Development of Electrode Architectures for High Energy ... · Electrochemical Characterization...

21
Development of Electrode Architectures for High Energy Density Electrochemical Capacitors Bruce Dunn 1 and Yury Gogotsi 2 1. Department of Materials Science and Engineering University of California, Los Angeles 2. Department of Materials Science and Engineering Drexel University, Philadelphia, PA Research Team at Drexel: Dr. Majid Beidaghi - Postdoctoral scholar Maria Lukatskaya, John Zhang - PhD students Research Team at UCLA: Dr. Ryan Maloney, Dr. Emilie Perre - Postdoctoral scholar Matt Lai – Ph.D. student ESS Peer Review September 16-19, 2014

Transcript of Development of Electrode Architectures for High Energy ... · Electrochemical Characterization...

  • Development of Electrode Architectures for High Energy Density Electrochemical Capacitors

    Bruce Dunn1 and Yury Gogotsi2

    1. Department of Materials Science and Engineering

    University of California, Los Angeles

    2. Department of Materials Science and Engineering

    Drexel University, Philadelphia, PA

    Research Team at Drexel: Dr. Majid Beidaghi - Postdoctoral scholar Maria Lukatskaya, John Zhang - PhD students Research Team at UCLA: Dr. Ryan Maloney, Dr. Emilie Perre - Postdoctoral scholar Matt Lai – Ph.D. student

    ESS Peer Review September 16-19, 2014

  • Electrochemical Energy Storage Batteries Capacitors

    “Bulk” Batteries

    Nanostructured Batteries

    Capacitors EC Double Layer Supercapacitors

    Pseudo-capacitors

    H2SO4(aq)

    Pb

    Pb

    O2

    + + +

    + + +

    - - -

    - - -

    + +

    + + + + +

    Li+

    e- Li+M+n-1

    M+n Li+

    e-

    M+n

    Li+M+n-1

    Faradaic Charge Storage (High Energy) Non-Faradaic (Low Energy)

    Diffusion Controlled Non-Diffusion Controlled (High Power)

    • e.g. Lead-Acid • Charge stored in

    bulk • Moderate Energy • Low Power • Low Cost

    • e.g. Li-ion • Charge stored in

    bulk • High Energy • Moderate Power • Moderate Cost

    • e.g. RuO2 • Charge stored near

    surface (thin films) • Moderate Energy • High Power • High Cost

    • Carbon • Charge stored

    at surface • Low Energy • High Power • Low Cost

    • Metal • Charge stored

    at surface • Low Energy • High Power • Low Cost

    P. Simon, Y. Gogotsi and B. Dunn, Science 343, 1210 (2014)

  • Pseudo- vs. Supercapacitors

    Carbon

    • Moderate Energy • High Power • High surface area

    • Moderate Energy • High Power • Very thin (nm)

    Li+

    e-

    M+n

    Li+M+n-1

    Metal Oxide

    Pseudocapacitor EC Double Layer Supercapacitor

  • Pseudo/Supercapacitor Composite

    Carbon

    • Moderate Energy • High Power • High surface area

    • Moderate Energy • High Power • Very thin (nm)

    • High Energy • High Power

    Li+

    e-

    M+n

    Li+M+n-1

    Metal Oxide

    Metal Oxide / Carbon Composite

    Pseudocapacitor EC Double Layer Supercapacitor

  • UCLA - Drexel Collaboration

    Carbon

    • Carbide-derived Carbon • Coin-cell fabrication • Device characterization

    • Metal-oxide deposition • Small-scale testing • Materials characterization

    DOE Office of Electricity Energy Storage Systems Program

    University Energy Storage Program 100 Wh/kg, 1-10 kW/kg

    Project Goals

    Capacitors Target

    0.01 0.1 1 10 100 10001E-3

    0.01

    0.1

    1

    10

    100

    Sp

    ecific

    Po

    we

    r (k

    W/k

    g)

    Specific Energy (Wh/kg)

  • Supercapacitive Carbon

    Carbon

  • Supercapacitor: Carbide-Derived Carbon

    2 nm

    Carbide Chlorination Carbon

    Process Features

    • Precise control over structure and porosity / pore size / surface area

    • Network of open pores • Coatings, free standing monoliths,

    fibers, foams or powder • Numerous carbides can be used

    Carbide

    2 nm

    Carbide Porosity = 0%

    Carbide-Derived Carbon

    Nanoporous Carbon Porosity >50%

    O. Hutchins, US Patent, 1271713 (1918) W.A. Mohun, US Patent, 3066099 (1962)

    Nillok Chemicals, Great Britain Patent, 971943 (1964) S.K. Gordeev et al., J.Appl. Chem. (USSR) 64, 1178 (1991)

    N.F. Fedorov, Russ. Chem. J. 39, 73 (1995) Y. Gogotsi, M. Yoshimura, Nature, 367, p. 628 (1994)

    Y. Gogotsi, et al, Nature, 411, p. 283 (2001) J. Leis, et al. Carbon, 39, 2043 (2001)

    V. Presser, et al. Advanced Functional Materials, 21, 810 (2011).

    [001]

    [110]

    Halo-

    genation

    MC(s) + 2Cl2(g) → MCl4(g) + C(s)

  • Supercapacitor: Carbide-Derived Carbon

    Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P.-L., Science, 2006, v. 313, 1760

    + + + +

    +

    + +

    +

    +

    + +

    + Anode

    CDC

    Ion

    Solvation shell

    CDC

  • Supercapacitor: Carbide-Derived Carbon

    Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P.-L., Science, 2006, v. 313, 1760

    + + + +

    +

    + +

    +

    +

    + +

    + Anode

    Metal Oxide

    Metal Oxide Ion

    Solvation shell

  • Pseudocapacitive Metal-oxide

    Li+

    e-

    M+n

    Li+M+n-1

    Metal Oxide

  • Pseudocapacitor: Nb2O5 10 mV/s

    96 %

    capacitive

    current

    10 mV/s

    • Highest capacitance observed with most ordered structure: T-Nb2O5, ~ 370 F/g in 12 seconds

    • Amorphous capacity is much smaller & slower

    • Presence of an ordered structure is important to achieve high capacity

    • (Almost) all of the stored charge is from pseudocapacitance

    Kim et al., Adv. Energy Mat. 2, 141-148 (2011)

  • Electrochemical Characterization

    Three-step process for developing electrode materials for supercapacitor devices

    1. Nanocrystalline electrodes: no carbon or binder; half-cell experiments; Designed to rapidly establish fundamental electrochemical properties

    2. Swagelok cells: Practical electrode structure with carbon and binder. Half-cell experiments

    3. Coin Cells: Full cell prototype devices; symmetric and asymmetric

  • Ti2AlC powder CDC powder

    1. Chlorination for 3 h at 800 °C

    2. Hydrogenation for 2 h at 600 °C

    CDC powder

    C4H4NNbO9 . xH2O

    Sonication Hydrothermal treatment for 96 h

    at 200 °C Addition of Urea

    Nb2O5/ CDC

    powder

    phenylphosphonic acid (PPA)

    Carbide-derived carbon/Nb2O5 hybrid materials

  • Carbon: Metal-oxide: Crystallinity: % oxide: Synthesis:

    TAC800 Nb2O5 Amorphous 20% Hydrothermal

    Ammonium Niobate Oxalate Hydrate, Water, Carbon, Urea, 200°C, 4 days

    Development of Nb2O5/CDC Composite Electrodes

    Carbon: Metal-oxide: Crystallinity: % oxide: Synthesis:

    TAC800 Nb2O5 Amorphous 20% Hydrothermal

    Ammonium Niobate Oxalate Hydrate, Phenylphosphonic Acid, Water, Carbon, Urea 200°C, 4 days

    Nanocrystalline electrodes

    Without bonding agent

    With PPA bonding agent

    10 100

    0

    50

    100

    150

    200

    250

    300

    350

    400

    450

    500

    550

    600

    Ca

    pacity (

    C/g

    )

    Scan rate (mV/s)

    TAC800

    Nb2O5-TAC800

    Nb2O5-TAC800, PPA

  • Crystallizing the Nb2O5: heat treatment in CO2

    Temperature: 850 °C Time: 1 h CO2 flow rate: 10 sccm

    • Nb2O5 crystallizes and increases amount of stored charge

    • Only slight oxidation of CDC

    Swagelok cells 1.5 mg in weight, 5 mm in diameter, 70 μm thick 8 : 1 : 1 Nb2O5/CDC : PTFE : carbon 7.5 mg/cm2

  • Coin Cell Devices

    • Optimization of coin cell design parameters leads to increased specific capacitance

    • Nb2O5/CDC-CO2 composites to be substituted for CDC

    (1) Spacer: stainless steel (2) CE&RE: Li (3) Separator (4) WE: active material/carbon black/PVdF

    First Generation Supercapacitor: CDC electrodes with non-aqueous electrolyte

  • Carbon shell formed by microwave hydrothermal coating of glucose Glucose pyrolysis: 700°C in Ar Partial oxidation: 400°C in Air

    1.0 1.5 2.0 2.5 3.0 3.5 4.0

    -15

    -10

    -5

    0

    5

    10

    15

    Cu

    rre

    nt (A

    /g)

    Potential (V vs. Li/Li+)

    TAC800

    Nb2O5-TAC800, PPA, 600°C CO2

    Nb2O5 c/s 400°C Air

    10 100

    0

    100

    200

    300

    400

    500

    600

    Ca

    pacity (

    C/g

    )

    Scan rate (mV/s)

    TAC800

    Nb2O5-TAC800, PPA, 600°C CO2

    Nb2O5 c/s 400°C Air

    0%

    10%

    20%

    30%

    40%

    50%

    60%

    70%

    80%

    90%

    100%

    Mas

    s %

    Nb2O5

    Oxidized Carbon

    Remaining Carbon

    T-Nb2O5

    Carbon

    20 mV/s

    Nb2O5

    New Directions for Enhanced Charge Storage: Nb2O5 – C Core/Shell

    Sol-gel synthesis of Nb2O5 precursor gel; supercritical drying; calcine at 700°C in air; orthorhombic Nb2O5

  • Two-Dimensional Transition Metal Carbides, Oxycarbides and Carbonitrides Composition of Mn+1AXn ; with n =1,2,3; Layered hexagonal structure (P63/mmc)

    Examples: Ti2AlC, Ti2AlN, Ti3AlC2,Ti4AlN3 Ta2AlC, Ta4AlC3 Cr2AlC, Cr3AlC2 V2AlC, V3AlC2 Nb2AlC, Nb4AlC3 (>70 phases)

    211 312 413

    Delamination to Mxene via HF treatment: Ti3AlC2 + 3HF = AlF3 + 3/2H2 + Ti3C2

    Ti3C2 + 2H2O = Ti3C2(OH)2 + H2 Ti3C2 + 2HF = Ti3C2F2 + H2

    New Directions for Enhanced Charge Storage: Oxidation of Layered Nb2C

    M. Naguib, et al., Adv. Mater., 23, 4248 (2011)

  • New Directions for Enhanced Charge Storage: Oxidation of Layered Nb2C

  • New Directions for Enhanced Charge Storage: Nb2O5 – RGO

  • Summary and Ongoing/Future Work

    Progress to Date

    • Generation I devices based on CDC • Composite electrodes of Nb2O5/CDC-CO2 demonstrate enhanced charge storage • New approaches identified for metal oxide systems with greater storage

    Ongoing and Future work

    • Fabrication of coin cells incorporating Nb2O5/CDC-CO2 electrode materials (symmetric and asymmetric) • Development of new metal oxide/CDC electrodes - electrode characterization and downselect most attractive candidates - extend electrode studies to aqueous electrolytes and identify most promising materials

    Acknowledgements This research was supported by the U.S. Department of Energy, Office of Electricity, Energy Storage Research Program, through Sandia National Laboratory