S. Stahl: Cryogenic Electronics in Ion Traps Part I S. Stahl, CEO Stahl-Electronics Cryogenic...

Click here to load reader

  • date post

    24-Dec-2015
  • Category

    Documents

  • view

    223
  • download

    5

Embed Size (px)

Transcript of S. Stahl: Cryogenic Electronics in Ion Traps Part I S. Stahl, CEO Stahl-Electronics Cryogenic...

  • Slide 1
  • S. Stahl: Cryogenic Electronics in Ion Traps Part I S. Stahl, CEO Stahl-Electronics Cryogenic Electronics in Ion Traps
  • Slide 2
  • S. Stahl: Cryogenic Electronics in Ion Traps Part I Outline I. Principles of Ion Traps 1. Penning Traps 2. Paul Traps 3. Kingdon Trap 4. Trap Applications in Science and Industry II. Cryogenic Traps 1. Why Cryogenic ? 2. Precision Measurements in Traps 2.1 Magnetic Moments 2.2 Mass Measurements 2.3 Fundamental Constants III. Non-destructive Particle Detection 1. Why non-destructive detection? 2. How does it work? 3. Sensitivity improvement 4. Resistive Cooling 5. Detection of cold particles IV. Design of Cold Amplifiers 1. Which Semiconductors are suitable? 2. Typical Amplifier Design for Ion Traps 3. Anchoring and Cabling 4. Implemention Examples V. Other Components : Filters, Switches
  • Slide 3
  • S. Stahl: Cryogenic Electronics in Ion Traps Part I Part I Principles of Ion Traps 1.Penning Trap 2.Paul Trap 3.Kingdon Trap 4.Trap Applications in Science and Industry
  • Slide 4
  • S. Stahl: Cryogenic Electronics in Ion Traps Part I 1. Penning Trap Lorentz-force: radial confinement free cyclotron motion: Electrostatic potential: axial confinement leads to axial oscillation Charged Particle Mass m, Charge q
  • Slide 5
  • S. Stahl: Cryogenic Electronics in Ion Traps Part I Implementation: Hyperbolical Trap Magnetic field =>Advantage: harmonic motion (frequency independent of energy)
  • Slide 6
  • S. Stahl: Cryogenic Electronics in Ion Traps Part I Resulting ion motion Axial Motion Reduced Cyclotron Motion Magnetron Drift Problem Magnetron-Motion: Inherently unstable 3 degrees of freedom: Energy: 0... eV... keV ~1MHz ~10kHz ~10MHz
  • Slide 7
  • S. Stahl: Cryogenic Electronics in Ion Traps Part I Manipulation of Motions - Excitation: electric dipole ac fields increase amplitude / radii => applying z, +, - radio frequency field => heating until loss of particles -Cooling: Laser cooling, if optical transition exists ( < Millikelvin) Resistive Cooling ( ~ few Kelvin) Sympathetic Cooling (~ few Kelvin to Millikelvin) -Magnetron Centering Motional Sidebands ( + + -, z + - ), or phase-defined - (Magnetron Cooling) Rotating Wall (large ion numbers) Lit: Werth, Gheorghe, Major : Charged Particle Traps, published by Springer
  • Slide 8
  • S. Stahl: Cryogenic Electronics in Ion Traps Part I Dipole excitation: electric dipole field in z or r-direction
  • Slide 9
  • S. Stahl: Cryogenic Electronics in Ion Traps Part I Quadrupole excitation: electric quadrupole field in r-z direction or radial plane
  • Slide 10
  • S. Stahl: Cryogenic Electronics in Ion Traps Part I Rotating Wall drive: => rotating electric wall in radial plane centers particles A B CD 90 degrees phase shifted sine signals Lit.: X.-P. Huang, F. Anderegg, et al., Phys. Rev. Lett. 78, 875 (1997) S. Bharadia, M. Vogel, D.M. Segal, R.C. Thompson, Dynamics of laser-cooled Ca+ ions in a Penning trap with a rotating wall; submitted to Applied Physics B (applies rather for multiparticle/plasma regime)
  • Slide 11
  • S. Stahl: Cryogenic Electronics in Ion Traps Part I Typical Penning Trap Parameters B 0 = 0.1 T.... 6T (typical in science)... 20T U 0 = 2V.. 200V Stored particles: from lightest electrons/positrons, to heaviest organic molecules (e.g. m = 10000u) storage times 1sec.... 1 year (cryogenic systems) number of particles: one to several millions superconducting normal-conducting (water-cooled) Magnets (heavier particles -> high fields required) (low voltages: patch effect problems) permanent (up to 2T)
  • Slide 12
  • S. Stahl: Cryogenic Electronics in Ion Traps Part I Penning Trap Variants - classical hyperpolical electrodes - cubic type trap (chemistry) A. Marshall et al. Rev. Mass. Spec. 17, 1 (1998). - 3pole-Brown-Gabrielse-type trap L.S. Brown, G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986). Laser, Microwaves, Ions,... B-field
  • Slide 13
  • S. Stahl: Cryogenic Electronics in Ion Traps Part I Penning Trap: Some Real-world designs Precision trap for single-ion mass analysis (GSI / Univ. Mainz, Triga) Precision trap for single-ion g-factor determinations (Univ. Mainz) Shiptrap for mass analysis of short-lived isotopes (GSI)
  • Slide 14
  • S. Stahl: Cryogenic Electronics in Ion Traps Part I Example Open Endcap Structure: KATRIN-Trap (commissioning 2009..2011) -Experiment KATRIN, Karlsruhe -large trap (72mm diam.), open structure -operated at T = 77K -non-precision trap
  • Slide 15
  • S. Stahl: Cryogenic Electronics in Ion Traps Part I Planar Trap Marzoli et al. Experimental and theoretical challenges for the trapped electron quantum computer J. Phys. B: At. Mol. Opt. Phys. 42 (2009) 154010 (11pp) Goldman and Gabrielse: Optimized planar Penning traps for quantum-information studies Phys. Rev. A 81, 052335 (2010)
  • Slide 16
  • S. Stahl: Cryogenic Electronics in Ion Traps Part I Planar Trap: Easy Access for Photons and Scalability Open structure allows easy access with Lasers, Microwaves etc. Interesting for Quantum Computing, for Mass Analysis, etc. 100 traps on 1 Euro
  • Slide 17
  • S. Stahl: Cryogenic Electronics in Ion Traps Part I Planar Traps: Implementation approaches Schmidt-Kaler et al. Multiple ring electrode structures multi-layer PCB on board filters easy fabrication structures > 100..150 m QUELE-Project
  • Slide 18
  • S. Stahl: Cryogenic Electronics in Ion Traps Part I 2. Paul Traps / Quadrupole Ion Traps metallic electrodes - No magnetic field needed - high (1kV) AC fields needed - problem RF-heating => cooling technique needed (like: buffer gas cooling, strong laser cooling) Resulting macromotion in a pseudo potential of a few eV => 3D confinement
  • Slide 19
  • S. Stahl: Cryogenic Electronics in Ion Traps Part I Paul Traps: Many different shapes exist simple ring (ground around is second electrode) Paul-Straubel-Type Trapped particles Quadrupolar Rods hyperbolic shape
  • Slide 20 no (expensive) magnet needed Kingdon Trap Advantage: very simple Disadvantage: Short Storage Times modern variant: Orbitrap Improved version, Longer Storage time Important tool in analytical mass spectrometry">
  • S. Stahl: Cryogenic Electronics in Ion Traps Part I 3. Kingdon Trap Lit: Blmel, R (1995). "Dynamic Kingdon trap". Physical Review A 51 (1): R30R33. doi:10.1103/PhysRevA.51.R30 Hu, Noll, Li, Makarov, Hardman, Graham Cooks R (2005): "The Orbitrap: a new mass spectrometer". Journal of mass spectrometry : JMS 40 (4): 43043. doi:10.1002/jms.856 Pure Electrostatic Trap => no (expensive) magnet needed Kingdon Trap Advantage: very simple Disadvantage: Short Storage Times modern variant: Orbitrap Improved version, Longer Storage time Important tool in analytical mass spectrometry
  • Slide 21
  • S. Stahl: Cryogenic Electronics in Ion Traps Part I 4. Trap Applications in Science and Industry Industry: Mass Analysis in Chemistry, Biology, Environmental Analytics -Paul Traps / Mass Filters -Penning Traps (specially FT-ICR-Traps) Science / Fundamental Research: -Paul Traps Quantum Optics, Frequency Standards, Atomic Physics,... -Penning Traps Fundamental constants, Laser-spectroscopy, g-factor mass references and..... Lit: Werth, Gheorghe, Major : Charged Particle Traps, published by Springer
  • Slide 22
  • S. Stahl: Cryogenic Electronics in Ion Traps Part I Mass Measurements in Penning Traps Courtesy Klaus Blaum
  • Slide 23
  • S. Stahl: Cryogenic Electronics in Ion Traps Part I - End of part I -
  • Slide 24
  • S. Stahl: Cryogenic Electronics in Ion Traps Part I Thanks for your attention
  • Slide 25
  • S. Stahl: Cryogenic Electronics in Ion Traps Part I g-factor setup Mainz: vertical 4K- dewar setup (g-factor, Mainz) g-factor trap 4K-axial amplifier 4K-broadband FT-ICR amplifier ( Mainz 2004 ) 4K-electronics section