofcelluloseasthefeedstockforthesynthesisofchemicalsispromisingasitisthemostabundantcomponentinbiomass.

    For furanderivatives, thepilot scale productionand effective separationofHMF inagreenand lowenergy consumingprocess needs to be further studied [36,206]. Although thesynthesisof furanbasedpolymershasbeenstarted, comparisons of the similarities and differences of the chemical andphysical properties of biomassbased polymers and petroleumbased polymers are few. The application potential of furanbasedpolymersistheimpetusforthecatalyticconversionofbiomasstoHMFplatformmolecules.

    Polyols can be directly used as chemicals and also as theprecursorsforthesynthesisofresins,valueaddedcompoundsandfuels.Theversatileusesofpolyolsmakeabiomassderivedroute for themobviously useful, especially a catalytic conversionprocess.Thisprocesscanprovideasustainableproductionofpolyols frombiomassderivedfeedstocksandalsoopenthewayfortheutilizationofbiomass.

    References

    [1] GallezotP.ChemSocRev,2012,41:1538[2] ZhouCH,XiaX, LinCX,TongDS,Beltramini J.ChemSocRev,

    2011,40:5588[3] CormaA,IborraS,VeltyA.ChemRev,2007,107:2411[4] SerranoRuizJC,LuqueR,SepulvedaEscribanoA.ChemSocRev,

    2011,40:5266[5] SongQ,WangF,XuJ.ChemCommun,2012,48:7019[6] ChePH,LuF,ZhangJJ,HuangYZ,NieX,GaoJ,XuJ.Bioresour

    Technol,2012,119:433[7] MaH,NieX,CaiJY,ChenC,GaoJ,MiaoH,XuJ.SciChinaChem,

    2010,53:1497[8] DuZT,MaJP,WangF,LiuJX,XuJ.GreenChem,2011,13:554[9] WangF,XuJ,DuboisJL,UedaW.ChemSusChem,2010,3:1383

    [10] LiuJX,DuZT,YangYL,LuTL,LuF,XuJ.ChemSusChem,2012,5:2151

    [11] ShuttleworthP,BudarinV,GronnowM,ClarkJH,LuqueR.JNatGasChem,2012,21:270

    [12] LuqueR, Pineda A, Colmenares J C, Campelo JM, RomeroAA,SerranoRuiz JC,CabezaLF,CotGoresJ.JNatGasChem,2012,21:246

    [13] YangPF,KobayashiH,FukuokaA.ChinJCatal,2011,32:716[14] Zhang Y M, Degirmenci V, Li C, Hensen E J M. ChemSusChem,

    2011,4:59[15] ZhangJ,WuSB,LiB,ZhangHD.ChemCatChem,2012,4:1230[16] RomanLeshkovY,BarrettCJ,LiuZY,DumesicJA.Nature,2007,

    447:982

    [17] HuL,SunY,LinL.ProgChem,2011,23:2079[18] RosatellaAA,SimeonovSP,FradeRFM,AfonsoCAM.Green

    Chem,2011,13:754[19] TongXL,MaY,LiYD.ApplCatalA,2010,385:1[20] LewkowskiJ.Arkivoc,2001,2:17[21] ShimizuK,SatsumaA.EnergyEnvironSci,2011,4:3140[22] ShiN, LiuQY,WangT J, ZhangQ,MaLL.Chem IndEngProg,

    2012,31:792[23] ChenWW,LiCX.[MSDissertation].Beijing:BeijingUnivChem

    Technol,2012 [24] AnSY, JinLH,HuDY,ZhangYP,XueW,YangS.ChemWorld,

    2012,(7):441[25] JiangN,QiW,HuangR L, Su XR,HeZM.Chem IndEngProg,

    2011,30:1937[26] HuL,SunY,LinL.ChemIndEngProg,2011,30:1711[27] ZhangZY,ZhangZC,LiJ,DaiH,LiLX.ChemResAppl,2010,22:

    257[28] YangFL,LiuQS,BaiXF,DuYG.ModernChemInd,2009,29:18[29] WangJ,ZhangCP,OuyangPK.ChemIndEngProg,2008,28:702[30] WangJJ,XuWJ,RenJW,LiuXH,LuGZ,WangYQ.GreenChem,

    2011,13:2678[31] YangFL,LiuQS,YueM,BaiXF,DuYG.ChemCommun,2011,47:

    4469[32] BickerM,KaiserD,OttL,VogelH.JSupercritFluid,2005,36:118[33] MoreauC,FinielsA,VanoyeL.JMolCatalA,2006,253:165[34] LiCZ,ZhaoZK,WangAQ,ZhengMY,ZhangT.CarbohydrRes,

    2010,345:1846[35] QiXH,WatanabeM,AidaTM,SmithRL.GreenChem,2009,11:

    1327[36] LaiDM,DengL,LiJA,LiaoB,GuoQX,FuY.ChemSusChem,2011,

    4:55[37] RomanLeshkovY,ChhedaJN,Dumesic JA.Science,2006,312:

    1933[38] RomanLeshkovY,DumesicJA.TopCatal,2009,52:297[39] ShimizuK,UozumiR,SatsumaA.CatalCommun,2009,10:1849[40] Tuercke T, Panic S, Loebbecke S. ChemEngTechnol, 2009, 32:

    1815[41] QiXH,WatanabeM,AidaTM,SmithRL.GreenChem,2008,10:

    799[42] LiCZ,ZhaoZBK,CaiHL,WangAQ,ZhangT.BiomassBioenerg,

    2011,35:2013[43] ZhaoHB,HolladayJE,BrownH,ZhangZC.Science,2007,316:

    1597[44] YongG,ZhangYG,YingJY.AngewChem,IntEd,2008,47:9345[45] ZhangYM,PidkoEA,HensenEJM.ChemEurJ,2011,17:5281[46] Ilgen F,OttD,KralischD,Reil C, PalmbergerA, KonigB.Green

    Chem,2009,11:1948[47] PidkoEA,DegirmenciV,VanSantenRA,HensenEJM.Angew

    Chem,IntEd,2010,49:2530[48] ZhangZH,ZhaoZB.BioresourTechnol,2011,102:3970[49] LiCZ,ZhangZH,ZhaoZBK.TetrahedronLett,2009,50:5403[50] HuSQ,ZhangZF,SongJL,ZhouYX,HanBX.GreenChem,2009,

    11:1746[51] ChenTM,LinL.ChinJChem,2010,28:1773[52] ZhangZH,WangQ, XieHB, LiuW J, ZhaoZB.ChemSusChem,

    2011,4:131[53] PaganTorresYJ,WangTF,GalloJMR,ShanksBH,DumesicJA.

    ACSCatal,2012,2:930[54] Nikolla E, RomanLeshkov Y, MolinerM, Davis M E.ACS Catal,

    2011,1:408[55] WangJJ,RenJW,LiuXH,XiJX,XiaQN,ZuYH,LuGZ,WangYQ.

    GreenChem,2012,14:2506

  • MAJipingetal./ChineseJournalofCatalysis34(2013)492507

    [56] YasudaM,NakamuraY,MatsumotoJ,YokoiH,ShiragamiT.BullChemSocJpn,2011,84:416

    [57] WangTF,PaganTorresYJ,CombsEJ,DumesicJA,ShanksBH.TopCatal,2012,55:657

    [58] StahlbergT,SorensenMG,RiisagerA.GreenChem,2010,12:321[59] Takagaki A, Ohara M, Nishimura S, Ebitani K. Chem Commun,

    2009:6276[60] Watanabe M, Aizawa Y, Iida T, Nishimura R, Inomata H. Appl

    CatalA,2005,295:150[61] WatanabeM,AizawaY,IidaT,AidaTM,LevyC,SueK,InomataH.

    CarbohydrRes,2005,340:1925[62] YanHP,YangY,TongDM,XiangX,HuCW.CatalCommun,2009,

    10:1558[63] HuangRL,QiW,SuRX,HeZM.ChemCommun,2010,46:1115[64] Stahlberg T, RodriguezRodriguez S, Fristrup P, Riisager A.

    ChemEurJ,2011,17:1456[65] SheldonR.ChemCommun,2001:2399[66] ZhangZH,WangWQ,LiuXY,WangQ,LiWX,XieHB,ZhaoZB

    K.BioresourTechnol,2012,112:151[67] ZhangZH,ZhaoZBK.BioresourTechnol,2010,101:1111[68] ZhangZH,ZhaoZBK.CarbohydrRes,2009,344:2069[69] LiCZ,WangQ,ZhaoZBK.GreenChem,2008,10:177[70] LiCZ,ZhaoZKB.AdvSynthCatal,2007,349:1847[71] SwatloskiRP,SpearSK,HolbreyJD,RogersRD.JAmChemSoc,

    2002,124:4974[72] RinaldiR,PalkovitsR, SchuthF.AngewChem, IntEd, 2008,47:

    8047[73] SuY,BrownHM,HuangX,ZhouXD,Amonette JE,ZhangZC.

    ApplCatalA,2009,361:117[74] Qi X H,WatanabeM, Aida TM, Smith R L.Cellulose, 2011, 18:

    1327[75] ZhangYT,DuHB,QianXH,ChenEYX.EnergyFuel,2010,24:

    2410[76] WuSC,WangCL,GaoYJ,ZhangSC,MaD,ZhaoZB.ChinJCatal,

    2010,31:1157[77] BinderJB,RainesRT.JAmChemSoc,2009,131:1979[78] HaworthWN,JonesWGM.JChemSoc,1944:667[79] AntalM J,MokWSL,RichardsGN.CarbohydrRes,1990,199:

    111[80] NewthFH.AdvCarbohydrChem,1951,6:83[81] AmarasekaraAS,WilliamsLD,EbedeCC.CarbohydrRes,2008,

    343:3021[82] PidkoEA,Degirmenci V, Van SantenRA,HensenE JM. Inorg

    Chem,2010,49:10081[83] RomanLeshkov Y, MolinerM, Labinger J A, Davis M E.Angew

    Chem,IntEd,2010,49:8954[84] HopkinsKT,WilsonWD,BenderBC,MccurdyDR,HallJE,Tid

    wellRR,KumarA,BajicM,BoykinDW. JMedChem,1998,41:3872

    [85] DelPoetaM,SchellWA,DykstraCC,JonesS,TidwellRR,CzarnyA,BajicM,KumarA,BoykinD,PerfectJR.AntimicrobAgentsCh,1998,42:2495

    [86] HowarthOW,MorganGG,MckeeV,NelsonJ.JChemSoc,DaltonTrans,1999:2097

    [87] RichterDT,LashTD.TetrahedronLett,1999,40:6735[88] BenahmedGasmiAS,FrereP,JubaultM,GorguesA,CousseauJ,

    GarriguesB.SynthMet,1993,56:1751[89] HuiZ,GandiniA.EurPolymJ,1992,28:1461[90] AmarasekaraAS,GreenD,WilliamsLD.EurPolymJ,2009,45:

    595[91] MaJP,DuZT,XuJ,ChuQH,PangY.ChemSusChem,2011,4:51[92] MaJP,WangM,DuZT,ChenC,GaoJ,XuJ.PolymChem,2012,3:

    2346[93] MehdiH,BodorA,LantosD,HorvathIT,DeVosDE,Binnemans

    K.JOrgChem,2007,72:517[94] YoonHJ,ChoiJW,JangHS,ChoJK,ByunJW,ChungWJ,LeeS

    M,LeeYS.Synlett,2011:165[95] Cottier L, Descotes G, Lewkowski J, Skowronski R, Viollet E. J

    HeterocyclChem,1995,32:927[96] SheldonRA.StudSurfSciCatal,1991,59:33[97] Van DeurzenM P J, Van Rantwijk F, Sheldon R A. J Carbohydr

    Chem,1997,16:299[98] AmarasekaraAS,GreenD,McmillanE.CatalCommun,2008,9:

    286[99] VerdeguerP,MeratN,GasetA.JMolCatal,1993,85:327

    [100] PartenheimerW,GrushinVV.AdvSynthCatal,2001,343:102[101] MoreauC,DurandR,PourcheronC,TichitD.StudSurfSciCatal,

    1997,108:399[102] CarliniC,PatronoP,GallettiAMR,SbranaG,ZimaV.ApplCatalA,

    2005,289:197[103] NavarroOC,CanosAC,ChornetSI.TopCatal,2009,52:304[104] NieJF,LiuHC.PureApplChem,2012,84:765[105] HallidayGA,YoungRJ,GrushinVV.OrgLett,2003,5:2003[106] TakagakiA,TakahashiM,NishimuraS,EbitaniK.ACSCatal,2011,

    1:1562[107] XiangX,HeL,YangY,GuoB,TongDM,HuCW.CatalLett,2011,

    141:735[108] YangZ Z, Deng J, PanT, GuoQX, FuY.GreenChem, 2012, 14:

    2986[109] MooreJA,KellyJE.Macromolecules,1978,11:568[110] MooreJA,KellyJE.JPolymSciPolChem,1978,16:2407[111] MooreJA,KellyJE.Polymer,1979,20:627[112] MooreJA,KellyJE.JPolymSciPolChem,1984,22:863[113] GandiniA,SilvestreAJD,PascoalNetoC,SousaAF,GomesM.J

    PolymSciPolChem,2009,47:295[114] GomesM,GandiniA,SilvestreAJD,ReisB.JPolymSciPolChem,

    2011,49:3759[115] JiangM, LiuQ, ZhangQ, Ye C, Zhou G Y. JPolym SciPolChem,

    2012,50:1026[116] MaJP,PangY,WangM,XuJ,MaH,NieX.JMaterChem,2012,22:

    3457[117] MaJP,YuXF,XuJ,PangY.Polymer,2012,53:4145[118] WuLB,MinchevaR,XuYT,RaquezJM,DuboisP.Biomacromol

    ecules,2012,13:2973[119] EerhartAJJE,FaaijAPC,PatelMK.EnergyEnvironSci,2012,5:

    6407[120] GandiniA.PolymChem,2010,1:245[121] GandiniA,CoelhoD,GomesM,ReisB,SilvestreA.JMaterChem,

    2009,19:8656[122] GandiniA.Macromolecules,2008,41:9491[123] MoreauC,BelgacemMN,GandiniA.TopCatal,2004,27:11[124] WerpyT,PetersenG. In:TopValueAddedChemicals fromBio

    mass. Volume I: Results of Screening for Potential CandidatesfromSugarsandSynthesisGas.Top12CandidateSummaryBios.OakRidge:USDepartmentofEnergyReport,2004.21

    [125] SahaB,DuttaS,AbuOmarMM.CatalSciTechnol,2012,2:79[126] VinkeP,VanDamHE,VanBekkumH,CentiG,TrifiroF.StudSurf

    SciCatal,1990,55:147[127] HughesMD,XuYJ,JenkinsP,McmornP,LandonP,EnacheDI,

    CarleyaF,AttardGA,HutchingsGJ,KingF,StittEH,JohnstonP,GriffinK,KielyCJ.Nature,2005,437:1132

    [128] HashmiASK,HutchingsGJ.AngewChem,IntEd,2006,45:7896[129] TaarningE,Nielsen I S, EgebladK,MadsenR, Christensen CH.

    ChemSusChem,2008,1:75

  • MAJipingetal./ChineseJournalofCatalysis34(2013)492507

    [130] GorbanevYY,KlitgaardSK,WoodleyJM,ChristensenCH,RiisagerA.ChemSusChem,2009,2:672

    [131] CasanovaO,IborraS,CormaA.ChemSusChem,2009,2:1138[132] CasanovaO,IborraS,CormaA.JCatal,2009,265:109[133] PasiniT,PiccininiM,BlosiM,BonelliR,AlbonettiS,DimitratosN,

    LopezSanchez J A, Sankar M, He Q, Kiely C J, Hutchings G J,CavaniF.GreenChem,2011,13:2091

    [134] GuptaNK,NishimuraS,TakagakiA,EbitaniK.GreenChem,2011,13:824

    [135] GorbanevY,KegnsS,RiisagerA.TopCatal,2011,54:1318[136] GorbanevYY,KegnsS,RiisagerA.CatalLett,2011,141:1752[137] DavisSE,HoukLR,TamargoEC,DatyeAK,DavisRJ.CatalTo

    day,2011,160:55[138] KrogerM,PrusseU,VorlopKD.TopCatal,2000,13:237[139] RibeiroML,SchuchardtU.CatalCommun,2003,4:83[140] FukuokaA,DhepePL.AngewChem,IntEd,2006,45:5161[141] YanN,ZhaoC,LuoC,DysonPJ,LiuHC,KouY.JAmChemSoc,

    2006,128:8714[142] LuoC,WangS,LiuHC.AngewChem,IntEd,2007,46:7636[143] DengWP, Tan X S, FangWH, ZhangQH,WangY.CatalLett,

    2009,133:167[144] Van De Vyver S, Geboers J, Dusselier M, Schepers H, Vosch T,

    Zhang L, Van Tendeloo G, Jacobs P A, Sels B F. ChemSusChem,2010,3:698

    [145] DingLN,WangAQ,ZhengMY,ZhangT.ChemSusChem,2010,3:818

    [146] GeboersJ,VanDeVyverS,CarpentierK,DeBlochouseK,JacobsP,SelsB.ChemCommun,2010,46:3577

    [147] Palkovits R, Tajvidi K, Ruppert A M, Procelewska J. ChemCommun,2011,47:576

    [148] MiyazawaT,KosoS,KunimoriK,TomishigeK.ApplCatalA,2007,318:244

    [149] BalarajuM,RekhaV,PrasadPSS,DeviBLAP,PrasadRBN,LingaiahN.ApplCatalA,2009,354:82

    [150] AlhanashA,KozhevnikovaEF,KozhevnikovIV.CatalLett,2008,120:307

    [151] HamzahN,NordinNM,NadzriAHA,NikYA,KassimMB,YarmoMA.ApplCatalA,2012,419:133

    [152] MaL,HeDH.ChinJCatal),2009,30:471[153] YuanZ L,WuP, Gao J, LuX Y,HouZ Y, Zheng XM.CatalLett,

    2009,130:261[154] FurikadoI,MiyazawaT,KosoS,ShimaoA,KunimoriK,Tomishi

    geK.GreenChem,2007,9:582[155] Musolino M G, Scarpino L A, Mauriello F, Pietropaolo R.

    ChemSusChem,2011,4:1143[156] YinAY,GuoXY,DaiWL,FanKN.GreenChem,2009,11:1514[157] YuWQ,Zhao J,MaH,MiaoH,SongQ,XuJ.ApplCatalA,2010,

    383:73[158] ZhaoJ,YuWQ,ChenC,MiaoH,MaH,XuJ.CatalLett,2010,134:

    184[159] DasariMA,KiatsimkulPP,SutterlinWR,SuppesGJ.ApplCatal

    A,2005,281:225[160] HuangZW,CuiF,KangHX,ChenJ,ZhangXZ,XiaCG.ChemMa

    ter,2008,20:5090[161] ChaminandJ,DjakovitchL,GallezotP,MarionP,PinelC,RosierC.

    GreenChem,2004,6:359[162] WangS,LiuHC.CatalLett,2007,117:62[163] ZhouJX,ZhangJ,GuoXW,MaoJB,ZhangSG.GreenChem,2012,

    14:156[164] MiyazawaT,KosoS,KunimoriK,TomishigeK.ApplCatalA,2007,

    329:30[165] MarisEP,KetchieWC,MurayamaM,DavisRJ.JCatal,2007,251:

    281[166] MarisEP,DavisRJ.JCatal,2007,249:328[167] JiangT,ZhouYX,LiangSG,LiuHZ,HanBX.GreenChem,2009,

    11:1000[168] Feng J, FuHY,Wang JB,LiRX,ChenH,LiX J.CatalCommun,

    2008,9:1458[169] Feng J,XiongW, JiaY,Wang J, LiuD,ChenH,LiX.Chin JCatal,

    2011,32:1545[170] MaL,HeDH,LiZP.CatalCommun,2008,9:2489[171] VasiliadouE S,HeracleousE, Vasalos IA, LemonidouAA.Appl

    CatalB,2009,92:90[172] MusolinoM G, Scarpino L A, Mauriello F, Pietropaolo R. Green

    Chem,2009,11:1511[173] FengJ,WangJB,ZhouYF,FuHY,ChenH,LiXJ.ChemLett,2007,

    36:1274[174] XiaS,YuanZ,WangL,ChenP,HouZ.ApplCatalA,2011,403:173[175] HuangJH,ChenJX.ChinJCatal,2012,33:790[176] JimenezMoralesI,VilaF,MariscalR,JimenezLopezA.ApplCatal

    B,2012,117:253[177] YuWQ,XuJ,MaH,ChenC,ZhaoJ,MiaoH,SongQ.CatalCommun,

    2010,11:493[178] LiangCH,MaZQ,DingL,QiuJS.CatalLett,2009,130:169[179] BalarajuM,RekhaV,PrasadPSS,PrasadRBN,LingaiahN.Catal

    Lett,2008,126:119[180] WangSA,ZhangYC,LiuHC.ChemAsianJ,2010,5:1100[181] ClarkI.IndEngChem,1958,50:1125[182] TanikellaMSSR.USPatent4404411.1983[183] WerpyTA,FryeJr.JG,ZacherAH,MillerDJ.USPatent6841085.

    2005[184] BanuM, SivasankerS, SankaranarayananTM,Venuvanalingam

    P.CatalCommun,2011,12:673[185] SunJ,LiuH.GreenChem,2011,13:135[186] ZhouJH,ZhangMG,ZhaoL,LiP,ZhouXG,YuanWK.CatalTo

    day,2009,147:S225[187] JiN,ZhangT,ZhengM,WangA,WangH,WangX,ChenJG.Angew

    Chem,IntEd,2008,47:8510[188] Ji N, Zhang T, Zheng M, Wang A, Wang H, Wang X, Shu Y,

    StottlemyerAL,ChenJG.CatalToday,2009,147:77[189] ZhangYH,WangAQ,ZhangT.ChemCommun,2010,46:862[190] Zheng M Y, Wang A Q, Ji N, Pang J F, Wang X D, Zhang T.

    ChemSusChem,2010,3:63[191] ZhaoGH,ZhengMY,WangAQ,ZhangT.ChinJCatal,2010,31:

    928[192] LiuY,LuoC,LiuHC.AngewChem,IntEd,2012,51:3249[193] PangJF,ZhengMY,WangAQ,ZhangT.IndEngChemRes,2011,

    50:6601[194] LiCZ,ZhengMY,WangAQ,ZhangT.EnergyEnvironSci,2012,5:

    6383[195] ZhouLK,WangAQ,LiCZ,ZhengMY,ZhangT.ChemSusChem,

    2012,5:932[196] KurosakaT,MaruyamaH,NaribayashiI,SasakiY.CatalCommun,

    2008,9:1360[197] GongLF,LuY,DingYJ,LinRH,LiJW,DongWD,WangT,Chen

    WM.ChinJCatal,2009,30:1189[198] QinLZ,SongMJ,ChenCL.GreenChem,2010,12:1466[199] GongLF,LuYA,DingY J,LinRH,Li JW,DongWD,WangT,

    ChenWM.ApplCatalA,2010,390:119[200] OhJ,DashS,LeeH.GreenChem,2011,13:2004[201] NakagawaY,ShinmiY,KosoS,TomishigeK. JCatal,2010,272:

    191[202] HuangL,ZhuYL,ZhengHY,DingGQ,LiYW.CatalLett,2009,

    131:312

  • MAJipingetal./ChineseJournalofCatalysis34(2013)492507

    [203] ZhuSH,ZhuYL,HaoSL,ChenLG,ZhangB,LiYW.CatalLett,2012,142:267

    [204] AmadaY,ShinmiY,KosoS,KubotaT,NakagawaY,TomishigeK.ApplCatalB,2011,105:117

    [205] ChenChL,SongMJ,QinLZh.JNanjingUnivTechnol(NaturSciEd),2011,33:1

    [206] GalloJMR,AlonsoDM,MellmerMA,DumesicJA.GreenChem,2013,15:85

    GraphicalAbstractChin.J.Catal.,2013,34:492507 doi:10.1016/S18722067(11)605019Advancesinselectivecatalytictransformationofployolstovalueaddedchemicals MAJiping,YUWeiqiang,WANGMin,JIAXiuquan,LUFang,XUJie*DalianInstituteofChemicalPhysics,ChineseAcademyofSciences;UniversityofChineseAcademyofSciences

    Polyols Value-added Chemicals

    Dehydration

    Hydrogenolysis Thesynthesisofselectedvalueaddedchemicalsfrompolyolsbydehydrationandhydrogenolysismethodsisreviewed.