MergedFile - Thèses en ligne de l'Université Toulouse...

182
et discipline ou spécialité Jury : le Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier) LIN Zifeng mardi 2 mai 2017 Two Dimensional Materials (Graphene and MXenes) for Supercapacitor Applications ED SDM : Sciences et génie des matériaux - CO034 CIRIMAT UMR CNRS 5085 (Institut Carnot) Frédéric FAVIER Directeur de Recherche – ICGM Rapporteur Liliane GUERLOU-DEMOURGUES Professeur – ICMCB Rapporteur Philippe BARBOUX Professeur – ENSCP Examinateur Meriem ANOUTI Professeur – PCM2E Examinateur Karine SERRANO Professeur – LGC Examinateur Patrice SIMON Professeur – CIRIMAT Directeur de thèse Pierre-Louis TABERNA Chargé de recherche – CIRIMAT Co-directeur de thèse Pr. Patrice SIMON et Dr. Pierre-Louis TABERNA

Transcript of MergedFile - Thèses en ligne de l'Université Toulouse...

Page 1: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

et discipline ou spécialité

Jury :

le

Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

LIN Zifengmardi 2 mai 2017

Two Dimensional Materials (Graphene and MXenes) for Supercapacitor Applications

ED SDM : Sciences et génie des matériaux - CO034

CIRIMAT UMR CNRS 5085 (Institut Carnot)

Frédéric FAVIER Directeur de Recherche – ICGM RapporteurLiliane GUERLOU-DEMOURGUES Professeur – ICMCB RapporteurPhilippe BARBOUX Professeur – ENSCP ExaminateurMeriem ANOUTI Professeur – PCM2E ExaminateurKarine SERRANO Professeur – LGC ExaminateurPatrice SIMON Professeur – CIRIMAT Directeur de thèsePierre-Louis TABERNA Chargé de recherche – CIRIMAT Co-directeur de thèse

Pr. Patrice SIMON et Dr. Pierre-Louis TABERNA

Page 2: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor
Page 3: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Acknowledgements

My deepest gratitude goes first to my supervisors Prof. Patrice SIMON and Dr. Pierre-Louis TABERNA,

who guided me through my PhD period with their great patience and profound knowledge. I am really

grateful that they are always so supportive and available for discussions. Their passions and philosophy

in doing scientific research will be always instructive in my research career. I am very lucky and with

great honor to work under their supervision.

I would like to sincerely thank my committee members: Prof. Frederic FAVIER (ICGM), Prof. Liliane

GUERLOU-DEMOURGUES (ICMCB), Prof. Philippe BARBOUX (ENSCP), Prof. Meriem ANOUTI

(PCM2E), and Prof. Karine SERRANO (LGC) for their time, useful comments and discussions.

I would like to acknowledge China Scholarship Council (CSC, NO: 201304490006) for the financial

support since October 2013 to October 2016.

I would like to express my greatest appreciation to Prof. Yury Gogotsi from Drexel University and other

colleagues include Dr. Babak Anasori, Dr. Maria Lukatskaya, Dr. Mengqiang Zhao, Katie Van Aken,

Tyler Mathis and Sankalp Kota for their supports to the MXene research project and fruitful discussions.

I would like to thank also the colleagues for administrative assistance, Mlle Soraya Berkouk and Prof.

Eric Benoist from Ecole Doctorale, Mdm. C. Stasiulis from the Service des Relations Internationales,

Nicole, Murielle, Jessie, Nabila, Maryse, Sandrine, and Christiane from CIRIMAT.

Special thanks go to my colleagues in CIRIMAT: Marie-Claire for her technical support, Benjamin for

XRD training and in-situ XRD guidance, Jean-Jacques Demai for SEM tests and Abderahmane for TGA

tests, and many other people for their kindness.

I would like to thank the former and current colleagues in the team: Prof. Patrick Rozer for his great

help with X-ray tests and discussions, Barbara Daffos for always being supportive and helpful in the

lab, and Jeremy Come, Perhua Huang, Wan-yu Tsai, Yohan D’allagnese, Leo Negre, Kevin Brousse,

Yinghui Liu, Dasha Iermakova, Hui Shao, Xue Bai, Shan Zhu, Kui Xu, Minghao Yu and Assane Sene.

The team has been a source of friendships as well as good advice and collaboration. Thanks to them, I

enjoyed so much the time in the lab.

Page 4: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Apart from the lab, I have many lovely friends in Toulouse. We travel together, we share Chinese foods,

we do sports and many things together. I am so lucky to have these friends who make my life fill with

happiness. Sincerely thanks to them.

Last but most importantly, deepest thanks to my dad, my mom, my brother and sister, for being so

supportive to the choice I make, to the life I live, to the dream I have.

July 25th 2017

Toulouse, France

Page 5: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Table of Contents

General introduction ............................................................................................................................. 1

Chapter I Bibliography ......................................................................................................................... 3

1 Electrochemical capacitors ........................................................................................................ 3

1.1 Introduction ................................................................................................................... 3

1.2 Electrical double layer capacitors (EDLCs) .................................................................. 5

1.3 Pseudocapacitance and pseudocapacitive materials .................................................... 13

1.4 Hybrid capacitors ......................................................................................................... 15

2 Electrode materials .................................................................................................................. 17

2.1 Carbon materials .......................................................................................................... 17

2.2 Metal oxides ................................................................................................................ 22

2.3 Conducting polymers ................................................................................................... 23

3 Two dimensional materials for ECs ........................................................................................ 24

3.1 Graphene ...................................................................................................................... 24

3.2 MXenes ........................................................................................................................ 34

4 Electrolytes .............................................................................................................................. 38

4.1 Aqueous electrolytes .................................................................................................... 39

4.2 Organic electrolytes ..................................................................................................... 39

4.3 Room temperature ionic liquid electrolytes (RTILs) .................................................. 40

5 Objectives of thesis ................................................................................................................. 42

6 Reference ................................................................................................................................. 43

Page 6: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter II Experimental Part ............................................................................................................ 59

1 Material characterization ......................................................................................................... 59

1.1 Scanning electron microscope (SEM) ......................................................................... 59

1.2 X-ray diffraction (XRD) .............................................................................................. 60

1.3 Thermogravimetric Analysis (TGA) ........................................................................... 61

1.4 Raman spectroscopy .................................................................................................... 62

2 Electrochemical characterizations ........................................................................................... 63

2.1 Configurations ............................................................................................................. 63

2.2 Electrochemical analysis ............................................................................................. 65

3 Reference ................................................................................................................................. 77

Chapter III Graphene-based Supercapacitors Using Ionic Liquid Eutectic Mixture Electrolyte

............................................................................................................................................................... 79

1 Experimental ........................................................................................................................... 79

1.1 Graphene synthesis ...................................................................................................... 79

1.2 Graphene electrodes preparation ................................................................................. 81

2 Results and discussion ............................................................................................................. 82

2.1 Material characterizations ............................................................................................ 82

2.2 Electrochemical characterizations ............................................................................... 85

3 Conclusions ............................................................................................................................. 96

4 Reference ................................................................................................................................. 98

Chapter IV High capacitance of Ti3C2Tx MXene in aqueous Electrolyte .................................... 101

1 Introduction ........................................................................................................................... 101

Page 7: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

2 MXene synthesis and electrode preparation .......................................................................... 101

3 XRD characterization and SEM observation ........................................................................ 104

4 Electrochemical characterizations ......................................................................................... 105

4.1 Pt current collectors ................................................................................................... 106

4.2 Glassy carbon current collector ................................................................................. 107

4.3 Ti3C2Tx MXene films in H2SO4 electrolyte ............................................................... 111

4.4 Ti3C2Tx MXene films at different thickness .............................................................. 112

4.5 Asymmetric supercapacitor ....................................................................................... 114

4.6 EIS study in H2SO4 electrolyte .................................................................................. 116

5 Conclusions ........................................................................................................................... 118

6 Reference ............................................................................................................................... 119

Chapter V Capacitive Behavior of Ti3C2Tx MXene in EMI-TFSI Ionic Liquid Electrolyte ...... 121

1 Introduction ........................................................................................................................... 121

2 MXene electrode preparation ................................................................................................ 121

3 XRD characterizations and SEM observation ....................................................................... 123

4 Electrochemical characterizations ......................................................................................... 125

4.1 Electrochemical set-ups ............................................................................................. 125

4.2 Results and discussion ............................................................................................... 126

5 In-situ X-ray diffraction study ............................................................................................... 129

5.1 Experimental .............................................................................................................. 130

5.2 Results and discussion ............................................................................................... 130

Page 8: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

6 Conclusions ........................................................................................................................... 136

7 Reference ............................................................................................................................... 137

General Conclusions ......................................................................................................................... 141

1 Graphene-based supercapacitors ........................................................................................... 141

2 MXene-based supercapacitors ............................................................................................... 142

Perspectives ........................................................................................................................................ 143

Reference ..................................................................................................................................... 143

Publications ........................................................................................................................................ 145

Page 9: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

General introduction

1

General introduction

Global warming, fossil fuel diminishing along with the booming demand for energy has become

one of the urgent issues to address for a sustainable development of our society. Renewable

energies like wind energy, solar energy, bioenergy, nuclear energy and etc. have been developed

to complement the shortage of fossil fuels. These energies are usually converted into electrical

energy and stored in energy storage system (ESS), such as batteries. With the merit of high energy

density (up to 200 Wh/kg), batteries are limited by low power capability. On the opposite,

conventional capacitors can deliver very high power for only milliseconds, which limited their

energy density below 10-2 Wh/kg. Supercapacitors, also known as electrochemical capacitors (ECs)

or ultracapacitors, bridge the gap between batteries and conventional capacitors, by delivering high

power (> 5 kW/kg) and decent energy density (10 Wh/kg). However, the energy and power

performance of current EC devices are still far from satisfactory, especially for portable electronic

devices like mobile phone and laptops as well as electric vehicles (boost, breaking energy

recovery). Great efforts have been devoted to increasing the energy and power performance for

ECs. Exploring new electrode materials with superior properties is one of the most efficient routes.

In this thesis, we have studied the capacitive performance of two dimensional (2D) materials like

graphene and MXenes, which have been recognized as promising electrode materials for both

supercapacitors and batteries.

Chapter I starts with a brief introduction about fundamentals of supercapacitors and their recent

developments, followed by the description of different types of supercapacitors together with their

corresponding electrode materials. In this part, a focus is made on the synthesis and applications

of graphene and MXenes materials. Three categories of electrolytes are presented and compared

with their merits and drawbacks. The chapter ends with the presentation of the objectives of this

thesis.

Chapter II deals with the experimental section which covers materials characterization techniques,

electrochemical configurations and electrochemical analysis techniques.

Page 10: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

General introduction

2

Chapter III focuses on graphene electrode materials for supercapacitor application. After the

presentation of graphene synthesis and characterizations, electrochemical performance of free-

standing graphene film is studied in both aqueous (1 M KOH), organic (1M EMI-BF4 in

acetonitrile) and ionic liquid ((PIP13)0.5(PYR14)0.5-FSI) electrolytes. Especially, in ionic liquid

eutectic mixture electrolyte ((PIP13)0.5(PYR14)0.5-FSI), the capacitive behavior is investigated

within a large temperature range from -40 to 80 oC.

Chapter IV is dedicated to studying 2D MXenes materials. In this chapter, synthesis and

characterizations of Ti3C2Tx MXene are presented. Electrochemical performance of the free-

standing Ti3C2Tx MXene film is studied in aqueous electrolyte.

Chapter V presents the electrochemical characterizations of Ti3C2Tx MXene films in neat EMI-

TFSI ionic liquid electrolyte for the first time. The charge storage mechanism of Ti3C2Tx MXene

in this electrolyte was studied by using in-situ X-ray diffraction technique together with impedance

analysis.

The last section summarizes the general conclusions of this thesis and envisage the further work.

Page 11: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

3

Chapter I Bibliography

1 Electrochemical capacitors

1.1 Introduction

Electrical energy can be electrochemically stored in two fundamentally different ways: the “faradaic

process” is the oxidation and reduction of electrochemically active materials which lead to an electrical

work, allowing charges to flow between two electrodes having different electrode potentials – this kind

of process is involved in batteries. The “electrostatic” storage is achieved by charge separation at a

polarized interface, such as achieved at dielectric capacitors [1]. In secondary batteries – where energy

is stored reversibly – since energy storage is achieved through faradaic reactions, the chemical

conversions of the electrode materials occur, usually associated with phase changes. Although the

overall energy storage can be conducted in a relatively reversible thermodynamic way, the charge and

discharge processes in battery materials often involve volume changes and irreversibility during

electrochemical conversion of the electrode active materials, thus leading to a limited cycle life of

battery cells. On the opposite, a capacitor has an almost unlimited cyclability since no chemical and

phase changes are involved during the energy storage process. Despite the outstanding cyclability,

conventional capacitors are limited by their low energy density (≤ 10-2 Wh/kg). However, capacitors

combining a liquid electrolyte and high specific surface area electrode materials like activated carbon,

can achieve high capacitance up to several hundred farad per gram (F g-1) in aqueous electrolyte [2].

This type of capacitors, termed as “supercapacitors”, also known as electrochemical capacitors (ECs)

or ultracapacitors, has bridged the gap between conventional capacitors and batteries [3]. Table 1

contains a summary of the properties of conventional capacitor, supercapacitor and battery.

Page 12: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

4

Table I - 1: Characteristics of capacitors, supercapacitors and batteries [4].

Characteristics Capacitors Supercapacitors Lithium ion batteries

Charge time 10-3 to 10-6 s 1 to 10 s 10 to 60 mins

Cycle life >1,000,000

>10 years

>1,000,000

>10 years

<1,500

< 3 years

Cell voltage High < 3V 3.6 to 3.7 V

Specific energy (Wh/g) < 0.1 1 to 10 100 to 250

Specific power

(kW/kg)

>10 0.5 to 20 1 to 3

Efficiency (%) >95 85 to 95 70 to 85

Charge stored Between charged

plates

Electrode/electrolyte

interface

Entire electrode

Storage mechanism Electrostatic Electrostatic Chemical

A schematic comparison of charge storage mechanism of conventional capacitors, supercapacitors and

batteries is presented in Figure I – 1. As can be seen, for conventional capacitors, two electrical

conductors (plates) separate a dielectric (electrical insulator). Energy is stored in an electrostatic way

upon polarization of the two metallic plates are polarized. In supercapacitors, electrolyte solution

replaces the dielectric and high specific surface area carbons are used as electrodes; the charge

separation occurs at the porous carbon/electrolyte interface (see details in next section 1.2.2). The charge

storage process is non-faradaic: ideally no electron transfer takes place across the electrode interface

and the storage of electric charge and energy is electrostatic, same as for conventional capacitors. The

Page 13: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

5

high surface area of the porous carbon used explains the high capacitance achieved with such systems

(5 to 20 µF/cm² depending on the electrolyte [5]). In battery-type processes, the charge storage is

faradaic and electron transfer at the electrode interface leads to a change in the oxidation state and hence

in the chemistry of the electroactive materials. However, in specific cases, chemisorption of ions or

molecules can take place at the surface of a conducting electrode with partial charge transfer:

M+A-↔M/A(1-δ)-+ δe(in M) I - 1

Such a surface reaction is often associated with Frumkin like behaviors [1] and gives rise to a non-

potential dependent capacitance, also called pseudocapacitance [1]. In the next section, the capacitive

and pseudocapacitive charge storage mechanism will be detailed.

Figure I - 1:Schematic of a) capacitor b) supercapacitor c) lithium ion battery.

1.2 Electrical double layer capacitors (EDLCs)

1.2.1 Brief history of EDLCs

The first capacitor was dated back to 1745, a German scientist invented a Leyden jar which is an early

capacitor consisting of a glass jar coated inside and outside with a thin layer of silver foil (Figure I – 2a)

[6]. With the outer foil being grounded, the inner foil could be charged with an electrostatic generator

or a source of static electricity and could produce a strong electrical discharge from a small and

Page 14: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

6

comparatively simple device [1]. In 1957, the first electrical double layer capacitor (EDLC) was

patented by H. Becker at General Electrics, who used two porous carbon electrodes in aqueous

electrolytes [6], as shown in Figure I – 2b. Unfortunately, Becker’s device was impractical in that,

similarly to a flooded battery, both electrodes needed to be immersed in a container of electrolyte, and

the device was never commercialized. In 1962, Robert A. Rightmire, a chemist at the Standard Oil

Company of Ohio (SOHIO), invented the EDLCs device in the format now used [7], which consists of

two porous carbon electrodes in sulfuric acid electrolyte separated with an ion-conducting separator. A

follow-on patent by a SOHIO fellow researcher Donald L. Boos in 1970 [8], formed the basis for many

hundreds of subsequent patents and journal articles covering all aspects of EDLCs technology. Under

license from SOHIO, the Japanese company NEC further developed the first commercial EDLCs for

using as back-up power devices for volatile clock chips and complementary metal-oxide-semiconductor

(CMOS) computer memories. More applications have emerged over the past decades, including

portable wireless communication, enhanced power quality for distributed power generation systems,

industrial actuator power sources and high efficiency energy storage for trains and hybrid electric

vehicles (HEVs). Overall, EDLCs are currently widely used in applications where high power is

demanded.

Figure I - 2:Schematic of (a) Leyden jar; (b) supercapacitor as patented by H. Becker [6].

Page 15: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

7

1.2.2 Principles

The concept of the double layer originates from von Helmholtz who developed and modeled the double-

layer concept in his work on colloidal suspensions [9]. This first theoretical model assumed the presence

of a compact single layer of ions in contact with the charged metal surface, as shown in Figure I – 3a.

The dash line drawn through the center of ions on interface marks the boundary known as the ‘Outer

Helmholtz Plane’ (OHP), and the region within it is the electrical double layer [10]. The double layer

capacitance can be described according to equation I – 2:

Cdl = 𝜀𝑟𝜀0𝐴

𝑑 I - 2

Where is 휀𝑟 the electrolyte relative permittivity – dielectric constant –, 휀0 the vacuum permittivity, A

the surface area accessible to ions and d the distance between the center of the ion and the carbon surface

[11]. The double layer capacitance is in the range from 10 to 20 µF/cm2 of electrode depending on the

electrolyte. However, without considering the thermal motion, ion diffusion, adsorption onto the surface

and solvent/surface interactions, Helmholtz double layer model is limited to specific conditions with

high concentration electrolyte, especially under high potential difference.

Figure I - 3: Models of the electrical double layer at a positively charged surface: (a) the Helmholtz

model, (b) the Gouy–Chapman model, and (c) the Gouy-Chapman-Stern model. d is the double layer

distance described by the Helmholtz model. 𝜓0 and 𝜓 are the potentials at the electrode surface and

Page 16: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

8

the electrode/electrolyte interface, respectively.

The Helmholtz model was subsequently developed by Gouy and Chapman in early twentieth centuries.

The thermal motion of ions near a charged surface was taken into consideration. They pictured a diffuse

double layer (DDL) consisting of counter ions with opposite charge to the surface (Figure I – 3b). This

Gouy-Chapman model is a continuum meanfield-like approach assuming point-like ions in

thermodynamic equilibrium and neglecting ion-ion correlations, which is successful in predicting ionic

profiles close to planar and curved surfaces and the resulting forces only when the concentration of

electrolyte is low. However, the model fails for highly charged surfaces and multivalent ions [10].

In 1924, Stern combined the early Helmholtz model with the more refined Gouy-Chapman model and

proposed that two regions of ion distribution exist at the interface of electrode/electrolyte: an inner

region called the compact layer (or Stern layer) and a diffuse layer, as shown in Figure I – 3c. Therefore,

the capacitance at an electrode/electrolyte interface double layer (Cdl) can be regarded as consisting of

two components, the Helmholtz double-layer capacitance (CH) and the diffuse region capacitance (Cdiff),

and follows the equation:

1

𝐶𝑑𝑙 =

1

𝐶𝐻+

1

𝐶𝑑𝑖𝑓𝑓 I – 3

In concentrated electrolyte, the average charge plane — Debye length — tends to zero leading to

𝐶𝑑𝑖𝑓𝑓 → +∞, so that the double layer capacitance 𝐶𝑑𝑙 ≈ 𝐶𝐻. The Helmholtz model is good enough for

ECs.

In electrochemical double layer capacitors (EDLCs), instead of using metal plates as electrode, high

surface area materials are used to maximize the double layer capacitance (10 – 20 µF/cm2). Porous

structure of the materials results in a more complex behavior at the pore surface. To increase the

capacitance, efforts have been dedicated to increase the specific surface area of the electrode materials

[2, 12-14]. For a full cell of EDLC, the double layer capacitances of the anode and cathode are in a

series connection, as illustrates in Figure I – 4.

Page 17: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

9

Figure I - 4: A simple RC equivalent circuit representation illustrates the basic operation of a single-cell

supercapacitor.

Therefore, the capacitance C of a full cell follows the Equation:

1

𝐶=

1

𝐶𝑎+

1

𝐶𝑐 I - 4

Where 𝐶𝑎 and 𝐶𝑐 are the capacitances of the anode and cathode, respectively. Rs in the Figure I – 4

presents the equivalent series resistance (ESR).

The performance of EDLCs is usually characterized by energy (W, joules, but usually expressed in watt

hours) and power (P, watts) [15]. The maximum energy (in Wh) is calculated by the following equation:

W = 𝐶𝑉0

2

2∗3600 I – 5

Where V0 is the nominal voltage (volts). The maximum power follows the equation:

P = 𝑉0

2

4𝑅𝑠 I – 6

Where Rs is the equivalent series resistance (ESR).

Specific energy against specific power, also called Ragone plot, are plotted for comparing energy

storage devices such as conventional capacitors, electrochemical capacitors, and batteries. In Figure I

– 5, the Ragone plot presents the gravimetric energy and power densities of the devices, showing the

performance of supercapacitors that fill the gap between batteries and capacitors. However, in some

cases, especially for micro-devices and thin-film supercapacitors, volumetric energy density and

power density are more reasonable for evaluation purpose [15].

Page 18: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

10

Figure I - 5: Specific power against specific energy, also called a Ragone plot, for various electrical

energy storage devices. If a supercapacitor is used in an electric vehicle, the specific power shows how

fast it can go, and the specific energy shows how far one can go on a single charge. Times shown are

the time constants of the devices, obtained by dividing the energy density by the power [16].

1.2.3 Pore size effect on EDLCs

Solid materials which contain cavities, channels or interstices porous materials. Figure I – 6a shows

different pore structures that can be achieved. Pores that are isolated from their neighbors (as in region

(a)), are described as closed pores, which are not accessible to the electrolytes. Pores with continuous

channel to the external surface, like (b) (c) (d) (e) and (f), are defined as open pores, which are accessible

to the electrolytes [17]. In addition to the pore structure, pore size of the electrode materials plays an

important role on capacitive behavior. As defined in the IUPAC document [18], micropores have widths

smaller than 2 nm; mesopores have widths between 2 and 50 nm; macropores have widths larger than

Page 19: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

11

50 nm (Figure I – 6b).

Figure I - 6: a) Schematic cross-section of a porous solid [17]; b) Definition of pore size [5].

Although many models have been proposed to explain the EDL behavior in confined micro-pores,

where there is no room for the formation of the Helmholtz layer and diffuse layer, those conventional

fundamental views are no more effective [16]. To address this issue, titanium carbide-derived carbons

(TiC-CDCs) with fine-tuned pore sizes and pore size distribution within a narrow range between 0.6

and 1.1 nm were used for investigating the pore size effect in micro-pore structure. Figure I – 7a shows

that the normalized capacitance (F.g-1 dived by m2.g-1) decreases until a critical value (~ 1 nm) is

reached and then increases. This can be explained by the distortion of the ionic solvation shell, leading

to a closer approach of ion to the carbon surface; according to Equation I – 2, closer distance enhances

the capacitance. In Figure I – 7b, Largeot et al. [19] demonstrated that the maximum capacitance was

achieved when the pore size nearly equal to the bare ion size. These results overturn the traditional

view regarding EDL and point to a charge storage mechanism whereby partial or complete removal of

the solvation shell and increased confinement of ions lead to increased capacitance [16].

Page 20: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

12

Figure I - 7: a) Normalized capacitance vs average pore size for TiC-CDC and activated carbons tested

in 1M (C2N5)4N-BF4 electrolyte [20]. Dots show experimental points, and the simulation of the

capacitance change with pore diameter, confirming experimental results, is shown using solid lines [21].

b) Normalized capacitance change vs the pore size of the CDC samples prepared at different

temperatures in neat EMI-TFSI electrolyte at 60oC; normalized capacitance is obtained by dividing the

specific capacitance by the SSA. HyperChem models of the structure of EMI and TFSI ions show a size

correlation. [19].

Page 21: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

13

1.3 Pseudocapacitance and pseudocapacitive materials

Figure I - 8: Schematic of charge storage via electrochemical double-layer capacitance and

pseudocapacitance [22].

In 1971, Trasatti et al. evidenced a charge storage mechanism occurring through fast faradaic reactions

on the surface of electrode or thin film, with no diffusion limitation [23]. This new type of

electrochemical capacitance was termed pseudocapacitance, where “pseudo” stands for “looks like”.

Figure I – 8 shows a regular electrochemical double layer capacitance storage charge mechanism by ion

adsorption (non-Faradaically), and a pseudocapacitive charge storage through fast faradaic reactions on

the surface of RuO2 film. Although the different charge storage mechanisms are presented, the

electrochemical signatures of both EDLCs and pseudocapacitors are somehow similar. As can be seen

in Figure I – 9a, a cyclic voltammogram (CV) with symmetric nearly rectangular shape is observed of

an activated-carbon based double layer capacitors. According to equation I – 7, for an ideally double

layer capacitor with constant capacitance, the charge/discharge currents are close to constants with a fix

Page 22: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

14

scan rate, which results in a rectangular shape of a typical double layer capacitor.

I = *C I – 7

Where I is the charge/discharge current, is the scan rate, and C is the double layer capacitance.

Figure I – 9b represents the cyclic voltammograms (CVs) of a RuO2 electrode in H2SO4 aqueous

electrolyte. The quasi rectangular cyclic voltammograms indicate a constant equivalent capacitance,

that is an electrochemical signature similar to that of EDLCs. The rectangular shape of the

voltammogram is attributed to the existence of a wide energy distribution for the adsorbed protons in

near surface sites (Frumkin like behavior with non-potential dependent capacitance), which is an

important difference from batteries that typically exhibit reaction sites which are equivalent in terms of

activation energy during bulk phase transformation. Thanks to the redox reactions, ruthenium oxide

electrode exhibit extremely high capacitance with a maximum close to 1000 F g-1 [24].

Figure I - 9: a) Cyclic voltammetry of an activated-carbon-based supercapacitor. Measurement

done at 25 C and at v = 20 mV s-1 in a TEATBF-based electrolyte [25]; b) Electrochemical signature

of a RuO2 electrode in H2SO4 electrolyte after 50 cycles; (note the presence of almost reversible cathodic

and anodic process but absence of sharp reduction/oxidation peaks). Sweep-rate 200 mV s-1 [26].

In addition to ruthenium oxide, other metal oxides together with electronic conducting polymers have

been used as pseudocapacitive materials. Several faradaic mechanisms regarding the pseudocapacitive

Page 23: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

15

behavior have been identified [1, 27]: (a) underpotential deposition, (b) redox pseudocapacitance, (c)

intercalaction pseudocapacitance. Underpotential deposition takes place when metal ions form an

adsorbed monolayer at a different metal surface well above their redox potential, as illustrated in Figure

I – 10a. Redox pseudocapacitance, as shown in Figure I – 10b, occurs when ions are electrochemically

adsorbed onto the surface or near surface of a material with a concomitant faradaic charge-transfer.

Figure I – 10c presents the intercalation pseudocapacitance that occurs when ions intercalate into the

tunnels or layers in a redox-active material accompanied by a faradaic charge-transfer without

crystallographic phase change [27].

Figure I - 10: Different types of reversible redox mechanisms that give rise to pseudocapacitance: (a)

underpotential deposition, (b) redox pseudocapacitance, and (c) intercalation pseudocapacitance [27].

1.4 Hybrid capacitors

To fulfill the requirements of high energy and high power density, hybrid capacitors have been

developed. They combine a capacitive electrode together with a faradaic electrode, such as firstly

introduced by Miller in 1990s [28]. Figure I – 11 shows the different strategies that can be developed

to assemble hybrid devices, where battery anode or cathode materials can be combined with a capacitive

electrode to assemble a hybrid capacitor. In a hybrid device, the faradaic-type electrode is typically

overcapacitive, which result in a capacitance of the device close to that of the EDL electrode according

Page 24: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

16

to the Equation I – 4 (when Cbattery≫ CEDL) that is double of a symmetric supercapacitor. Another

advantage of a hybrid device is the possibility of tuning the maximum cell voltage. Since a battery-type

system can exceed the limit of 1.2 V in aqueous electrolytes thanks to the kinetic overvoltage for proton

reduction or water oxidation, using a negative carbon-based capacitive electrode and a positive PbO2 or

Ni(OH)2 faradic electrode can lead to an operating cell voltage of 2.25 and 1.65 V respectively [29, 30].

A hybrid cell with a positive MnO2 pseudocapacitive electrode and EDLC-type negative electrode

shows a 2 V voltage window in aqueous electrolytes thanks to the apparent water decomposition

overvoltage on MnO2 and high surface area carbon [16].

Figure I - 11: Schematic representations of different possible hybridization approaches between

supercapacitor and battery electrodes and materials [31].

However, the cyclability of the aqueous based devices at high voltage is reduced (corrosion) and this is

why the aqueous based hybrid devices still suffer from the limited voltage window. As a result, Li+

organic based hybrid devices have been developed. When the battery-type electrode is a Li-intercalation

electrode, such systems are referred to as lithium-ion capacitors (LIC). The LIC cell is one of the most

advanced supercapacitors and can be described as a Li-ion based LIB–EDLC hybrid. Figure I – 12

represents the voltage profiles of a conventional EDLC and a lithium ion capacitor [32]. An EDLC cell

Page 25: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

17

has a symmetric configuration and utilizes activated carbon for both their positive and negative

electrodes. Since the graphite negative electrode undergoes Li intercalation reaction at a potential close

to 0.1 V vs. Li/Li+, the LIC has a high working voltage of more than 4.0 V and hence the maximum

energy density can be enhanced more than 3 fold. For operating LIC cells, the negative graphite

electrode must be pre-doped (pre-lithiated) in order to provide additional Li+ ion needed for the

Li+ intercalation–deintercalation process during charging–discharging of the cell. Another advantage of

hybrid capacitor upon supercapacitor is that they deliver 100% of their total energy between V0 and

V0/2 while only 75% for SC.

Figure I - 12: Typical voltage profiles for an EDLC cell and an LIC cell. [32].

2 Electrode materials

2.1 Carbon materials

With advantages of abundance, lower cost, easy processing, high specific surface area, high electronic

conductivity, high chemical stability and wide operating temperature range, carbon is the materials of

choice for commercial ECs. Table I – 2 summarized the examples of carbon materials used in ECs, that

Page 26: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

18

include Onion-like Carbon (OLC), Carbon Nanotubes, Graphene, Activated Carbons, and Carbide-

Derived Carbons.

Table I - 2: Different Carbon Structures Used in EDLCs with Onion-like Carbon (OLC), Carbon

Nanotubes, Graphene, Activated Carbons, and Carbide-Derived Carbons[15].

Material Carbon

onions

Carbon

nanotubes

Graphene Activated

carbon

Carbide

derived carbon

Templated

carbon

Dimensionality 0-D 1-D 2-D 3-D 3-D 3-D

Conductivity High High High Low Moderate Low

Volumetric

capacitance

Low Low Moderate High High Low

Cost High High Moderate Low Moderate High

Structure

2.1.1 Carbon onions

Carbon onions also called onion-like carbon (OLC) or multiwalled fullerenes, consist in concentric

spherical graphitic sheets, which can be produced by arc-discharge [33] or annealing diamond

nanoparticles at temperatures above 1200 oC under inert atmosphere [34-36]. The typical features of

carbon onions are characterized in Figure I – 13. A specific surface area between 400 and 600 m2/g is

often achieved with carbon onions without accessible internal porosity. Along with high electrical

conductivity (up to 4 S cm-1), the fully accessible surface area of carbon onions made them very

attractive for supercapacitors; however, the low specific surface area limits the energy density. As a

result, capacitance does not exceed 40 F g-1 were achieved in 1 M H2SO4 [37]. Besides, chemical and

Page 27: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

19

physical activation have been used to improve the capacitance by increasing the specific surface area,

but there was not real important improvement [38]. Despite the relatively moderate capacitance

(comparing to activated carbon), extremely high power performance has been achieved with carbon

onions. A discharge rate up to 200 V s-1 was reported, which is three orders of magnitude higher than

conventional supercapacitors [39].

Figure I - 13: Typical features of carbon onions [40].

2.1.2 Carbon nanotube

Carbon nanotubes (CNTs) are carbon allotropes with one dimensional cylindrical structure that includes

single-walled CNTs and multiwalled CNTs, as shown in Figure I – 14. Using hydrocarbon-based

gaseous precursors, CNTs are usually prepared by catalyst-assisted chemical vapor deposition (CVD

techniques) [41]. Combining both fully accessible external surface area and very high electrical

conductivity, CNTs are assumed to be potentially promising for application of supercapacitors.

However, low capacitance from 20 to 80 F g-1 were only achieved with purified CNT powders [42, 43],

which can be attributed to the poorly developed microporous volume of CNTs since the carbon tube is

not accessible to ions [44]. To increase the capacitance, activation of CNTs have been carried out, but

the capacitance achieved (90 F g-1 and 8.7 µF cm-2 in alkaline media) [45] is still lower than that of

activated carbons. Asides, surface decoration or functionalization with pseudocapacitive contribution

can significantly enhance the capacitance in protic media [42]. A specific capacitance of 265 F g-1 can

be obtained when CNTs associate with conducting polymers [46, 47]. In these cases, the materials suffer

Page 28: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

20

from limited cycle life, originating from the redox contribution of the grafted surface groups.

Figure I - 14: Schematic representation of single-walled carbon nanotubes (SWCNT) and multi-walled

carbon nanotubes (MWCNT) [48, 49].

Despite the low capacitance, CNTs are characterized with high power capabilities up to 30 kW kg-1 [50].

The commercial applications of CNTs are limited by the high cost.

2.1.3 Activated carbon

Activated carbons (ACs) are a form of disordered carbon with small pores (from few tenths of

nanometers to few nanometers) and large specific surface area (SSA above 1000 m2 g-1), which are

generally produced from physical (thermal) and/or chemical activation of various types of carbonaceous

materials precursors [51]. Thanks to their relatively good electrical properties (1 S/cm) and high specific

surface area up to 2000 m2/g, ACs have been widely used as electrode materials for supercapacitors.

Depending on pore size distribution and surface chemistry, capacitance ranging from 100 F -1 to 300 F

g-1 can be achieved in aqueous electrolytes, which reach up to 150 F g-1 in organic electrolytes [51].

Besides, AC based supercapacitors show long cycle life span (> 106 cycles). Therefore, AC has been

commonly used as electrode materials for supercapacitor applications.

2.1.4 Carbide derived carbons

Carbide-derived carbons (CDCs), also known as tunable nanoporous carbon, is the common term for

carbon materials derived from carbide precursors [52]. For EDLC application, CDC is usually produced

Page 29: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

21

by chlorination of the carbides. Considering for instance TiC carbide, titanium is etched by chlorine

following the reaction below:

TiC + 2Cl2 → TiCl4 + C I - 7

Besides TiC [53, 54], many other precursors such as SiC [54, 55], B4C [56, 57], Al4C3 [54, 58], Mo2C

[54, 59], or VC [60] have been used to prepare supercapacitor electrode materials. Capacitance greatly

depends on the pore size distribution and carbon structure of CDC prepared from various carbides [61].

Recently, an impressive high capacitance of 410 F cm-3 (200 mF cm-2) in aqueous electrolyte and 170

F cm-3 (85 uF cm-2) in organic electrolyte were recently reported by Huang et al. [62] when using CDC

thin films for micro-supercapacitors. Although the high costs limit the scalable production, CDCs are

served well as model materials for fundamental research.

2.1.5 Templated carbons

As most carbon materials are characterized with a lot of defects, curvatures, edges and/or heteroatoms,

template carbonization has become one of the most powerful methods for achieving precise control of

structure, like pore size control, which is with great significance for electrode materials of EDLC [63].

As shown in Figure I – 14, the organic compound as a carbon precursor (red parts in the Figure I – 15)

is carbonized in designed nano opening structure. By manipulating organic compound structure, the

structures of the carbon materials at the nanometer level are controllable. Yushin and co-workers

prepared ordered mesoporous CDC by using mesoporous silica (SBA-15) as template [64]. A high

surface area of 2250 m2 g-1 was achieved and high gravimetric and volumetric capacitances of 170 F g-

1 and 89 F cm-3 was obtained in nonaqueous electrolytes. By using an acrylonitrile precursor, nitrogen-

doped ZTC with a moderate SSA of 1680 m2 g-1 can be achieved and demonstrated an initial specific

capacitance of 340 F g-1 in 1 M H2SO4 [65]. In a TEATFB-based electrolyte, high capacitance up to

190 F g-1 (83 F cm-3) can be obtained with ZTC produced by acetylene CVD in zeolites [66, 67].

These methods are interesting for preparing carbons with various pore size and texture. Such materials

are interesting as well for conducting basic studies or ions transfer and adsorption in nanopores. The

commercial development is limited by the cost of production.

Page 30: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

22

Figure I - 15: The concept of the template carbonization method using template materials with different

nanospace dimensions. The red and black parts correspond to an organic compound (as a carbon

precursor) and carbon, respectively [68].

2.2 Metal oxides

Transition metal oxides are regarded as promising materials to prepare high energy supercapacitors.

Ruthenium oxide (RuO2) have been the most studied and typical pseudocapacitive electrode material,

which exhibits high capacitance, good electrical conductivity, excellent electrochemical reversibility,

high rate capability. However, the high cost and toxicity of ruthenium oxide limit its use in large size

ECs [69]. Composite materials of ruthenium oxide with carbon materials or polymers have been

developed to decrease the cost [70, 71]. Additionally, other metal oxides (such as manganese dioxide

(MnO2) or cobalt oxide (Co3O4)) have been identified as pseudocapacitive materials. In particular,

manganese dioxide (MnO2) appear to be an alternative to RuO2 thanks to its relatively low cost, low

toxicity and environmental safety together with their exceptional high capacitance up to 1200 F g-1 [72-

74]. Figure I – 16 shows a cyclic voltammogram of a single MnO2 electrode in mild aqueous electrolyte

(0.1 M K2SO4). The rectangular CV indicates a pseudocapacitive behavior, which is ascribed to the

Page 31: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

23

successive multiple surface redox reactions according to Equation I – 8. However, there is limited

interest in MnO2 electrodes for symmetric devices, because there are no oxidation states available at

less than 0 V. MnO2 is thus suitable for a pseudo-capacitive positive electrode in hybrid systems [16].

Besides, a high specific capacitance can be only acquired for thin film and MnO2-based system because

of the poor conductivity of such compounds.

MnO2 + xC+ + yH+ + (x+y)e– ↔ MnOOCxHy I – 8

Figure I - 16: cyclic voltammetry. This schematic of cyclic voltammetry for a MnO2-electrode cell in

mild aqueous electrolyte (0.1 M K2SO4) shows the successive multiple surface redox reactions leading

to a pseudo-capacitive charge storage mechanism. The red (upper) part is related to the oxidation from

Mn(+iii) to Mn(+iv) and the blue (lower) part refers to the reduction from Mn(+iv) to Mn(+iii) [16].

2.3 Conducting polymers

Electrically conducting polymers (ECPs) are organic polymers that conduct electricity through a

Page 32: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

24

conjugated bond system along the polymer chain [75]. ECPs are pseudo-capacitive materials, which

means that the bulk of the material undergoes a fast redox reaction to provide the capacitive response

and they exhibit superior specific energies to the carbon-based supercapacitors (double-layer capacitors)

[76]. ECPs that including polyaniline, polypyrrole and derivatives of polythiophene, have been

extensively studied as active electrode materials for supercapacitors due to their good electrical

conductivity, high pseudocapacitance and low cost [77, 78]. However, the main drawback of ECPs lies

in their poor stability during cycling. To improve the stability and conductivity, composite materials

composed of CPs and carbon materials have been developed. For example, a symmetric supercapacitor

with electrodes made of 75 wt% PEDOT and 25 wt% CNT degraded by only 5 F g-1 (from 85 F g-1) in

3000 cycles [79]; however, the gravimetric capacitance of composite is decreased and today ECPs are

not any more application used for ECs.

3 Two dimensional materials for ECs

In 2004, graphene, the first example of 2D carbon, was reported by Novoselov and Geim [80, 81]. The

unique properties originate from its 2D structure gain great attentions. Afterwards, new 2D materials

like hexagonal boron nitride (hBN) [82], transition metal chacolgenides (TMCs) [83], and other

elemental 2D systems such as germanene [84], silicone [84] and phosphorene [85] and oxides were

discovered [86]. These materials display a wide range of electronic, optical, mechanical, and

electrochemical properties, and have been applied in various applications. Their high accessible surface

area of 2D materials explain why they have been focused a lot for energy storage application.

3.1 Graphene

Graphene was isolated and identified by A Geim and K Novoselov at Manchester University in 2004

[80, 81]. This was the first two-dimensional crystalline material which became representative of a whole

class of 2D materials including, for example, single layers of Boron-Nitride (BN) [82] and

Molybdenum-disulphide (MoS2), produced after 2004 [87]. Graphene is a two-dimensional (2D) sheet

composed of sp2-bonded single-layer carbon atom packed in a hexagonal (honeycomb) lattice, with a

carbon-carbon distance of 0.142 nm [88], as shown in Figure I – 17. The flat, perfect and hexagonal

network of carbon atoms confers to graphene unique physical properties. The six atoms located at the

Page 33: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

25

apexes of the hexagons form two sublattices, A and B. An A atom cannot occupy the position of a B

atom without breaking the lattice symmetry [89]. As a result, graphene has high surface area (2630

m2/g), flexibility, chemical stability, superior electric and thermal conductivity, which render it

promising for both fundamental studies and future applications [90].

Figure I - 17: Construction of the graphene lattice. The hexagonal unit cell is made up of sp2hybridized

carbon atoms (in top view) to generate a graphitic, honeycomb network. One may observe that the six

carbon atoms make up two families — the purple (A) and red (B) positions — which can replace each

other by simple translations, while no red atom can replace a purple atom only by a translation operation

[89].

3.1.1 Graphene synthesis

a) Mechanical cleavage and exfoliation

Micromechanical cleavage or, more colloquially, the scotch tape method was first reported in 2004 [91],

which is straightforward and can be performed without specialized equipment [92]. The graphite flakes

are peeled off from the surface of a sample of graphite by a piece of adhesive tape. Single or few layers

of graphene then can be obtained by repeating peeling apart of the graphite flakes using a clean tape.

Figure I – 18 shows the characterizations of a scotch tape obtained graphene. With this method, high

Page 34: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

26

quality graphene can be achieved, however scotch tape method is too inefficient to be useful in mass-

producing graphene for practical applications [91].

Figure I - 18: Graphene films. (A) Photograph (in normal white light) of a relatively large multilayer

graphene flake with thickness around 3 nm on top of an oxidized Si wafer. (B) Atomic force microscope

(AFM) image of this flake near its edge. Colors: dark brown, SiO2 surface; orange, 3 nm height above

the SiO2 surface. (C) AFM image of single-layer graphene. Colors: dark brown, SiO2 surface; brown-

red (central area), 0.8 nm height; yellow-brown (bottom left), 1.2 nm; orange (top left), 2.5 nm. Note

the folded part of the film near the bottom, which exhibits a differential height of 0.4 nm. (D) Scanning

electron microscope image of one of our experimental devices prepared from FLG. (E) Schematic view

of the device in (D) [91].

b) Liquid-phase mechanical exfoliation

Liquid-phase mechanical exfoliation method was utilized to prepare exfoliated carbon nanotubes, as the

tubes tend to bundle together and aggregate. This method was further transferred to exfoliate individual

sheets of graphene from bulk graphite. Specifically, graphite flakes are dispersed in specific solvents,

such as N-methyl-pyrrolidone, whose surface energy is so well matched to that of graphene thus can

decrease the energy (enthalpy of mixing) to exfoliate graphene according to Equation I – 9 as follow

Page 35: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

27

[93]:

∆𝐻𝑚𝑖𝑥

𝑉𝑚𝑖𝑥 =

2

𝑇𝑓𝑙𝑎𝑘𝑒 (𝛿𝐺 − 𝛿𝑠𝑜𝑙)2 ∅ I – 9

Where ∆𝐻𝑚𝑖𝑥 is the mixing enthalpy, 𝑉𝑚𝑖𝑥 is the volume, 𝑇𝑓𝑙𝑎𝑘𝑒 is the thickness of graphene, 𝛿𝑖 is the

square root of the surface energy of phase i, ∅ is the graphene volume fraction.

Followed by ultra-sonication treatment, few layers or single layer graphene can be prepared [93].

Additionally, in 2009, Coleman’s group reported a new method using surfactant-water solutions which

is much cheaper to exfoliate graphite [94]. With liquid-phase mechanical exfoliation, high quality large-

area single crystalline graphene can be achieved, however, the low concentration of few-layer graphene

that one can achieve is less than 0.1 mg/mL [92].

c) Chemical oxidation and exfoliation

Chemical exfoliation of graphite is the most developed approach to produce graphene. Principally,

graphite is oxidized by strong oxidizing agents to yield graphite oxide with larger interlayer spacing

that lowers Van der Waals' force, which enables the exfoliation with ultra-sonication treatment as shown

in Figure I – 19. The obtained graphene oxide (GO) then is reduced by reductants to produce reduced

graphene oxide (rGO).

Figure I - 19: preparation of GO [95].

The synthesis of GO was first demonstrated in 1859 by Brodie who add a portion of potassium chlorate

to a slurry of graphite in fuming nitric acid [96]. Later in 1898, Staudenmaier used concentrated sulfuric

acid as well as fuming nitric acid and added the chlorate in multiple aliquots over the course of the

reaction [97]. Then in 1958, Hummers reported the most commonly used method today. The graphite

Page 36: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

28

is treated with KMnO4 and NaNO3 in concentrated H2SO4 [98]. Many improved Hummers methods

were also developed recently, J. M. Tour’s group used increased amount of KMnO4 and acid mixture

of H2SO4/H3PO4 to improve the efficiency of the oxidation process [99]. Tour’s group further

investigated the mechanism of graphene oxide formation. As presents in Figure I – 20, graphite is first

intercalated by sulphuric acid and potassium permanganate then oxidized into graphite oxide, after ultra-

sonication, graphene oxide colloidal suspension can be obtained [100]. The oxidation method is

currently the most cost effective and scalable way to produce graphene. Nevertheless, too much defects

cause during oxidation and reduction lead to the low quality of rGO.

Figure I - 20: Schematics of conversion of bulk graphite into GO with corresponding micrographic

images or sample appearances at each phase. The three steps signify formation of the two intermediate

products (stage-1 GIC and PGO) and the final GO product. The solid black lines represent graphene

layers; dotted black lines represent single layers of GO; wide blue lines represent

Page 37: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

29

H2SO4/HSO4– intercalant; wide purple lines represent a layer of the mixture of H2SO4/HSO4

– intercalant

with the reduced form of oxidizing agent [100].

d) Exfoliation from graphite intercalation compounds

Alkali metals are most important species for graphite intercalation. The alkali metals like lithium,

potassium and cesium atoms intercalate into the graphite interlayer space and increase the interlayer

spacing thereby decrease the Van der Waals forces. Besides, the intercalated alkali metal atoms will

donate electrons to graphene sheets that result in repulsive force between graphite layers. Therefore,

graphite with intercalated species can be easily exfoliated [101, 102]. Preparation of graphene from

graphite intercalation compounds is somewhat less damaging to the electronic structure of the graphene,

but all graphite derived materials suffer from: limited spatial extent of the crystal [92]. The maximum

length scale the single graphene crystal is always limited by the original size of graphite, which is the

common shortcoming for all these exfoliation methods.

e) Epitaxial growth graphene

Epitaxial growth of graphene from a hexagonal substrate is an attractive alternative to mechanical

exfoliation, and considerable progress has been achieved in this direction, using both silicon carbide

and close-packed metals as the substrate [103]. In 2006, epitaxial growth of graphene from silicon

carbide was reported [104]. A 6H-SiC (0001) substrate was treated by annealing under ultra-high

vacuum so that carbon atoms segregate to the surface to form single or few layers graphene. Besides,

epitaxial growth graphene on ruthenium [105] was reported with large graphene domains with uniform

thickness. Though epitaxial growth provides high quality graphene with large size single crystal

graphene, the extremely synthesis condition and limited accessibility due to high-end equipment , make

it difficult to scale up for applications[106].

f) CVD growth Graphene

Chemical vapor deposition (CVD) is a chemical process used to produce high quality, high-performance,

solid materials. The process is often used in the semiconductor industry to produce thin films. In contrast

to the epitaxial growth methods, where carbon is already present in the substrate, in chemical vapor

deposition (CVD), carbon is supplied in gas form and a metal is used as both catalyst and substrate to

Page 38: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

30

grow the graphene layers. CVD graphene growth is usually performed from copper and nickel surfaces

via a thermal method. Plasma-enhanced CVD methods have also been reported, but with lower quality

graphene [107, 108]. Typically, the substrate is heated to around 1000 oC under a continuous reducing

flow of hydrogen-argon mixture. Methane is used as the carbon source with a small amount of hydrogen

to maintain a reducing environment under a temperature range between 800 to 1100 oC. The grown

graphene film can be transferred to arbitrary substrates without further mechanical and chemical

treatments which will preserve the high crystalline quality of the graphene [109]. Obviously, CVD

method produces high quality graphene compatible with electronics applications, which is comparable

to epitaxial growth graphene. Large single crystal graphene that can be achieved with CVD method also

make CVD growth graphene currently one of the best options for electronics and optical applications.

However, the limited growing rate has been the main drawback that keeps CVD based graphene from

application require a significant quantity of material [110].

3.1.2 Graphene for electrochemical energy storage

Since its discovery in 2004, graphene has become one of the hottest topics in the field of materials

science. Among many other areas of materials science, the ‘graphene fever’ has also interested the world

of electrochemical energy storage devices [111]. Due to its high theoretical specific surface area (up to

2630 m2g-1) combined with low resistivity (10-6 Ω.cm) as well as high mechanical strength (an intrinsic

tensile strength of 130 GPa and a Young's modulus (stiffness) of 1 TPa) and chemical stability, graphene

becomes a promising active material for batteries [112-115] and supercapacitors [2, 116-121]. However,

applications are still limited today, the main reason being the low electrode density and restacking issue,

as well as irreversible capacity.

a) Lithium-ion batteries

Similar to graphite, graphene can be used as an anode for hosting twice as many Li+ ions as conventional

graphite [122, 123] and provides a high specific capacity of 744 mAh g-1 (372 mAh g-1 for graphite)

during the 1st lithiation [122]. Single layer graphene can store Li+ ions both on its internal surfaces and

in the empty nanopores through an adsorption mechanism, while graphite can only store intercalated

Li+ ions between stacked layers [124]. Depending on different method of graphene productions, amount

of storage lithium changes. Reduced graphene has been extensively studied as active materials for

Page 39: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

31

lithium ions storage [32, 125, 126]. It was reported with a high capacity value more than 2,000 mAh g-

1 during the first Li+ insertion, which beyond the theoretical capacity of single-layer graphene. However,

such a high capacity is not fully reversible and this is a major issue limiting the use of graphene in

lithium ion batteries [125]. Additionally to the very high initial irreversible capacity due to high specific

surface area, the Li+ intercalation process is achieved within a large potential range (1-3V versus Li/Li+)

which is higher than that of graphite anodes (0-0.4V versus Li/Li+) lash the large voltage hysteresis

between charge and discharge (Figure I – 21), resulting in a poor energy density and efficiency.

To overcome the energy storage limitations and poor cycling behavior of graphene electrodes,

graphene-based composite materials have been developed, by grafting metal oxides onto graphene

surface. Rapid capacity decay due to poor conductivity, structure degradation, volume expansion and

inter-particle agglomeration encountered with pure metal oxide anodes could be solved when using

graphene as a support [127]. However, similarly to bare graphene electrode, graphene-based

composites electrode still suffer from a large irreversible charge consumption of 30% to 50% during

the first charge/discharge cycle [128, 129] and there is no real interest in moving to the complex

composite materials.

Figure I - 21: Typical voltage profiles of graphite and graphene (RGO) during constant current Li+

insertion/de‑insertion. Reproduce from ref [111].

Page 40: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

32

b) Supercapacitors

Graphene was first investigated as supercapacitor electrode material by Ruoff and co-workers in 2008

[117]. Chemically modified graphene was used and exhibited specific capacitance of 135 F g-1 and 99

F g-1 in aqueous and organic electrolytes, respectively. Since then, intensive research efforts have been

made to characterize graphene and graphene-based materials in supercapacitors applications [116, 130-

132]. Specific capacitance beyond 200 F g-1 has been achieved in both aqueous and organic electrolytes

[131, 133-136], which is similar or even better to many carbon materials like porous activated carbon

[137]. However, the low density of graphene limits the volumetric capacitance (F cm-3) which is a

concern in most of applications, including micro devices [15]. Besides, restacking of graphene film still

remains an issue limits the capacitance [138, 139]. Accordingly, efforts have been devoted to synthesize

more compact but non-restacked graphene films. In 2013, D. Li’s group [134] proposed a method to

develop dense graphene films by capillary compression of graphene gel film in the presence of a

nonvolatile liquid electrolyte, where the presence of electrolyte between the layers prevents the

restacking of graphene layers. As shown in Figure I – 22a, a flexible electrolyte-containing graphene

film can be prepared by vacuum filtration and electrolyte immersion. The SEM images of the cross-

sectional of the film (Figure I – 22b and c) presents a layer-by-layer structure, resulting in a high mass

density (with a maximum density more than 1 g/cm3 as shown in Figure I – 22d). Meanwhile, the

electrolyte-containing graphene film renders the surface area of graphene layers fully accessible. A high

gravimetric capacitance of 209 F g-1 as well as a high volumetric capacitance of 261 F cm-3 (at current

density of 0.1 A/g) were achieved in organic electrolyte. In addition, Ruoff’s group [2] have developed

a porous graphene with high SSA of 3100 m2 g-1 by chemical activation as shown in Figure I – 23a.

Microwave exfoliated graphite oxide (MEGO) powders were obtained by irradiating GO in a

microwave oven. The as-made MEGO powder was then placed in KOH solution, followed by filtration

and drying, to form a series of MEGO/KOH mixtures for chemical activation. This method greatly

enhance the specific surface area and retain high electrical conductivity (~500 S/m). Rectangular CVs

were presented in Figure I – 23b even at high scan rate of 500 mV s-1, indicating a capacitive behavior.

A capacitance up to 166 F g-1 was achieved in BMIM BF4/AN electrolyte with a large voltage window

of 3.5 V. But in this case, differently from graphene films, the low density of the electrode is an issue.

Page 41: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

33

Figure I - 22: Characterization of liquid electrolyte-mediated CCG (EM-CCG) films. (A) A photograph

showing the flexibility of the film. (B and C) SEM images of cross sections of the obtained EM-CCG

films containing (B) 78.9 volume percent (vol. %) and (C) 27.2vol. % of H2SO4, respectively,

corresponding to r = 0.42 g/cm3 and r =1.33 g/cm3. (D) The relation between the volumetric ratio of

incorporated electrolyte and the packing density as well as the estimated intersheet spacing [134].

Page 42: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

34

Figure I - 23: a) Schematic showing the microwave exfoliation/reduction of GO and the following

chemical activation of MEGO with KOH that creates pores while retaining high electrical conductivity.

b) Supercapacitor performance of a-MEGO (SSA ~ 2400 m2/g) in the BMIM BF4/AN electrolyte. (A)

CV curves for different scan rates. Rectangular shapes indicate the capacitive behavior. Reproduced

from [2].

3.2 MXenes

MXenes are a novel family of two-dimensional (2D) early transition metal carbides and carbonitrides

which are produced by selective etching of the A element from MAX phases. The MAX phases are a

group of layered ternary compounds with the general formula Mn+1AXn (M: early transition metal; A:

group A element; X: C and/or N; n=1–3), which combines some properties of metals, such as high

electrical and thermal conductivity, low hardness, thermal shock resistance and damage tolerance, with

those of ceramics, such as high elastic moduli, high temperature strength, and oxidation and corrosion

Page 43: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

35

resistance [140]. MAX phases are all layered hexagonal structures with a space group of P63/mmc. To

produced MXenes, the A element is selectively etched from MAX phases by using hydrofluoric acid

(HF) or fluoride salts (LiF) and inorganic acids, such as hydrochloric acid (HCl). Considering the large

group (more than 70) of MAX phases, a rich chemistry of MXenes can be expected. To date, the

following MXenes have been reported: Ti3C2Tx, Ti2CTx, Nb2CTx, V2CTx, (Ti0.5Nb0.5)2CTx,

(V0.5Cr0.5)3C2Tx, Ti3CNTx, Ta4C3Tx, Nb4C3Tx, and Mo2Ti2C3Tx. Similarly to their parent MAX phases,

MXenes are usually referred to as Mn+1XnTx, where M is an early transition metal, X is carbon and/or

nitrogen, T represents surface terminations (=O, -OH, and/or -F), n = 1, 2, or 3, and x is the number of

terminating groups per formula unit [141-144]. Thanks to their unique morphologies, good electronic

conductivities, MXenes have shown great potential as electrode materials for both Li-ion batteries [145-

150] and supercapacitors [141, 151-153]. However, in Lithium ion batteries applications, the large

potential window for Li – intercalation in MXene based electrodes is a serious concern.

3.2.1 Synthesis of MXene

In 2011, the first MXene family member, Ti3C2, was reported by Yury Gogotsi and et al. [154]. As

shown in Figure I – 24, HF solution was used for etching Al elements from Ti3AlC2 MAX phase, and

Ti3C2 MXene was obtained after sonication. The simplified reactions can be summarized as follow:

Ti3AlC2 + 3HF = AlF3 + 3/2H2 + Ti3C2 (a)

Ti3C2 + 2H2O = Ti3C2 (OH)2 + H2 (b)

Ti3C2 + 2HF = Ti3C2F2 + H2 (c)

Reaction (a) is essential and is followed by Reaction (b) and/or (c). During the reaction, surface groups

(=O –F or -OH) are generated. Hence, a T was added to the formula of Ti3C2 that is Ti3C2Tx.

Page 44: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

36

Figure I - 24: Schematic of the exfoliation process for Ti3AlC2. a) Ti3AlC2 structure. b) Al atoms

replaced by OH after reaction with HF. c) Breakage of the hydrogen bonds and separation of nanosheets

after sonication in methanol [154].

To avoid using hazard HF solutions, an alternative method using dissolving LiF in 6M HCl as etching

agent was reported in 2014 [141]. This milder method resulted in flakes with larger lateral dimensions,

which did not contain the nanometer-size defects as frequently observed in HF-etched samples [155].

3.2.2 MXenes for energy storage

a) Lithium-ion batteries (LIBs)

Early DFT calculations predicted the formation of Ti3C2Li2, I-Ti3C2F2Li and I-Ti3C2(OH)2Li0.5 with

theoretical capacities of 320, 130 and 67 mAh g-1, respectively [154, 156]. Experimentally, several

MXenes including Ti2CTx [145], Ti3C2Tx [157], V2CTx and Nb2CTx [146] were investigated as anode

electrode materials for LIBs. Among all these MXene materials, V2CTx showed the highest capacity of

280 mAg-1 at 1C cycling rate. Besides, delaminated Ti3C2Tx was reported with better performance

comparing with its non-delaminated counter. As shown in Figure I – 25a, additive-free delaminated

Ti3C2Tx yielded a reversible capacity of 410 mAh g-1 at 1C that represents three Li per Ti3C2(OH)2,

which is 4 times higher than that of the non-delaminated Ti3C2Tx (Figure 25b), and high rate

Page 45: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

37

performance was also achieved [157]. Despite outstanding power performance of MXenes in LIBs

applications, the large irreversibility at the fist cycle is a real issue in all tested MXenes so far. Insight

studies have to be carried out to unveil the cause of irreversibility. Additionally, the large potential range

in which Li+ ion are intercalated is also an important problem.

Figure I - 25: a) Galvanostatic charge/discharge curves at a 1C rate for Ti3C2(OH)2 in 1 M LiPF6 solution

in a 1:1 by weight mixture of ethylene carbonate and diethyl carbonate. The “y” value shown on top x-

axis was calculated assuming a MXene chemistry of Ti3C2(OH)2. b) Comparison of the performance of

multilayer Ti3C2Tx powder film electrode (exfoliated MXene) and Ti3C2Tx paper electrode prepared

from delaminated few-layer MXene as anode materials in Li-ion batteries. Inset shows cross-sectional

SEM image of an additive-free MXene paper on a porous anodic alumina membrane [157].

c) Supercapacitors

As electrode materials for supercapacitors, MXenes have demonstrated great performance in aqueous

electrolytes. More than 330 F cm-3 with no degradation after 10,000 cycles was achieved with Ti3C2Tx

paper (prepared by vacuum filtration) tested in KOH electrolyte at 1 A g-1, which is higher than the best

carbon-based EDLCs [151]. The delaminated Ti3C2Tx achieved by DMSO intercalation was reported

Page 46: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

38

by Dall’ Agnese et al. which displayed a high capacitance of 415 F cm-3 at 5 A g-1 in H2SO4 electrolyte

[158]. In 2014, Ghidiu et al. reported a Ti3C2Tx clay that exhibited a high capacitance up to 900 F cm-3

and 245 F g-1 with no degradation after 10000 cycles [141] as shown in Figure I – 26. However, a

narrow potential window of 0.55 V results in a limited energy density which is proportional to the square

of potential. Dall’ Agnese et al reported the utilization of Ti3C2 MXene in 1M EMITFSI in acetonitrile

electrolyte. A capacitance of 80 F g-1 and 245 F cm-3 were obtained at 2 mV s-1 within 1.8V potential

range (from -0.8 to 1V vs. Ag) [159]. Though MXenes have revealed promising potential as electrode

materials for ECs, more efforts have to dedicate to expand the potential window in aqueous electrolytes

and increase the performance in organic electrolytes or further improve in ionic liquid electrolytes.

Figure I - 26: Electrochemical performances of rolled MXene films. (a) Cyclic voltammetry profiles at

different scan rates. (b) Comparison of rate performances with HF-produced MXene. (c) Capacitance

retention test. Inset shows galvanostatic cycling data collected at 10 A/g. Reproduced from Ref. [141].

4 Electrolytes

Various kinds of electrolytes can be used in supercapacitors such as aqueous, organic, or liquid salts

(also known as ionic liquids). The electrochemical stability window and the ionic conductivity are two

main criteria for selecting an electrolyte. The first is vital to maximize the specific energy density, while

the second is important to enhance the power performance [160]. To date, none of the electrolyte

developed meets both requirements at the same time. For instance, aqueous electrolytes provide high

conductivity and capacitance, however, their working voltage window is limited by the narrow

decomposition voltage [161]. Organic and ILs can provide higher working voltage range, but with

Page 47: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

39

drawbacks of low ionic conductivity, which will decrease to the power values.

4.1 Aqueous electrolytes

H2SO4, KOH and Na2SO4 are most common aqueous electrolytes developed for supercapacitors.

Aqueous electrolytes offer high ionic conductivity (for example, about 0.8 S cm-1 for 1 M H2SO4 at 25

oC), which is at least one order higher than that of organic or IL electrolytes [162]. Thus, higher power

performance can be achieved in aqueous based ECs. As previously mentioned, narrow electrochemical

potential window is the main disadvantage. For instance, hydrogen evolution occurs around 0 V vs.

SHE at negative electrode, and oxygen evolution around 1.23 V vs. SHE at the positive electrode,

leading to a thermodynamic cell voltage about 1.23 V for ECs [163]. A high operating voltage of 1.6 V

in aqueous H2SO4 was demonstrated by Khomenko et al. [164] by using different optimized carbons as

positive and negative electrodes and/or by balancing the mass of electrodes. Higher voltage up to 2.0 V

can be achieved with symmetrical AC/AC capacitors by taking advantage of lower potential for H+

reduction in alkali sulfates as electrolyte [165, 166]. Furthermore, in neutral electrolytes, highest

operating voltage can reach 2.2 V [166]. Besides, aqueous electrolytes are also limited to the operating

temperature between water freezing point and boiling point. However, the cycling stability is largely

affected also the voltage window since water electrolysis, although slow, is still presents.

4.2 Organic electrolytes

Organic electrolytes consist of conductive salts (e.g. tetraethylammonium tetrafluoroborate (TEABF4))

dissolved in an organic solvent such as ACN or PC, which are currently most commercial used

electrolytes owing to their high operation potential window in a typical range of 2.5 to 2.8 V together

with conductivity of about 50 mS cm-1 for ACN-based electrolyte[167]. Such increased operation

voltage can achieve much higher energy and power densities for the device. Besides, low cost of organic

electrolytes (comparing to ionic liquid electrolytes) is another main advantage for their

commercialization. However, because of the larger solvated ion sizes and lower dielectric constants (as

compare to aqueous electrolytes), lower EDL capacitance values can be expected in organic electrolytes.

The electrochemical potential window of organic electrolytes are mainly determined by the nature of

solvent, conducting salts [168] and impurities, especially the water amount [169]. In addition, lower

conductivity (PC) and safety concerns related to the flammability, volatility and toxicity (acetonitrile)

Page 48: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

40

[161] are also main issues of organic electrolytes.

4.3 Room temperature ionic liquid electrolytes (RTILs)

Ionic liquids (ILs) are salts (solvent-free) composed solely of ions with melting point below 100 oC

[170]. Generally, RTILs are quaternary ammonium salts, such as tetralkylammonium [R4N]+ or based

on cyclic amines, both aromatic (pyridinium, imidazolium) and saturated (piperidinium, pyrrolidinium)

[162]. Most used cations in RTILs for ECs are imidazolium, pyrrolidinium, ammonium, sulfonium,

phosphonium, and so on. Common anions of RTILs for ECs are tetrafluoroborate (BF4-),

hexafluorophosphate (PF6-), bis(trifluoromethanesulfonyl)imide (TFSI-), bis(fluorosulfonyl)imide

(FSI-), and dicyanamide (DCA-). Owing to their high thermal, chemical and electrochemical stability,

negligible volatility, and non-flammability (depending on the combination of cations and anions),

RTILs have attracted great attentions as electrolytes for ECs and batteries. Specifically, the

electrochemical potential window (EPW) of RTILs can be beyond 4.5 V in some cases, which is much

higher than that of organic electrolytes (below 2.7 V) and aqueous electrolytes (typically below 1.23 V).

Enhanced stability of 4.0 to 5.7 V can be achieved from RTILs based on tetraalkylammonium

cations[162].

Despite their high potential window, RTILs suffer from low ion conductivities, typically < 10 mS/cm

at RT, which almost three order less than aqueous electrolytes. The low conductivity and high viscosity

[171] of RTILs can increase the ESR values then decrease the power performance. This issue can be

more serious below room temperature, which limits the application of RTILs only above freezing

temperature. In order to solve this issue, eutectic of RTILs mixture were developed with very low

freezing temperature [172-174]. For instance, Lin et al. [174] reported a eutectic of RTILs mixture

consist of 1:1 molar ratio of N-methyl-N-propylpiperidinium bis(fluorosulfonyl)imide (PIP13FSI) and

N-butyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide (PYR14FSI), which extend the liquid-state

temperature down to -80 oC. Lin et al. demonstrated that by selecting proper combination of cations

with the same anion can prevents an ordered arrangement and crystallization, therefore inhibiting the

formation of a lattice. By selecting same anion (FSI), while different cations with same molecular

weight, and same atom numbers with same nature, but different molecular structures (Figure I – 27a),

an IL eutectic mixture is able to maintain liquid state several tens of degrees lower compared to their

individual ILs. As shown in Figure I – 27b, conductivity of both PIP13FSI and PYR14FSI suffer from

Page 49: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

41

sudden drop around freezing point, while their corresponding eutectic mixture drop slowly even at -70

oC. Using this RTIL eutectic mixture with exohedral nanostructured carbon as electrodes, a EDLCs

could operable within a wide temperature range from -50 to 100 oC (Figure I – 28), which is much wider

than conventional EDLCs electrolytes (-20 to 80 oC) and conventional ionic liquid electrolytes (20 to

100 oC).

Figure I - 27: Characteristics of the ILs. (A) DSC profiles of (I) PIP13FSI, (II) PYR14FSI and (III)

(PIP13FSI)0.5(PYR14FSI)0.5 mixture, and their chemical structures. (B) Change of the conductivity versus

the inverse temperature for PIP13FSI, PYR14FSI and (PIP13FSI)0.5(PYR14FSI)0.5 IL mixture [174].

Figure I - 28: Supercapacitor application temperature for conventional ionic liquids, conventional EDLC

Page 50: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

42

electrolytes and new ionic liquid mixture electrolyte [174].

5 Objectives of thesis

The last decade, the world witnesses an explosive development of two dimensional (2D) materials

beyond graphene. The unique structure and properties enable these materials outstanding performances

in various applications, including energy storage devices. This thesis aims to explore the

electrochemical performance of 2D materials, such as graphene and newly developed 2D-MXenes for

energy storage application. The goals are:

a) To chemically synthesize graphene and prepare dense graphene films as electrodes for ECs

application and study the electrochemical performance in both aqueous, organic, and RTILs

electrolytes. We will also explore the temperature depending performance of graphene film in the

([PIP13][FSI])0.5([PYR14][FSI])0.5 IL mixture electrolyte.

b) To produce MXenes by chemical method and prepare MXene films as electrodes for ECs

application. We will characterize the electrochemical performance of MXene films in aqueous and

ionic liquid electrolytes and study the charge storage mechanism of MXenes in aqueous and ionic

liquid electrolytes.

Page 51: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

43

6 Reference

[1] B. E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological

applications, Springer, New York, 1999.

[2] Y.W. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W.W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace,

K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, R.S. Ruoff, Carbon-Based Supercapacitors Produced

by Activation of Graphene, Science, 332 (2011) 1537-1541.

[3] A.K. Shukla, S. Sampath, K. Vijayamohanan, Electrochemical supercapacitors: Energy storage

beyond batteries, Current Science, 79 (2000) 1656-1661.

[4] T. Pandolfo, V. Ruiz, S. Sivakkumar, J. Nerkar, General Properties of Electrochemical Capacitors,

in: Supercapacitors, Wiley-VCH Verlag GmbH & Co. KGaA, 2013, pp. 69-109.

[5] P. Simon, A. Burke, Nanostructured carbons: double-layer capacitance and more, The

electrochemical society interface, 17 (2008) 38.

[6] H.I. Becker, Low voltage electrolytic capacitor, in, Google Patents, 1957.

[7] R.A. Rightmire, Electrical energy storage apparatus, in, Google Patents, 1966.

[8] D.L. Boos, Electrolytic capacitor having carbon paste electrodes, in, Google Patents, 1970.

[9] H. Helmholtz, Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit

Anwendung auf die thierisch-elektrischen Versuche, Annalen der Physik, 165 (1853) 211-233.

[10] E. Gongadze, S. Petersen, U. Beck, U. van Rienen, Classical Models of the Interface between an

Electrode and an Electrolyte, in: COMSOL Conference, 2009, pp. 14-16.

[11] P. Simon, Y. Gogotsi, Charge storage mechanism in nanoporous carbons and its consequence for

electrical double layer capacitors, Philosophical Transactions of the Royal Society of London A:

Mathematical, Physical and Engineering Sciences, 368 (2010) 3457-3467.

[12] X. Sun, P. Cheng, H. Wang, H. Xu, L. Dang, Z. Liu, Z. Lei, Activation of graphene aerogel with

phosphoric acid for enhanced electrocapacitive performance, Carbon, 92 (2015) 1-10.

[13] K.S. Xia, Q.M. Gao, J.H. Jiang, J. Hu, Hierarchical porous carbons with controlled micropores and

mesopores for supercapacitor electrode materials, Carbon, 46 (2008) 1718-1726.

Page 52: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

44

[14] Y.K. Lv, L.H. Gan, M.X. Liu, W. Xiong, Z.J. Xu, D.Z. Zhu, D.S. Wright, A self-template synthesis

of hierarchical porous carbon foams based on banana peel for supercapacitor electrodes, Journal of

Power Sources, 209 (2012) 152-157.

[15] P. Simon, Y. Gogotsi, Capacitive Energy Storage in Nanostructured Carbon-Electrolyte Systems,

Accounts Chem. Res., 46 (2013) 1094-1103.

[16] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nature Materials, 7 (2008) 845-

854.

[17] J. Rouquerol, D. Avnir, C. Fairbridge, D. Everett, J. Haynes, N. Pernicone, J. Ramsay, K. Sing, K.

Unger, Recommendations for the characterization of porous solids (Technical Report), Pure and

Applied Chemistry, 66 (1994) 1739-1758.

[18] J. Haber, Manual on catalyst characterization (Recommendations 1991), Pure and applied

chemistry, 63 (1991) 1227-1246.

[19] C. Largeot, C. Portet, J. Chmiola, P.-L. Taberna, Y. Gogotsi, P. Simon, Relation between the Ion

Size and Pore Size for an Electric Double-Layer Capacitor, Journal of the American Chemical Society,

130 (2008) 2730-2731.

[20] J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.L. Taberna, Anomalous increase in

carbon capacitance at pore sizes less than 1 nanometer, Science, 313 (2006) 1760-1763.

[21] M.F. Dupont, S.W. Donne, Separating the Faradaic and Non-Faradaic Contributions to the Total

Capacitance for Different Manganese Dioxide Phases, Journal of The Electrochemical Society, 162

(2015) A5096-A5105.

[22] M.B. Sassin, C.N. Chervin, D.R. Rolison, J.W. Long, Redox Deposition of Nanoscale Metal

Oxides on Carbon for Next-Generation Electrochemical Capacitors, Accounts Chem. Res., 46 (2013)

1062-1074.

[23] S. Trasatti, G. Buzzanca, Ruthenium dioxide: A new interesting electrode material. Solid state

structure and electrochemical behaviour, Journal of Electroanalytical Chemistry and Interfacial

Electrochemistry, 29 (1971) A1-A5.

[24] J.R. Miller, P. Simon, Materials science - Electrochemical capacitors for energy management,

Science, 321 (2008) 651-652.

Page 53: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

45

[25] P.-L. Taberna, P. Simon, Electrochemical Techniques in Supercapacitors, Wiley-VCH Verlag

GmbH & Co. KGaA, 2013, pp. 111-130.

[26] S. Hadzi‐Jordanov, H. Angerstein‐Kozlowska, M. Vukovic, B.E. Conway, Reversibility and

Growth Behavior of Surface Oxide Films at Ruthenium Electrodes, Journal of The Electrochemical

Society, 125 (1978) 1471-1480.

[27] V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical

energy storage, Energy Environ. Sci., 7 (2014) 1597-1614.

[28] J.R. Miller, Capacitor/Battery load-leveling of hybrid-vehicles without the use of active interface

electronics, 6th international seminar on double layer capacitors and similar energy storage devices,

1996, (1996).

[29] W.G. Pell, B.E. Conway, Peculiarities and requirements of asymmetric capacitor devices based on

combination of capacitor and battery-type electrodes, Journal of Power Sources, 136 (2004) 334-345.

[30] T. Brousse, D. Bélanger, D. Guay, Asymmetric and Hybrid Devices in Aqueous Electrolytes, in:

Supercapacitors, Wiley-VCH Verlag GmbH & Co. KGaA, 2013, pp. 257-288.

[31] D.P. Dubal, O. Ayyad, V. Ruiz, P. Gomez-Romero, Hybrid energy storage: the merging of battery

and supercapacitor chemistries, Chem. Soc. Rev., 44 (2015) 1777-1790.

[32] X. Zhu, Y. Zhu, S. Murali, M.D. Stoller, R.S. Ruoff, Nanostructured Reduced Graphene

Oxide/Fe2O3 Composite As a High-Performance Anode Material for Lithium Ion Batteries, ACS Nano,

5 (2011) 3333-3338.

[33] N. Sano, H. Wang, I. Alexandrou, M. Chhowalla, K.B.K. Teo, G.A.J. Amaratunga, K. Iimura,

Properties of carbon onions produced by an arc discharge in water, Journal of Applied Physics, 92 (2002)

2783-2788.

[34] S. Osswald, G. Yushin, V. Mochalin, S.O. Kucheyev, Y. Gogotsi, Control of sp2/sp3 Carbon Ratio

and Surface Chemistry of Nanodiamond Powders by Selective Oxidation in Air, Journal of the

American Chemical Society, 128 (2006) 11635-11642.

[35] O. Shenderova, C. Jones, V. Borjanovic, S. Hens, G. Cunningham, S. Moseenkov, V. Kuznetsov,

G. McGuire, Detonation nanodiamond and onion-like carbon: applications in composites, physica status

solidi (a), 205 (2008) 2245-2251.

Page 54: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

46

[36] V.L. Kuznetsov, A.L. Chuvilin, Y.V. Butenko, I.Y. Mal'kov, V.M. Titov, Onion-like carbon from

ultra-disperse diamond, Chemical Physics Letters, 222 (1994) 343-348.

[37] E.G. Bushueva, P.S. Galkin, A.V. Okotrub, L.G. Bulusheva, N.N. Gavrilov, V.L. Kuznetsov, S.I.

Moiseekov, Double layer supercapacitor properties of onion-like carbon materials, physica status solidi

(b), 245 (2008) 2296-2299.

[38] Y. Gao, Y.S. Zhou, M. Qian, X.N. He, J. Redepenning, P. Goodman, H.M. Li, L. Jiang, Y.F. Lu,

Chemical activation of carbon nano-onions for high-rate supercapacitor electrodes, Carbon, 51 (2013)

52-58.

[39] D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.-L. Taberna, P. Simon,

Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon, Nat Nano, 5 (2010)

651-654.

[40] M. Zeiger, N. Jackel, V.N. Mochalin, V. Presser, Review: carbon onions for electrochemical energy

storage, J. Mater. Chem. A, 4 (2016) 3172-3196.

[41] W.T. Gu, G. Yushin, Review of nanostructured carbon materials for electrochemical capacitor

applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated

carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene, Wiley Interdisciplinary

Reviews-Energy and Environment, 3 (2014) 424-473.

[42] E. Frackowiak, F. Béguin, Electrochemical storage of energy in carbon nanotubes and

nanostructured carbons, Carbon, 40 (2002) 1775-1787.

[43] TalapatraS, KarS, S.K. Pal, VajtaiR, CiL, VictorP, M.M. Shaijumon, KaurS, NalamasuO, P.M.

Ajayan, Direct growth of aligned carbon nanotubes on bulk metals, Nat Nano, 1 (2006) 112-116.

[44] P. Simon, P.-L. Taberna, F. Béguin, Electrical Double-Layer Capacitors and Carbons for EDLCs,

in: Supercapacitors, Wiley-VCH Verlag GmbH & Co. KGaA, 2013, pp. 131-165.

[45] E. Frackowiak, S. Delpeux, K. Jurewicz, K. Szostak, D. Cazorla-Amoros, F. Béguin, Enhanced

capacitance of carbon nanotubes through chemical activation, Chemical Physics Letters, 361 (2002) 35-

41.

[46] Y.H. Lee, K.H. An, S.C. Lim, W.S. Kim, H.J. Jeong, C.-H. Doh, S.-I. Moon, Applications of carbon

nanotubes to energy storage devices, New Diamond & Frontier Carbon Technology, 12 (2002) 209.

Page 55: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

47

[47] K.H. An, K.K. Jeon, J.K. Heo, S.C. Lim, D.J. Bae, Y.H. Lee, High-Capacitance Supercapacitor

Using a Nanocomposite Electrode of Single-Walled Carbon Nanotube and Polypyrrole, Journal of The

Electrochemical Society, 149 (2002) A1058-A1062.

[48] A.J.G. Zarbin, Química de (nano)materiais, Química Nova, 30 (2007) 1469-1479.

[49] P.A. Martins-Júnior, C.E. Alcântara, R.R. Resende, A.J. Ferreira, Carbon Nanotubes: Directions

and Perspectives in Oral Regenerative Medicine, Journal of Dental Research, (2013).

[50] D. Chunsheng, Y. Jeff, P. Ning, High power density supercapacitors using locally aligned carbon

nanotube electrodes, Nanotechnology, 16 (2005) 350.

[51] L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev., 38

(2009) 2520-2531.

[52] V. Presser, M. Heon, Y. Gogotsi, Carbide-Derived Carbons – From Porous Networks to Nanotubes

and Graphene, Advanced Functional Materials, 21 (2011) 810-833.

[53] J. Chmiola, C. Largeot, P.L. Taberna, P. Simon, Y. Gogotsi, Monolithic Carbide-Derived Carbon

Films for Micro-Supercapacitors, Science, 328 (2010) 480-483.

[54] A. Jänes, L. Permann, M. Arulepp, E. Lust, Electrochemical characteristics of nanoporous carbide-

derived carbon materials in non-aqueous electrolyte solutions, Electrochem. Commun., 6 (2004) 313-

318.

[55] C. Portet, G. Yushin, Y. Gogotsi, Effect of Carbon Particle Size on Electrochemical Performance

of EDLC, Journal of The Electrochemical Society, 155 (2008) A531-A536.

[56] J. Chmiola, G. Yushin, R.K. Dash, E.N. Hoffman, J.E. Fischer, M.W. Barsoum, Y. Gogotsi,

Double-Layer Capacitance of Carbide Derived Carbons in Sulfuric Acid, Electrochemical and Solid-

State Letters, 8 (2005) A357-A360.

[57] H. Wang, Q. Gao, Synthesis, characterization and energy-related applications of carbide-derived

carbons obtained by the chlorination of boron carbide, Carbon, 47 (2009) 820-828.

[58] M. Lätt, M. Käärik, L. Permann, H. Kuura, M. Arulepp, J. Leis, A structural influence on the

electrical double-layer characteristics of Al4C3-derived carbon, J. Solid State Electrochem., 14 (2010)

543-548.

Page 56: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

48

[59] T. Thomberg, A. Jänes, E. Lust, Energy and power performance of electrochemical double-layer

capacitors based on molybdenum carbide derived carbon, Electrochim. Acta, 55 (2010) 3138-3143.

[60] T. Thomberg, A. Jänes, E. Lust, Energy and power performance of vanadium carbide derived

carbon electrode materials for supercapacitors, Journal of Electroanalytical Chemistry, 630 (2009) 55-

62.

[61] J.A. Fernández, M. Arulepp, J. Leis, F. Stoeckli, T.A. Centeno, EDLC performance of carbide-

derived carbons in aprotic and acidic electrolytes, Electrochim. Acta, 53 (2008) 7111-7116.

[62] P. Huang, C. Lethien, S. Pinaud, K. Brousse, R. Laloo, V. Turq, M. Respaud, A. Demortière, B.

Daffos, P.L. Taberna, B. Chaudret, Y. Gogotsi, P. Simon, On-chip and freestanding elastic carbon films

for micro-supercapacitors, Science, 351 (2016) 691-695.

[63] H. Nishihara, T. Kyotani, Templated Nanocarbons for Energy Storage, Advanced Materials, 24

(2012) 4473-4498.

[64] Y. Korenblit, M. Rose, E. Kockrick, L. Borchardt, A. Kvit, S. Kaskel, G. Yushin, High-Rate

Electrochemical Capacitors Based on Ordered Mesoporous Silicon Carbide-Derived Carbon, ACS

Nano, 4 (2010) 1337-1344.

[65] A. Kajdos, A. Kvit, F. Jones, J. Jagiello, G. Yushin, Tailoring the Pore Alignment for Rapid Ion

Transport in Microporous Carbons, Journal of the American Chemical Society, 132 (2010) 3252-3253.

[66] H. Nishihara, H. Itoi, T. Kogure, P.-X. Hou, H. Touhara, F. Okino, T. Kyotani, Investigation of the

Ion Storage/Transfer Behavior in an Electrical Double-Layer Capacitor by Using Ordered Microporous

Carbons as Model Materials, Chemistry – A European Journal, 15 (2009) 5355-5363.

[67] W.-Y. Tsai, P.-C. Gao, B. Daffos, P.-L. Taberna, C.R. Perez, Y. Gogotsi, F. Favier, P. Simon,

Ordered mesoporous silicon carbide-derived carbon for high-power supercapacitors, Electrochem.

Commun., 34 (2013) 109-112.

[68] K. Takashi, Synthesis of Various Types of Nano Carbons Using the Template Technique, Bulletin

of the Chemical Society of Japan, 79 (2006) 1322-1337.

[69] J.P. Zheng, P.J. Cygan, T.R. Jow, Hydrous Ruthenium Oxide as an Electrode Material for

Electrochemical Capacitors, Journal of The Electrochemical Society, 142 (1995) 2699-2703.

[70] W. Wang, S. Guo, I. Lee, K. Ahmed, J. Zhong, Z. Favors, F. Zaera, M. Ozkan, C.S. Ozkan, Hydrous

Page 57: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

49

Ruthenium Oxide Nanoparticles Anchored to Graphene and Carbon Nanotube Hybrid Foam for

Supercapacitors, Scientific Reports, 4 (2014) 4452.

[71] J. Zhang, J. Jiang, H. Li, X.S. Zhao, A high-performance asymmetric supercapacitor fabricated

with graphene-based electrodes, Energy Environ. Sci., 4 (2011) 4009-4015.

[72] S.C. Pang, M.A. Anderson, T.W. Chapman, Novel Electrode Materials for Thin ‐ Film

Ultracapacitors: Comparison of Electrochemical Properties of Sol ‐ Gel ‐ Derived and

Electrodeposited Manganese Dioxide, Journal of The Electrochemical Society, 147 (2000) 444-450.

[73] M. Toupin, T. Brousse, D. Bélanger, Influence of Microstucture on the Charge Storage Properties

of Chemically Synthesized Manganese Dioxide, Chem. Mat., 14 (2002) 3946-3952.

[74] M. Toupin, T. Brousse, D. Bélanger, Charge Storage Mechanism of MnO2 Electrode Used in

Aqueous Electrochemical Capacitor, Chem. Mat., 16 (2004) 3184-3190.

[75] I. Shown, A. Ganguly, L.-C. Chen, K.-H. Chen, Conducting polymer-based flexible supercapacitor,

Energy Science & Engineering, 3 (2015) 2-26.

[76] G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes,

Journal of Power Sources, 196 (2011) 1-12.

[77] E. Frackowiak, V. Khomenko, K. Jurewicz, K. Lota, F. Béguin, Supercapacitors based on

conducting polymers/nanotubes composites, Journal of Power Sources, 153 (2006) 413-418.

[78] G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors,

Chem. Soc. Rev., 41 (2012) 797-828.

[79] K. Lota, V. Khomenko, E. Frackowiak, Capacitance properties of poly(3,4-

ethylenedioxythiophene)/carbon nanotubes composites, J. Phys. Chem. Solids, 65 (2004) 295-301.

[80] B. Dubertret, T. Heine, M. Terrones, The Rise of Two-Dimensional Materials, Accounts Chem.

Res., 48 (2015) 1-2.

[81] A.K. Geim, K.S. Novoselov, The rise of graphene, Nature Materials, 6 (2007) 183-191.

[82] L. Song, L.J. Ci, H. Lu, P.B. Sorokin, C.H. Jin, J. Ni, A.G. Kvashnin, D.G. Kvashnin, J. Lou, B.I.

Yakobson, P.M. Ajayan, Large Scale Growth and Characterization of Atomic Hexagonal Boron Nitride

Layers, Nano Lett., 10 (2010) 3209-3215.

Page 58: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

50

[83] S. Jeong, D. Yoo, J.-t. Jang, M. Kim, J. Cheon, Well-Defined Colloidal 2-D Layered Transition-

Metal Chalcogenide Nanocrystals via Generalized Synthetic Protocols, Journal of the American

Chemical Society, 134 (2012) 18233-18236.

[84] S. Balendhran, S. Walia, H. Nili, S. Sriram, M. Bhaskaran, Elemental Analogues of Graphene:

Silicene, Germanene, Stanene, and Phosphorene, Small, 11 (2015) 640-652.

[85] A. Carvalho, M. Wang, X. Zhu, A.S. Rodin, H. Su, A.H. Castro Neto, Phosphorene: from theory

to applications, Nature Reviews Materials, 1 (2016) 16061.

[86] A.K. Geim, I.V. Grigorieva, Van der Waals heterostructures, Nature, 499 (2013) 419-425.

[87] K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim,

Two-dimensional atomic crystals, Proceedings of the National Academy of Sciences of the United

States of America, 102 (2005) 10451-10453.

[88] A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties

of graphene, Rev. Mod. Phys., 81 (2009) 109-162.

[89] L.P. Biro, P. Nemes-Incze, P. Lambin, Graphene: nanoscale processing and recent applications,

Nanoscale, 4 (2012) 1824-1839.

[90] R. Ruoff, Calling all chemists, Nat. Nanotechnol., 3 (2008) 10-11.

[91] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva,

A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science, 306 (2004) 666-669.

[92] K.E. Whitener Jr, P.E. Sheehan, Graphene synthesis, Diamond and Related Materials, 46 (2014)

25-34.

[93] Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M.

Byrne, Y.K. Gun'Ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison,

V. Scardaci, A.C. Ferrari, J.N. Coleman, High-yield production of graphene by liquid-phase exfoliation

of graphite, Nat Nano, 3 (2008) 563-568.

[94] M. Lotya, Y. Hernandez, P.J. King, R.J. Smith, V. Nicolosi, L.S. Karlsson, F.M. Blighe, S. De, Z.

Wang, I.T. McGovern, G.S. Duesberg, J.N. Coleman, Liquid Phase Production of Graphene by

Exfoliation of Graphite in Surfactant/Water Solutions, Journal of the American Chemical Society, 131

(2009) 3611-3620.

Page 59: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

51

[95] J. Li, X. Zeng, T. Ren, E. van der Heide, The Preparation of Graphene Oxide and Its Derivatives

and Their Application in Bio-Tribological Systems, Lubricants, 2 (2014) 137.

[96] B.C. Brodie, On the Atomic Weight of Graphite, Philosophical Transactions of the Royal Society

of London, 149 (1859) 249-259.

[97] L. Staudenmaier, Verfahren zur Darstellung der Graphitsäure, Berichte der deutschen chemischen

Gesellschaft, 31 (1898) 1481-1487.

[98] W.S. Hummers Jr, Preparation of graphitic acid, (1957).

[99] D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z.Z. Sun, A. Slesarev, L.B. Alemany, W.

Lu, J.M. Tour, Improved Synthesis of Graphene Oxide, Acs Nano, 4 (2010) 4806-4814.

[100] A.M. Dimiev, J.M. Tour, Mechanism of Graphene Oxide Formation, ACS Nano, 2014, 8 (3), pp

3060–3068.

[101] C. Vallés, C. Drummond, H. Saadaoui, C.A. Furtado, M. He, O. Roubeau, L. Ortolani, M.

Monthioux, A. Pénicaud, Solutions of Negatively Charged Graphene Sheets and Ribbons, Journal of

the American Chemical Society, 130 (2008) 15802-15804.

[102] S. Park, R.S. Ruoff, Chemical methods for the production of graphenes, Nat Nano, 4 (2009) 217-

224.

[103] H. Tetlow, J. Posthuma de Boer, I.J. Ford, D.D. Vvedensky, J. Coraux, L. Kantorovich, Growth

of epitaxial graphene: Theory and experiment, Physics Reports, 542 (2014) 195-295.

[104] T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Controlling the Electronic Structure of

Bilayer Graphene, Science, 313 (2006) 951-954.

[105] P.W. Sutter, J.I. Flege, E.A. Sutter, Epitaxial graphene on ruthenium, Nature Materials, 7 (2008)

406-411.

[106] A. Kumar, Synthesis and Biomedical Applications of Graphene: Present and Future Trends,

InTech, 2013.

[107] Y. Takatoshi, K. Jaeho, I. Masatou, H. Masataka, Low-temperature graphene synthesis using

microwave plasma CVD, Journal of Physics D: Applied Physics, 46 (2013), Article number 6.

[108] T.-o. Terasawa, K. Saiki, Growth of graphene on Cu by plasma enhanced chemical vapor

Page 60: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

52

deposition, Carbon, 50 (2012) 869-874.

[109] K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B.H.

Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature, 457

(2009) 706-710.

[110] Y. Zhang, L. Zhang, C. Zhou, Review of Chemical Vapor Deposition of Graphene and Related

Applications, Accounts Chem. Res., 46 (2013) 2329-2339.

[111] R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, The role of graphene for electrochemical energy

storage, Nature materials, 14 (2015) 271-279.

[112] D.H. Wang, D.W. Choi, J. Li, Z.G. Yang, Z.M. Nie, R. Kou, D.H. Hu, C.M. Wang, L.V. Saraf,

J.G. Zhang, I.A. Aksay, J. Liu, Self-Assembled TiO2-Graphene Hybrid Nanostructures for Enhanced

Li-Ion Insertion, Acs Nano, 3 (2009) 907-914.

[113] E. Yoo, J. Kim, E. Hosono, H. Zhou, T. Kudo, I. Honma, Large reversible Li storage of graphene

nanosheet families for use in rechargeable lithium ion batteries, Nano Lett., 8 (2008) 2277-2282.

[114] Z.S. Wu, W.C. Ren, L. Wen, L.B. Gao, J.P. Zhao, Z.P. Chen, G.M. Zhou, F. Li, H.M. Cheng,

Graphene Anchored with Co3O4 Nanoparticles as Anode of Lithium Ion Batteries with Enhanced

Reversible Capacity and Cyclic Performance, Acs Nano, 4 (2010) 3187-3194.

[115] H.L. Wang, L.F. Cui, Y.A. Yang, H.S. Casalongue, J.T. Robinson, Y.Y. Liang, Y. Cui, H.J. Dai,

Mn3O4-Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries, Journal of the

American Chemical Society, 132 (2010) 13978-13980.

[116] R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, The role of graphene for electrochemical energy

storage, Nat Mater, 14 (2015) 271-279.

[117] M.D. Stoller, S.J. Park, Y.W. Zhu, J.H. An, R.S. Ruoff, Graphene-Based Ultracapacitors, Nano

Lett., 8 (2008) 3498-3502.

[118] Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, Supercapacitor Devices Based

on Graphene Materials, The Journal of Physical Chemistry C, 113 (2009) 13103-13107.

[119] L. Zhang, F. Zhang, X. Yang, G. Long, Y. Wu, T. Zhang, K. Leng, Y. Huang, Y. Ma, A. Yu, Y.

Chen, Porous 3D graphene-based bulk materials with exceptional high surface area and excellent

conductivity for supercapacitors, Scientific Reports, 3 (2013) 1408.

Page 61: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

53

[120] W. Gao, N. Singh, L. Song, Z. Liu, A.L.M. Reddy, L. Ci, R. Vajtai, Q. Zhang, B. Wei, P.M.

Ajayan, Direct laser writing of micro-supercapacitors on hydrated graphite oxide films, Nat Nano, 6

(2011) 496-500.

[121] C.G. Liu, Z.N. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-Based Supercapacitor with an

Ultrahigh Energy Density, Nano Lett., 10 (2010) 4863-4868.

[122] J.R. Dahn, T. Zheng, Y. Liu, J.S. Xue, Mechanisms for Lithium Insertion in Carbonaceous

Materials, Science, 270 (1995) 590-593.

[123] Y. Liu, J.S. Xue, T. Zheng, J.R. Dahn, Mechanism of lithium insertion in hard carbons prepared

by pyrolysis of epoxy resins, Carbon, 34 (1996) 193-200.

[124] M. Winter, J.O. Besenhard, M.E. Spahr, P. Novák, Insertion Electrode Materials for Rechargeable

Lithium Batteries, Advanced Materials, 10 (1998) 725-763.

[125] O.A. Vargas C, A. Caballero, J. Morales, Can the performance of graphene nanosheets for lithium

storage in Li-ion batteries be predicted?, Nanoscale, 4 (2012) 2083-2092.

[126] Z. Wang, Y. Dong, H. Li, Z. Zhao, H. Bin Wu, C. Hao, S. Liu, J. Qiu, X.W. Lou, Enhancing

lithium–sulphur battery performance by strongly binding the discharge products on amino-

functionalized reduced graphene oxide, Nat. Commun., 5 (2014) 5002.

[127] X. Huang, X. Qi, F. Boey, H. Zhang, Graphene-based composites, Chem. Soc. Rev., 41 (2012)

666-686.

[128] Z.-S. Wu, G. Zhou, L.-C. Yin, W. Ren, F. Li, H.-M. Cheng, Graphene/metal oxide composite

electrode materials for energy storage, Nano Energy, 1 (2012) 107-131.

[129] Y. Sun, Q. Wu, G. Shi, Graphene based new energy materials, Energy Environ. Sci., 4 (2011)

1113-1132.

[130] J.X. Zhu, D. Yang, Z.Y. Yin, Q.Y. Yan, H. Zhang, Graphene and Graphene-Based Materials for

Energy Storage Applications, Small, 10 (2014) 3480-3498.

[131] Y. Xu, Z. Lin, X. Zhong, X. Huang, N.O. Weiss, Y. Huang, X. Duan, Holey graphene frameworks

for highly efficient capacitive energy storage, Nat Commun, 5 (2014), Article number 4554.

[132] R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, The role of graphene for electrochemical energy

Page 62: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

54

storage, Nat Mater, 14(2015) 271–279.

[133] M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Laser Scribing of High-Performance and Flexible

Graphene-Based Electrochemical Capacitors, Science, 335 (2012) 1326-1330.

[134] X.W. Yang, C. Cheng, Y.F. Wang, L. Qiu, D. Li, Liquid-Mediated Dense Integration of Graphene

Materials for Compact Capacitive Energy Storage, Science, 341 (2013) 534-537.

[135] R.R. Salunkhe, Y.-H. Lee, K.-H. Chang, J.-M. Li, P. Simon, J. Tang, N.L. Torad, C.-C. Hu, Y.

Yamauchi, Nanoarchitectured graphene-based supercapacitors for next-generation energy-storage

applications, Chemistry (Weinheim an der Bergstrasse, Germany), 20 (2014) 13838-13852.

[136] C.N.R. Rao, K. Gopalakrishnan, U. Maitra, Comparative Study of Potential Applications of

Graphene, MoS2, and Other Two-Dimensional Materials in Energy Devices, Sensors, and Related

Areas, ACS Appl. Mater. Interfaces, 7 (2015) 7809-7832.

[137] A. Burke, R&D considerations for the performance and application of electrochemical capacitors,

Electrochim. Acta, 53 (2007) 1083-1091.

[138] J.H. Lee, N. Park, B.G. Kim, D.S. Jung, K. Im, J. Hur, J.W. Choi, Restacking-Inhibited 3D

Reduced Graphene Oxide for High Performance Supercapacitor Electrodes, Acs Nano, 7 (2013) 9366-

9374.

[139] X.W. Yang, J.W. Zhu, L. Qiu, D. Li, Bioinspired Effective Prevention of Restacking in

Multilayered Graphene Films: Towards the Next Generation of High-Performance Supercapacitors,

Advanced Materials, 23 (2011) 2833-+.

[140] Z.M. Sun, Progress in research and development on MAX phases: a family of layered ternary

compounds, Int. Mater. Rev., 56 (2011) 143-166.

[141] M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-

dimensional titanium carbide `clay' with high volumetric capacitance, Nature, 516 (2014) 78-81.

[142] B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B.C. Hosler, L. Hultman, P.R.C. Kent, Y. Gogotsi, M.W.

Barsoum, Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes), ACS Nano, 9

(2015) 9507-9516.

[143] M. Naguib, Y. Gogotsi, Synthesis of Two-Dimensional Materials by Selective Extraction,

Accounts Chem. Res., 48 (2015) 128-135.

Page 63: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

55

[144] M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th Anniversary Article: MXenes: A

New Family of Two-Dimensional Materials, Advanced Materials, 26 (2014) 992-1005.

[145] M. Naguib, J. Come, B. Dyatkin, V. Presser, P.-L. Taberna, P. Simon, M.W. Barsoum, Y. Gogotsi,

MXene: a promising transition metal carbide anode for lithium-ion batteries, Electrochem. Commun.,

16 (2012) 61-64.

[146] M. Naguib, J. Halim, J. Lu, K.M. Cook, L. Hultman, Y. Gogotsi, M.W. Barsoum, New Two-

Dimensional Niobium and Vanadium Carbides as Promising Materials for Li-Ion Batteries, Journal of

the American Chemical Society, 135 (2013) 15966-15969.

[147] O. Mashtalir, M.R. Lukatskaya, M.Q. Zhao, M.W. Barsoum, Y. Gogotsi, Amine-Assisted

Delamination of Nb2C MXene for Li-Ion Energy Storage Devices, Advanced Materials, 27 (2015)

3501-3506.

[148] Z.Y. Lin, D.F. Sun, Q. Huang, J. Yang, M.W. Barsoum, X.B. Yan, Carbon nanofiber bridged

two-dimensional titanium carbide as a superior anode for lithium-ion batteries, J. Mater. Chem. A, 3

(2015) 14096-14100.

[149] D.D. Sun, M.S. Wang, Z.Y. Li, G.X. Fan, L.Z. Fan, A.G. Zhou, Two-dimensional Ti3C2 as anode

material for Li-ion batteries, Electrochem. Commun., 47 (2014) 80-83.

[150] D. Er, J. Li, M. Naguib, Y. Gogotsi, V.B. Shenoy, Ti3C2 MXene as a High Capacity Electrode

Material for Metal (Li, Na, K, Ca) Ion Batteries, ACS Appl. Mater. Interfaces, 6 (2014) 11173-11179.

[151] M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier, P.L. Taberna, M. Naguib,

P. Simon, M.W. Barsoum, Y. Gogotsi, Cation Intercalation and High Volumetric Capacitance of Two-

Dimensional Titanium Carbide, Science, 341 (2013) 1502-1505.

[152] M. Hu, Z. Li, H. Zhang, T. Hu, C. Zhang, Z. Wu, X. Wang, Self-assembled Ti3C2Tx MXene film

with high gravimetric capacitance, Chem. Commun., 51 (2015) 13531-13533.

[153] X. Wang, S. Kajiyama, H. Iinuma, E. Hosono, S. Oro, I. Moriguchi, M. Okubo, A. Yamada,

Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors, Nat Commun,

6 (2015).

[154] M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W.

Barsoum, Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2, Advanced Materials,

Page 64: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

56

23 (2011) 4248-4253.

[155] O. Mashtalir, M. Naguib, B. Dyatkin, Y. Gogotsi, M.W. Barsoum, Kinetics of aluminum

extraction from Ti3AlC2 in hydrofluoric acid, Materials Chemistry and Physics, 139 (2013) 147-152.

[156] Q. Tang, Z. Zhou, P. Shen, Are MXenes Promising Anode Materials for Li Ion Batteries?

Computational Studies on Electronic Properties and Li Storage Capability of Ti3C2 and Ti3C2X2 (X =

F, OH) Monolayer, Journal of the American Chemical Society, 134 (2012) 16909-16916.

[157] O. Mashtalir, M. Naguib, V.N. Mochalin, Y. Dall’Agnese, M. Heon, M.W. Barsoum, Y. Gogotsi,

Intercalation and delamination of layered carbides and carbonitrides, Nat Commun, 4 (2013) 1716.

[158] Y. Dall'Agnese, M.R. Lukatskaya, K.M. Cook, P.L. Taberna, Y. Gogotsi, P. Simon, High

capacitance of surface-modified 2D titanium carbide in acidic electrolyte, Electrochem. Commun., 48

(2014) 118-122.

[159] Y. Dall’Agnese, P. Rozier, P.-L. Taberna, Y. Gogotsi, P. Simon, Capacitance of two-dimensional

titanium carbide (MXene) and MXene/carbon nanotube composites in organic electrolytes, Journal of

Power Sources, 306 (2016) 510-515.

[160] F. Béguin, V. Presser, A. Balducci, E. Frackowiak, Carbons and Electrolytes for Advanced

Supercapacitors, Advanced Materials, 26 (2014) 2219-2251.

[161] C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, A review of electrolyte materials and

compositions for electrochemical supercapacitors, Chem. Soc. Rev., 44 (2015) 7484-7539.

[162] M. Galiński, A. Lewandowski, I. Stępniak, Ionic liquids as electrolytes, Electrochim. Acta, 51

(2006) 5567-5580.

[163] A. Yu, V. Chabot, J. Zhang, Electrochemical Supercapacitors for Energy Storage and Delivery:

Fundamentals and Applications, Taylor & Francis, 2013.

[164] V. Khomenko, E. Raymundo-Piñero, E. Frackowiak, F. Béguin, High-voltage asymmetric

supercapacitors operating in aqueous electrolyte, Applied Physics A, 82 (2006) 567-573.

[165] L. Demarconnay, E. Raymundo-Piñero, F. Béguin, A symmetric carbon/carbon supercapacitor

operating at 1.6 V by using a neutral aqueous solution, Electrochem. Commun., 12 (2010) 1275-1278.

[166] K. Fic, G. Lota, M. Meller, E. Frackowiak, Novel insight into neutral medium as electrolyte for

Page 65: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter I Bibliography

57

high-voltage supercapacitors, Energy Environ. Sci., 5 (2012) 5842-5850.

[167] G. Xiong, A. Kundu, T.S. Fisher, Thermal Effects in Supercapacitors, Springer International

Publishing, 2015.

[168] M. Ue, K. Ida, S. Mori, Electrochemical Properties of Organic Liquid Electrolytes Based on

Quaternary Onium Salts for Electrical Double‐Layer Capacitors, Journal of The Electrochemical

Society, 141 (1994) 2989-2996.

[169] P. Kurzweil, M. Chwistek, Electrochemical stability of organic electrolytes in supercapacitors:

Spectroscopy and gas analysis of decomposition products, Journal of Power Sources, 176 (2008) 555-

567.

[170] R.D. Rogers, G.A. Voth, Ionic Liquids, Accounts Chem. Res., 40 (2007) 1077-1078.

[171] R. Alcalde, G. García, M. Atilhan, S. Aparicio, Systematic Study on the Viscosity of Ionic Liquids:

Measurement and Prediction, Industrial & Engineering Chemistry Research, 54 (2015) 10918-10924.

[172] S. Li, G. Feng, P.F. Fulvio, P.C. Hillesheim, C. Liao, S. Dai, P.T. Cummings, Molecular

Dynamics Simulation Study of the Capacitive Performance of a Binary Mixture of Ionic Liquids near

an Onion-like Carbon Electrode, The Journal of Physical Chemistry Letters, 3 (2012) 2465-2469.

[173] W.Y. Tsai, R.Y. Lin, S. Murali, L.L. Zhang, J.K. McDonough, R.S. Ruoff, P.L. Taberna, Y.

Gogotsi, P. Simon, Outstanding performance of activated graphene based supercapacitors in ionic liquid

electrolyte from-50 to 80 degrees C, Nano Energy, 2 (2013) 403-411.

[174] R.Y. Lin, P.L. Taberna, S. Fantini, V. Presser, C.R. Perez, F. Malbosc, N.L. Rupesinghe, K.B.K.

Teo, Y. Gogotsi, P. Simon, Capacitive Energy Storage from -50 to 100 degrees C Using an Ionic Liquid

Electrolyte, Journal of Physical Chemistry Letters, 2 (2011) 2396-2401.

Page 66: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor
Page 67: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter II Experimental

59

Chapter II Experimental Part

In this Chapter, we present characterization techniques used to characterize and analyze the materials,

such as scanning electron microscope (SEM), X-ray diffraction (XRD) analysis, thermal gravimetric

analysis (TGA) and Raman spectroscopy. In addition, electrochemical configurations and

characterization methods will be also discussed. The experimental details of Graphene and MXenes

synthesized will be described later in chapter III and IV, respectively.

1 Material characterization

1.1 Scanning electron microscope (SEM)

Figure II - 1: Schematic diagram of the SEM working principle [1].

A scanning electron microscope (SEM) is a type of electron microscope that use for materials surface

topography and composition study. An SEM produces images of a sample by scanning it with a focused

Page 68: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter II Experimental

60

beam of electrons and collects information when electrons interact with atoms on the surface of the

sample. As shown in Figure II – 1, an electron gun emits electrons. Then the electrons pass through the

condenser lens and the objective lens under the control of an acceleration voltage. An electron beam

with a diameter of several nanometers interact with the sample and generate electron signals which are

collected by a detector and converted into brightness of corresponding point depend on the amount of

collected electrons, thus producing an electron image [2].

In this thesis, a JSM-6510LV SEM (JEOL, Tokyo, Japan) and a JSM-6700F FEG-SEM (JEOL, Tokyo,

Japan) were used to study the surface morphology and measure the film thickness of the electrodes.

1.2 X-ray diffraction (XRD)

XRD technique is used for identifying the atomic and molecular structure of a crystal, in which the

crystalline atoms cause a beam of incident X-rays to diffract into many specific directions. This

phenomenon can be described according to the Bragg’s Law as follow:

nλ = 2𝑑ℎ𝑘𝑙sinθ II – 1

Where n is an integer corresponding to the order of the reflection, λ is the wavelength of

radiation used, 𝑑ℎ𝑘𝑙 is the interplane atomic spacing and θ is the scattering angle.

Figure II - 2: Visualization of the Bragg equation. Maximum scattered intensity is only observed when

the phase shifts add to a multiple of the incident wavelength λ.

Page 69: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter II Experimental

61

As shown in Figure II – 2, a set of crystallographic lattice planes with distances 𝑑ℎ𝑘𝑙 is irradiated by

plane wave x-ray impinging on the lattice planes at an angle θ. Constructive interference for the reflected

wave can only be achieved when the phase shift 2dsinθ is a multiple of the wavelength [3].

By measuring the angles and intensities of these diffracted beams, a crystallographer can produce a

three-dimensional picture of the density of electrons within the crystal. From this electron density, the

mean positions of the atoms in the crystal can be determined, as well as their chemical bonds, their

disorder and various other information.

In this thesis, ex-situ X-ray diffraction patterns were recorded using a Bruker D4 (Bruker, Germany)

diffractometer using a Cu Kα radiation (λ = 1.5406 Å) with a step of 0.016o within a range 2θ = 5 to

50o. In-situ X-ray diffraction patterns were recorded with a Bruker D8 (Bruker, Germany)

diffractometer using a Cu Kα radiation (λ = 1.5406 Å) in the 5–50° 2θ range with a step of 0.0152°.

1.3 Thermogravimetric Analysis (TGA)

Figure II - 3: Schematic of a TGA setup [4].

Page 70: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter II Experimental

62

TGA is a technique in which the mass of a sample is monitored as a function of temperature or time as

the sample is place at a controlled temperature under a controlled atmosphere. Figure II – 3 shows a

schematic of a TGA equipment that consists of a sample pan supported by a precision balance. The pan

is placed in a furnace and is heated or cooled at a control rate to the set temperature during the

experiment. The mass of the sample is monitored during the experiment. A sample purge gas controls

the sample environment. This gas may be inert or a reactive gas that flows over the sample and leaves

through an exhaust.

In this thesis, TGA was used to analyze water or ionic liquid amount in graphene and MXene hydrogel

and ionogel, respectively. The tests were carried out under nitrogen atmosphere, and heating from room

temperature up to 1000 °C with a heating rate of 3 per minute.

1.4 Raman spectroscopy

Figure II - 4: Idealized model of Rayleigh scattering and Stokes and anti-Stokes Raman scattering [5].

Raman spectroscopy is a spectroscopic technique used to observe vibrational, rotational, and other low-

frequency modes in a system. Raman effect can be described as the inelastic scattering of light

by matter. When a photon of visible light with too low energy to excite an electronic transition interacts

with a molecule, it can be scattered in three different ways (Figure II – 4). The elastically scattering is

Page 71: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter II Experimental

63

defined as Rayleigh scattering, where the photons retain their incident energy after scattering. Photons

undergoing inelastic loss of energy give rise to Stokes scattering whilst photons undergoing inelastic

gain of energy give rise to anti-Stokes scattering. These two inelastic scatterings are Raman scattering.

As shown in Figure II – 4, the Rayleigh scattering arises from transitions which start and finish at the

same vibrational energy level. Stokes Raman scattering arises from transitions which start at the ground

state vibrational energy level and finish at a higher vibrational energy level, whereas anti-Stokes Raman

scattering involves a transition from a higher to a lower vibrational energy level [5].

In this thesis, a Microscope LabRAM HR 800 was applied to identify the structure signature of graphene

and related materials with a red light laser with wavelength of 632 nm.

2 Electrochemical characterizations

2.1 Configurations

Several configurations were used for electrochemical tests for different analysis purposes. All

electrochemical measurements were performed using a VMP3 potentiostat/galvanostat (Biologic,

France).

a) Swagelok cell

Figure II - 5: (a) Two-electrode and (b) Three-electrode Swagelok cell.

Page 72: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter II Experimental

64

Swagelok cells with both 2-electrode and 3-electrode setups were used, such as shown in Figure II - 5.

Electrode materials were placed onto a current collector, a separator is used to avoid short circuits. Two

stainless steel pistons are used as contacts and connected to the electrochemical work station. In the 3-

electrode cell, a reference is added. The redox couple selected as reference changes according to the

type of electrolyte used.

b) RHD cell

In this thesis, a RHD cell was a specific cell used for testing the high temperature and low temperature

performance of graphene films in the ionic liquid electrolyte. As shown in Figure II – 6, graphene films

were placed on gold current collector and assembled into the tube cell. Once assembled in glove box,

the cell was transferred to the potentiostat outside the glove box. The station consists of a Metrohm

PGStat204 equipped with a FRA32-module, a Microcell HC basis in combination with a temperature

controller, and finally, a RHD Cooling Box. The RHD Cooling Box is needed to allow for cooling down

samples to temperatures well below the dew-point under condensing conditions. The system was

completed by fixing the measuring cell on top of the Microcell HC basis. In general, when using a

Microcell HC setup, the temperature is controlled by using a Peltier element which, in principle, allows

for adjusting sample temperatures ranging from -50 °C up to +100 °C.

Figure II - 6: Schematic diagram of RHD cell.

Page 73: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter II Experimental

65

c) In-situ XRD cell

In-situ XRD cell is a specific electrochemical cell which can be used for XRD tests during

electrochemical measurements (Produced at Laboratoire de Réactivité et Chimie des Solides at

Université de Picardie Jules Verne). As shown in Figure II - 7, the working electrode was placed onto

a beryllium current collector, which is transparent to X-rays. An overcapacitive activated carbon was

used as the counter electrode. The in-situ cell was connected to a VPM and place on the XRD holder in

Bruker D8 X-ray diffractometer. XRD tests were then carried out after polarizing the working electrode

to an expecting potential and holding for enough time when a new equilibrium was reached. Details of

the tests will be discussed in the chapter V.

Figure II - 7: Schematic diagram of the in-situ XRD cell.

2.2 Electrochemical analysis

The preparation of graphene or MXenes electrode films will be detailed in each corresponding chapter.

Counter electrodes used in this thesis are YP50 activated carbon films. They were prepared with a

composition of 95 wt % YP50 and 5 wt % PTFE using ethanol as the medium for mixing the slurry. For

Page 74: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter II Experimental

66

using in aqueous electrolytes, YP50 activated carbon films can be used directly once prepared, while

for those using in organic or ionic liquid electrolytes, the films were dried in the vacuum oven at 120

oC for more than 24 hours.

Transient techniques (such as cyclic voltammetry and galvanostatic cycling) and stationary techniques

(electrochemical impedance spectroscopy) were used to characterize a supercapacitor electrode (three-

electrode cells) or device (two-electrode cells) [6].

a) Cyclic Voltammetry

Cyclic voltammetry (CV) is the technique used for electrochemical analysis of ECs, which gives useful

information such as voltage window, capacitance, cycling stability and kinetic analysis by scanning at

different scan rates.

The principle of this technique is to apply a linear voltage ramp between working electrode and

reference electrode and measure the resulting current.

E(t) = Eo + vt II – 2

Where E(t) is the real time potential (V), Eo is the initial potential (V), v is the scan rate (V s-1), and t is

the scanning time (s).

Considering the case of a sample equivalent circuit model with a pure capacitor in parallel with a leakage

resistance in series with an equivalent series resistance (Figure II – 8c), the resulting current can be

described by Equation II - 3 [6]:

i = 𝐶𝑑𝑙𝑣 [1 − exp (𝐸0−𝐸(𝑡)

𝑣𝑅𝑆𝐶𝑑𝑙)] +

𝐸(𝑡)

𝑅𝑆+𝑅𝐹 II – 3

Where Cdl, RF and Rs are the double-layer capacitance, leakage resistance and equivalent series

resistance, respectively. For an ideal electrochemical double layer capacitor (EDLC), the Rs is zero and

RF is an infinite value (Figure II – 8a). Therefore, Equation II - 3 can be simplified to:

i = vCdl II – 4

The scan rate and capacitance are constant for an ideal EDLC, leading to a constant current. Hence, a

strictly squared I - V plot is expected, as shown in Figure II – 8a. In real devices, a leakage resistance

Page 75: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter II Experimental

67

RF is associated in parallel to the capacitance. RF resistance stands for parasitic reaction that lead to a

leakage current flow through RF. This is for instance the case when a faradaic reaction occurs. In such

cases, the Equation II – 3 becomes:

i = vCdl + E(t)/RF II – 5

A linear increase current will be added to the constant current (ideal EDLC), resulting in an I - V plot

shown in Figure II – 8b.

Figure II - 8: Equivalent circuit models and corresponding cyclic voltammograms of (a) ideal double

layer capacitor; (b) capacitor in parallel with leakage resistance; (c) and simplified supercapacitors

model taking leakage resistance and equivalent series resistance into account [7].

Page 76: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter II Experimental

68

Finally, a series resistance is associated in series to the capacitance/Rf circuit to model a real capacitor.

The ESR is the sum of the ionic resistance of the electrolyte (in the separator) and all the electrical

resistances of the electrode (resistance of the material, contact resistance). In such cases, the resulting

current is described by Equation II – 3, and corresponding to an I - V plot shown in Figure II – 8c.

From a typical I - V plot, electrochemical potential window is shown and capacitance can be calculated.

To obtain the capacitance, discharge capacity Q (C) is calculated by integrating discharge current I (A)

against discharge time t (s). Then capacitance is calculated as the follow Equation II – 6:

C = ∫ 𝑖𝑑𝑡

𝑡0

∆𝐸 II – 6

Where i is the current (A) and ∆E is the potential window (V).

Besides, by screening the variation in capacitance on cycling, cyclability can be evaluated. In addition,

cyclic voltammetry is useful for kinetic study when applied a wide range of scan rate [8].

b) Galvanostatic Cycling

Galvanostatic cycling (GC), also known as chronopotentiometry, is a widely used technique, especially

for batteries, owing to its feasible from laboratory to industrial application. Different from cyclic

voltammetry, a constant current is applied during galvanostatic cycling (GC) test and the potential is

recorded vs. time. Useful information such as capacitance, resistance and cyclability can be extracted.

Figure II – 9 show a typical GC plot of an EDLC. The capacitance of an EDLC can be calculated from

the slope of the curve according to Equation II – 6:

C=𝑖/∆𝐸

∆𝑡 II – 7

Where i is the current and ∆𝐸

∆𝑡 is the slope of the curve. However, for a pseudocapacitor with a non-

constant capacitance, a mean capacitance can be calculated by integrating the discharge current over

the time according to Equation II – 6.

Besides, the voltage drop as shown in the inset of Figure II – 9, can be used for series resistance

calculation. The cycling life span can also be estimated by screening capacitance over cycle numbers.

Page 77: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter II Experimental

69

Figure II - 9: Galvanostatic curve: voltage variation versus time while applying a current through a

supercapacitor cell. Inset: zoom-in of the current inversion region.

c) Electrochemical Impedance Spectroscopy

Electrochemical impedance spectroscopy (EIS) is a stationary technique where a sinusoidal signal of

either current or voltage with a small amplitude (a few millivolts or so) is applied to the system, within

a wide frequency range from megahertz to millihertz. Such measurements are made at steady-state

conditions and the small applied perturbation signal does not break the equilibrium. Thus, a linear

relation between the current and voltage is expected. The applied potential signal follows the Equation

II – 8 and corresponding current follows the Equation II – 9:

E(t)= Eo + ∆Eosin(ωt) II – 8

𝐼= Io + ∆𝐼osin(𝜔𝑡 + 𝜑) II

– 9

Where Eo is the initial potential, ∆Eo is the amplitude of the alternating voltage signal, ω is the pulsation

(rad s-1), Io is the initial current, ∆𝐼o is the amplitude of resulting current, 𝜑 is the phase shift.

E(t) and 𝐼 can be also expressed using a complex notation as:

Page 78: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter II Experimental

70

E(t)= Eo + ∆Eoexp(jωt) II – 10

𝐼= Io + ∆𝐼oexp[j(𝜔𝑡 + 𝜑)] II – 11

Therefore, the impedance can be written as:

Z = (∆Eo/∆Io)exp(-j 𝜑) II – 12

According to Euler equation, the impedance can also be expressed as:

Z = Z′ + jZ′′ II – 13

And the impedance modulus as:

|Z| = √𝑍′2 + 𝑍′′2 = ∆Eo/∆Io II – 14

Where Z′ and Z′′ are the real and imaginary parts of Z, respectively.

For the ideal electrical elements like capacitors, ohmic resistors, their impedances are described by

equation II – 15 and 16, respectively.

Zc = 1

𝑗ω𝐶 II – 15

ZR = R II – 16

Page 79: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter II Experimental

71

Figure II - 10: Equivalent circuits and corresponding Nyquist plots for capacitor/resistor combinations,

including that for a porous electrode. (a) Simple capacitor; (b) capacitor with equivalent or real series

resistance; (c) Capacitor with series resistance and potential-dependent Faradaic leakage resistance, RF.

Page 80: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter II Experimental

72

To study the electrochemical impedance spectroscopy, the Nyquist plot (Z′′ versus Z′) is commonly

used [9, 10]. Figure II – 10 shows the Randles equivalent circuits and their corresponding Nyquist plots.

As can be seen, for an ideal capacitor element, the Nyquist plot is a straight vertical line (Figure II –

10a). When an equivalent series resistance is added, a fix Rs resistance is shown in the Nyquist plot

(Figure II – 10b). In addition, if a faradaic reaction or charge transfer on electrode surface is considered,

a parallel faradaic resistance with capacitor is then added, which resulting in a semi-circle loop in the

Nyquist plot (Figure II – 10c). However, in practical situation, electrochemical systems are often more

complex. De Levie [11] described a porous electrode using transmission line model as shown in Figure

II – 11. Electrolyte resistances within pores is considered in such model, since to reach the inner surface

of the pores, anions or cations need to penetrate into the pore, which responds to much slower process

(compare to outer surface adsorption), thus result in different electrochemical signature.

Figure II - 11: The equivalent circuit of a pore [11].

Figure II – 12 is a typical Nyquist plot of a porous capacitor electrode with series resistance and

cumulative distributed resistance. At high frequencies, an equivalent series resistance (ESR) which may

originate from electrolyte resistance and/or contact resistance is inevitable [12]. At mid-range

frequencies, a linear relation between Z ′′ and Z ′ can be observed, which is characteristic of

Page 81: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter II Experimental

73

transmission-line behavior [6] as described in Figure II – 11. Such behavior arise at low frequencies

when a diffusion-controlled process is involved. At lower frequencies, a nearly vertical line corresponds

to a pure capacitive behavior like that shown in Figure II – 10a. Even more complex diagrams can be

attained when the pore shape effect in a porous electrode is considered. As shown in Figure II – 13,

various pore shape structure of the electrode result in different shape of the Nyquist plot. In these studies,

EIS is one of the major electrochemical technique for electrochemical characterization.

Figure II - 12: Characteristic form of a complex-plane impedance plot for a porous capacitor electrode

with series resistance Rs (intercept at 𝜔→∞) and cumulative distributed resistance, 𝛺 [12].

Page 82: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter II Experimental

74

Figure II - 13: Impedance behavior for a series of pore shapes, as shown, in a porous electrode. l is pore

length and 𝜆 is a form factor [13].

d) Complex capacitance model

To describe the supercapacitor frequency behavior, Taberna et al. [14] develop a model that resistance

and capacitance are functions of the pulsation ω and noted as R(ω) and C(ω). Taking a sample equivalent

circuit as shown in Figure II – 10b as an example. The resistance of the supercapacitor is then:

Z = R(ω) + [1

𝑗𝐶(ω)∗ω] II – 17

If consider the whole system as a simply supercapacitance K, then the resistance can be expressed as:

Z = 1

𝑗𝐾𝜔 = R(ω) + [

1

𝑗𝐶(ω)∗ω] II – 18

Leads to

Page 83: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter II Experimental

75

K = [𝐶(ω)

1+𝑅(ω) 2∗𝐶(ω)2∗ω 2] – [

𝑗𝐶(ω)2∗𝑅(ω)∗ω

1+𝑅(ω) 2∗𝐶(ω)2∗ω 2] II – 19

From this equation II – 19, a real part and an imaginary part of the supercapacitance K can be defined.

Where

Kre = 𝐶(ω)

1+𝑅(ω) 2∗𝐶(ω)2∗ω 2 II – 20

And

Kim = 𝐶(ω)2∗𝑅(ω)∗ω

1+𝑅(ω) 2∗𝐶(ω)2∗ω 2 II – 21

From Equation II – 20 and II – 21, Kre is the capacitance of the supercapacitor K, and Kim is the imaginary

part of the supercapacitance, which describes the losses in the supercapacitor [15].

An alternative approach is to consider the supercapacitor as a impedance Z(ω):

Z(ω) = 1

𝑗𝜔∗𝐶(𝜔) II – 22

And impedance Z(ω) can be written in its complex form

Z(ω) = Zre(ω) + Zim(ω) II – 23

Equations II – 22 and II – 23 lead to Equation II – 24

C(ω) = 1

𝜔∗(𝑗𝑍𝑟𝑒(𝜔)−𝑍𝑖𝑚(𝜔)) = -

𝑍𝑖𝑚(𝜔)

𝜔|𝑍(𝜔)|2 - 𝑗𝑍𝑟𝑒(𝜔)

𝜔|𝑍(𝜔)|2 II – 24

Thus, the real and imaginary part of the capacitance can be defined as:

Cre = 𝑍𝑖𝑚(𝜔)

𝜔|𝑍(𝜔)|2 II – 25

Cim = 𝑍𝑟𝑒(𝜔)

𝜔|𝑍(𝜔)|2 II – 26

The low frequency real capacitance corresponds to the capacitance of the supercapacitor, and the

imaginary part of the capacitance corresponds to an energy dissipation associated to irreversible

processes [14]. The complex capacitance is a powerful tool that can reveal the capacitance and kinetic

Page 84: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter II Experimental

76

response like time constant of a supercapacitor. Application and detailed discussions will be described

in Chapter IV.

Page 85: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter II Experimental

77

3 Reference

[1] R.A. Young, R.V. Kalin, Scanning Electron Microscopic Techniques for Characterization of

Semiconductor Materials, in: Microelectronics Processing: Inorganic Materials Characterization, vol.

295, American Chemical Society, 1986, Ch. 4, pp. 49-74.

[2] Z. Fu-Yun, W. Qi-Qi, Z. Xiao-Sheng, H. Wei, Z. Xin, Z. Hai-Xia, 3D nanostructure reconstruction

based on the SEM imaging principle, and applications, Nanotechnology, 25 (2014) 185705.

[3] M. Birkholz, Principles of X-ray Diffraction, in: Thin Film Analysis by X-Ray Scattering, Wiley-

VCH Verlag GmbH & Co. KGaA, 2006, pp. 1-40.

[4] H. Zhou, Y. Long, A. Meng, S. Chen, Q. Li, Y. Zhang, A novel method for kinetics analysis of

pyrolysis of hemicellulose, cellulose, and lignin in TGA and macro-TGA, RSC Advances, 5 (2015)

26509-26516.

[5] D.J. Gardiner, Introduction to Raman Scattering, in: D.J. Gardiner, P.R. Graves (Eds.) Practical

Raman Spectroscopy, Springer Berlin Heidelberg, Berlin, Heidelberg, 1989, pp. 1-12.

[6] P.-L. Taberna, P. Simon, Electrochemical Techniques, in: Supercapacitors, Wiley-VCH Verlag

GmbH & Co. KGaA, 2013, pp. 111-130.

[7] W.-Y. TSAI, Ion Adsorption in Porous Carbon : from Fundamental Studies to Supercapacitor

Applications, in, Université Toulouse 3 Paul Sabatier, 2015.

[8] V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.-L. Taberna, S.H. Tolbert, H.D. Abruña, P. Simon,

B. Dunn, High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance, Nat

Mater, 12 (2013) 518-522.

[9] P.L. Taberna, C. Portet, P. Simon, Electrode surface treatment and electrochemical impedance

spectroscopy study on carbon/carbon supercapacitors, Applied Physics A, 82 (2005) 639-646.

[10] J. Segalini, B. Daffos, P.L. Taberna, Y. Gogotsi, P. Simon, Qualitative Electrochemical Impedance

Spectroscopy study of ion transport into sub-nanometer carbon pores in Electrochemical Double Layer

Capacitor electrodes, Electrochim. Acta, 55 (2010) 7489-7494.

[11] R. de Levie, On porous electrodes in electrolyte solutions—IV, Electrochim. Acta, 9 (1964) 1231-

1245.

Page 86: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter II Experimental

78

[12] E.B.J.R. Macdonald, Impedance Spectroscopy Theory, Experiment, and Applications, in: E.B.J.R.

Macdonald (Ed.), 2005.

[13] H. Keiser, K.D. Beccu, M.A. Gutjahr, Abschätzung der porenstruktur poröser elektroden aus

impedanzmessungen, Electrochim. Acta, 21 (1976) 539-543.

[14] P.L. Taberna, P. Simon, J.F. Fauvarque, Electrochemical characteristics and impedance

spectroscopy studies of carbon-carbon supercapacitors, Journal of the Electrochemical Society, 150

(2003) A292-A300.

[15] A. Frichet, P. Gimenez, M. Keddam, An impedance investigation of thin oxide layers on pure

alimunium and of their water content, Electrochim. Acta, 38 (1993) 1957-1960.

Page 87: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter III Graphene-based Supercapacitors Using Ionic Liquid Eutectic Mixture Electrolyte

79

Chapter III Graphene-based Supercapacitors Using Ionic

Liquid Eutectic Mixture Electrolyte

In this chapter, we designed an electrolyte-mediated graphene electrode prepared by vacuum filtration,

electrolyte immersion and vacuum drying, following a process reported by Li’s group [1].

Electrochemical performance of the graphene films was characterized in both aqueous, organic and

ionic liquid electrolytes. A large temperature range from -40 to 80 oC was selected thanks to the use of

an ionic liquid eutectic mixture electrolyte.

1 Experimental

1.1 Graphene synthesis

Figure III – 1 shows the main procedure for graphene synthesis. Commercially available graphite

powder (KS44 graphite, purchased from IMERYS Graphite & Carbon Corporation) was used as the

raw material. Graphite oxide was prepared by a modified Hummers method [2]. Specifically, a mixture

of graphite flakes (1.0 g, 1 wt equiv) and KMnO4 (6.0 g, 6 wt equiv) was added to a 9:1 mixture of

concentrated H2SO4/H3PO4 (120:13 mL). The reaction was then heated to 50°C and stirred for 12 hours,

followed by an addition of 200 mL ice with 1 mL 30 wt% H2O2. After washing by water, 30% HCl and

ethanol, a graphite oxide colloidal suspension was obtained. Graphene oxide colloidal suspension was

obtained after 1 h sonication and 20 minutes centrifugation at 10,000 rpm of the graphite oxide water

colloidal suspension.

Figure III - 1: Synthesis of graphene.

Page 88: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter III Graphene-based Supercapacitors Using Ionic Liquid Eutectic Mixture Electrolyte

80

Reduced graphene oxide was then obtained through the reduction of graphene oxide by adding 0.2 mL

hydrazine (35 wt% in water) and 0.35 mL ammonia (28 wt% in water) solution to the graphene oxide

colloidal suspension (0.5 mgmL-1, 100 mL) in a glass vial and stirring over 1 hour (100 oC).

To identify the different species formed during graphene synthesis, XRD patterns of pristine graphite,

graphite oxide, graphene oxide, and reduced graphene oxide were recorded. As shown in Figure III – 2,

the (002) peak of pristine graphite appears at 26o, then decreases to 9.2o after oxidation, which

corresponding to an increase of interlayer spacing from 0.34 nm to 0.96 nm, coming from the

intercalation of various functional group after oxidation [3]. The XRD pattern of graphene oxide

presents the (002) peak at 8.4o with lower intensity, which suggests the exfoliation of graphene oxide

from graphite oxide. Lastly, the reduced graphene oxide shows a weak (002) peak at lower two theta

degree, indicating a larger interlayer spacing and less coherent domain size.

Figure III - 2: X-Ray diffraction patterns of graphite, graphite oxide, and graphene oxide and reduced

graphene oxide. Inset: zoom in the 6° - 12° 2 range.

Page 89: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter III Graphene-based Supercapacitors Using Ionic Liquid Eutectic Mixture Electrolyte

81

1.2 Graphene electrodes preparation

As shown in Figure III – 3, to prepare graphene electrodes, 60 mL 0.5 mg mL-1 reduced graphene

colloidal was vacuum filtrated through an Anodisc© membrane (Whatman company) with an average

pore size of 0.1 µm. After vacuum filtration, graphene film was carefully peeled off and immersed in

deionized water overnight to remove the remaining hydrazine and ammonia [1].

Figure III - 3: Schematic of preparation of graphene film.

Afterward, graphene disc films were punched out (7 mm diameter) and transferred into acetonitrile for

more than 48h to exchange the water with acetonitrile. Films were then immersed in 10wt% ionic liquid

mixture in acetonitrile for more than 72 hours, to exchange the acetonitrile in graphene film with the

ionic liquid solution. Samples were then collected, clipped between two glass plates and moved to a

vacuum oven at 80oC. After 48 hours, the volatile acetonitrile was completely evaporated and

nonvolatile ionic liquids remained inside the graphene film, which is expected to limit the restacking of

graphene layers. As a result of the densification, the thickness of the graphene film was greatly

decreased, while the diameter was measured close to 5.4 mm. Herein, the graphene film was well

prepared and ready for electrochemical tests.

The weight of the electrodes was measured after electrochemical tests. Specifically, the electrodes were

Page 90: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter III Graphene-based Supercapacitors Using Ionic Liquid Eutectic Mixture Electrolyte

82

washed by acetonitrile and ethanol to eliminate the trapped electrolyte and then the weight was

measured after vacuum drying over 24 hours.

2 Results and discussion

2.1 Material characterizations

Figure III - 4: X-Ray diffraction patterns of graphite, graphite oxide, and graphene hydrogel and IL-

graphene film. Inset: zoom in the 8° - 35° 2 range.

X-ray diffraction patterns of graphite, graphite oxide, graphene hydrogel and IL-graphene film are

presented in Figure III – 4. Graphene hydrogel stands for graphene films without electrolyte, obtained

by vacuum filtration that contains around 80wt% water inside. IL-Graphene is the graphene film

obtained after electrolyte immersion that contains ionic liquid mixture electrolyte after acetonitrile

removal. The (002) peak around 26.0o for pristine graphite corresponds to an expected interlayer spacing

of 0.336 nm. For graphite oxide, the peak shifts to 9o as a result of the increased interlayer spacing to

0.976 nm after oxidation [3]. No peaks were observed for graphene hydrogel or IL-graphene film, which

Page 91: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter III Graphene-based Supercapacitors Using Ionic Liquid Eutectic Mixture Electrolyte

83

suggests an amorphous like structure. Such a result was expected since for graphene hydrogel which

contains more than 80 wt.% percent of water inside (see in Figure III – 5a), the exfoliated graphene

layers were separated from each other by water molecule that prevents from restacking [4]. On the other

hand, when graphene hydrogel is filled with electrolyte (water replaced by nonvolatile electrolyte), the

presence of the electrolyte is also assumed to prevent restacking. A TGA test (under Argon atmosphere)

was carried out to confirm the presence of electrolyte in the graphene film. As can be seen in Figure III

– 5a, for a graphene hydrogel, around 80% of weigh is lost below 100 oC, which is ascribed to be the

evaporation of water [5]. At temperature higher than 100 oC, no additional weigh loss can be identified,

which also can be seen from the plot of weight losing rate which stays close to 0 at beyond 100oC. TGA

analysis of an IL-graphene is shown in Figure III – 5b. No visible weight loss can be observed below

200 oC, indicating the absence of residual water. Then, more than 90% of weight was lost within a

temperature range from 250 to 450 degree Celsius, corresponding to a sudden increase of weight losing

rate. This can be ascribed to the decomposition of (PIP13-PYR14)-FSI ionic liquid electrolyte [6].

Figure III - 5: TGA analysis of a) graphene hydrogel and b) IL - graphene.

Raman spectroscopies of graphite, graphite oxide, reduced graphene oxide and IL-graphene film are

presented in Figure III – 6. The main features in the Raman spectra of carbon materials are the so-called

G, D and 2D peaks, which lie at around 1560, 1360 cm−1 and 2690 cm-1, respectively for visible

excitation [7]. D peak is caused by disordered structure of carbons, and G peak is primary associated

with sp2 in-plane vibrational mode and 2D mode is a second-order overtone of a different in-plane

vibration [8]. Therefore, the ratio of peak intensities ID/IG is typically used to characterize the level of

Page 92: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter III Graphene-based Supercapacitors Using Ionic Liquid Eutectic Mixture Electrolyte

84

disorder in graphene and related materials. In Figure III – 6, the intensities ratios of ID/IG of graphite,

graphite oxide, reduced graphene oxide and IL-graphene film are 0.1435, 1.2572, 1.6839 and 2.2371,

respectively, which indicates an increase of the disorder. The oxidation of graphite into graphite oxide

increase the disorder due to the presence of intercalated functional group and carbon defects. When

sonication is used to exfoliate graphite oxide to graphene oxide, the periodic structure in the c-axis

direction is lost, thus increasing the disorder to reduced graphene oxide. The disorder is further enhanced

when graphene flakes are separated by immersed ionic liquid electrolyte.

Figure III - 6: Raman spectra of graphite, graphite oxide, reduced graphene oxide and IL-graphene film.

SEM observations of the films are shown in Figures III – 7. As can be seen in Figure III – 7a and b,

graphene films/GF present a homogeneous thickness of 60 µm which allows for accurate calculation of

the volumetric capacitance. A layer-by-layer structure was shown in Figure III – 7 c and d, as a result

of the filtration process. Such a layered structure is assumed to be at the origin of the densification of

the films as compared to conventional three-dimensional disordered structure, resulting in a high

volumetric energy density [1].

Page 93: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter III Graphene-based Supercapacitors Using Ionic Liquid Eutectic Mixture Electrolyte

85

Figure III - 7: SEM images of cross-section morphology of graphene film after electrochemical tests.

Scale bar: 100 μm (a), 50 μm (b), 20 μm(c). 5 μm(d).

2.2 Electrochemical characterizations

Graphene hydrogel or IL-Graphene (refer to graphene intercalated with ionic liquid) were used as

working electrodes directly after vacuum drying, without any binders. A eutectic ionic liquid mixture

composed of (1:1 by weight or molar ratio) N-methyl-N-propylpiperidinium bis(fluorosulfonyl)imide

(PIP13-FSI) and N-butyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide (PYR14-FSI) was prepared

and used as the electrolyte [9]. Both ionic liquids were bought from Solvionic SA (France). Experiments

were also conducted in 1 M KOH (aqueous electrolyte) and 1 M EMI-BF4 in acetonitrile (organic

electrolyte) for comparison purpose. Two 25 mm-thick porous Al2O3 separators were used together with

gold (for RHD cell) or platinum (for Swagelok cell) as current collectors. Tests were performed by

using an Autolab PGSTAT128N (Metrohm, Switzerland). Besides, three-electrode Swagelok cell were

assembled and tested at room temperature, using a silver wire as quasi-reference electrode and tested

by using a VMP3 potentiostat (Biologic, S.A.). All supercapacitors cells using organic or ionic liquid

electrolytes were assembled in a glove box under argon atmosphere (water and oxygen contents less

than 1 ppm).

Page 94: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter III Graphene-based Supercapacitors Using Ionic Liquid Eutectic Mixture Electrolyte

86

Capacitance was calculated from cyclic voltammograms by measuring the slope of the integrated

discharge charge Q versus discharge time (s) plot and divide by scan rate (V/s). Gravimetric capacitance

was calculated by dividing the electrode capacitance by the weight of graphene on one electrode,

according to Equation II – 6 in Chapter II.

2.2.1 Electrochemical tests in aqueous electrolyte

A graphene hydrogel with a mass loading of 0.9 mg/cm2 was first studied in aqueous 1 M KOH

electrolyte. Cyclic voltammetry tests were carried out at various scan rate within a 1 V voltage range

using a 2-electrode cell configuration. As explained in Chapter II, the rectangular cyclic voltammetry

profiles in Figure III – 8 suggests a capacitive behavior of the system. Rectangular CVs shape was even

at high scan rate of 1 V s-1, indicating a high power performance. A high capacitance of 160 F g-1 at a

scan rate of 20 mV s-1 was calculated. However, a narrow electrochemical voltage window of 1 V result

in a lower energy density according to Equation III – 1.

E = 1

2CV2 III – 1

Where E is the energy, C is the capacitance, and V is the voltage window.

Figure III - 8: Voltammetry profiles at various scan rates of graphene hydrogel electrode in 1M KOH

electrolyte.

Page 95: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter III Graphene-based Supercapacitors Using Ionic Liquid Eutectic Mixture Electrolyte

87

Additionally, electrochemical impedance spectroscopy (EIS) measurements were carried out at open

circuit voltage (OCV) with an amplitude of 10 mV at the frequency range from 0.01 Hz to 200 kHz.

The Nyquist plot is shown in Figure 9a, where an equivalent series resistance (ESR) of 0.15 Ω.cm2 can

be obtained from the intersection of the high frequency plot and the x-axis. Frequently, the ionic

resistance of the electrolyte inside the MXene film can be obtained from the difference between real

resistance at knee frequency and ESR. However, such a knee frequency is not always easy to be

identified. Hence, we define here the difference between real resistance at 45 phase degree and ESR to

characterize the ionic resistance of the electrolyte in the porous structure of the electrode. Hereafter, the

ionic resistance is referred to the difference between real resistance at 45 phase degree and ESR. The

real resistance at 45 phase degree can be obtained directly from the EIS test. As introduced in Chapter

II, the vertical line at low frequency area indicates a capacitive behavior, which is in good agreement

with CVs signature. Figure III – 9b shows the real Cre and imaginary Cim parts of complex capacitances

(calculated from equation II – 25 and 26) with the frequency. Cre corresponds to the cell capacitance.

At high frequency, the low capacitance stems from the limited electrochemical response confined at the

outer surface of the film. As a result, the capacitive behavior is the one obtained for a planar

configuration, with capacitance in the range of 10 µF/cm2. When the frequency is decreased the average

displacement length of the ions is increased and the capacitive response of the pore becomes visible.

The maximum capacitance at low frequency was close to 70 mF cm-2. Evolution of imaginary

capacitance Cim vs. frequency is also presented in Figure III – 9b. The imaginary part of the capacitance

goes through a maximum at a frequency fo, whose reciprocal is defined as a time constant (to = 1/fo =

0.5s). This time constant has been described as a dielectric relaxation time characteristic of the system

[10]. It corresponds to the minimum discharge time that can be used to keep an energy efficiency higher

than 50%, and at this time constant, half of the maximum capacitance (Cmax) at low frequency is reached.

For shorter charge/discharge times, capacitance will be less than Cmax/2, and longer times can obtain

more capacitance than Cmax/2.

Page 96: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter III Graphene-based Supercapacitors Using Ionic Liquid Eutectic Mixture Electrolyte

88

Figure III - 9: a) Nyquist plot of graphene hydrogel electrode in 1M KOH electrolyte. b) The real Cre

and imaginary Cim parts of complex capacitance vs. frequency.

2.2.2 Electrochemical tests in organic electrolyte

IL-graphene films have been prepared accordingly to the process described in Figure III – 3. The ionic

liquid salt between the graphene layers allow to avoid restacking and improve the accessibility of the

ions to the graphene surface. IL-graphene film was studied in 1M EMI-BF4/acetonitrile. From the

Nyquist plot (Figure III – 10a), a low equivalent series resistance of 0.5 Ω.cm2 and an ionic resistance

of 6.0 Ω.cm2 are identified, which are slightly larger than those value in KOH electrolyte. Similarly, the

vertical line at low frequency suggests a capacitive behavior. The complex capacitance vs. frequencies

plot is presented in Figure III – 10b, the change of the real part of capacitance show a low frequency

capacitance of 50 mF cm-2, which is less than that of the KOH hydrogel. However, the capacitance

seems to reach the expected capacitive plateau at low frequency, suggesting improved accessibility of

the porous network of the graphene electrode compare to the hydrogel. This is supposed to come from

the presence of IL between the graphene layers. The frequency for the maximum Cim is 0.5Hz, that is

to say a time constant of 2s. This time constant corresponds to the minimum discharge time the

supercapacitor still maintaining an energy efficiency larger than 50%. Here again, the low time constant

for the IL-graphene electrode [11] is assumed to come from a high accessibility to the graphene surface

thanks to the presence of IL salt between the layers.

Page 97: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter III Graphene-based Supercapacitors Using Ionic Liquid Eutectic Mixture Electrolyte

89

Figure III - 10: a) Nyquist plot of graphene ionogel electrode in 1 M EMI-BF4/Acetonitrile electrolyte

at OCP. b) The real Cre and imaginary Cim parts of complex capacitance vs. frequency.

The rectangular CV profiles (Figure III – 11) at scan rates of 20 and 50 mV s-1 confirm the capacitive

behavior. A large potential window of 3 V (-1.5 V to 1.5 V vs. Ag) is achieved, along with a capacitance

of 150 F g-1, which is similar to that of KOH electrolyte. Using organic electrolyte, higher energy density

can be delivered thanks to the larger potential window of 3V.

The superior performance as achieved in organic electrolyte highlight the interest of using this such IL-

graphene films in neat ionic liquid electrolytes. (PIP13-PYR14)-FSI ionic liquid eutectic mixture

electrolyte was thus selected since such an IL eutectic mixture can be used in a wide temperature range

from -80 to 100 oC [9, 12].

Page 98: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter III Graphene-based Supercapacitors Using Ionic Liquid Eutectic Mixture Electrolyte

90

Figure III - 11: Cyclic Voltammograms at scan rate of 20 and 50 mV s-1 of graphene ionogel electrode

in 1 M EMI-BF4/Acetonitrile electrolyte.

2.2.3 Electrochemical tests in ionic liquid eutectic mixture electrolyte

a) Tests of IL-Graphene immersed in various concentrations of electrolytes

IL-graphene films have been prepared according to the process shown in Figure 3, by immersing

graphene hydrogel films in 5 wt%, 10 wt%, 20 wt%, 50 wt% (PIP13-PYR14)-FSI in acetonitrile, and

further vacuum drying respectively. The samples were tested in neat eutectic ionic liquid mixture (PIP13-

FSI: PYR14-FSI) (50:50). As shown in Figure III – 12, the CVs collected at 20 mV s-1 show a large

voltage window of 3.5 V. Quasi rectangular voltammetry profiles are obtained with samples that

prepared from immersion in 10 wt%, 20 wt%, 50 wt% electrolyte; however, when goes down to 5 wt%

immersed sample, the voltammetry profile is hugely squeezed showing a high resistive behavior. When

there are not enough electrolyte between the graphene flakes, those flakes tend to collapsed and restack

together, thus limiting the accessibility to larger ions of ionic liquid electrolytes. Samples immersed in

10 wt% electrolyte performs as well as those immersed in 20 wt% and 50 wt%, therefore, to reduce the

weight and cost, samples immersed in 10 wt% electrolyte were selected for further study.

Page 99: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter III Graphene-based Supercapacitors Using Ionic Liquid Eutectic Mixture Electrolyte

91

Figure III - 12: Cyclic voltammetry profiles at a scan rate of 20 mV s-1 within a large voltage window

of 3.5 V in (PIP13-PYR14)-FSI electrolyte.

b) Room temperature study of IL-Graphene prepared from immersing in 10% (PIP13-PYR14)-FSI in

acetonitrile

IL-Graphene films were tested in the ionic liquid eutectic mixture electrolyte (PIP13-PYR14)-FSI. Figure

III – 13 shows CVs of 3-electrode Swagelok cell at room temperature, at a scan rate of 20 mV s-1, in the

(PIP13)0.5(PYR14)0.5-FSI ionic liquid eutectic mixture electrolyte. The counter electrode was an

overcapacitive activated carbon electrode. The rectangular shape of the CV indicates a capacitive

behavior. High gravimetric capacitance of 175 F g-1 together with a volumetric capacitance of 50 F cm-

3 was achieved, which is superior to most of the reduced graphene oxides reported so far in ionic liquid

electrolytes or conventional organic electrolytes (Table III – 1) [1, 9, 13-16]. In addition, a large

potential window of 3.5 V (from -2.1 V to 1.4 V vs. Ag) make these materials more promising for

designing high energy supercapacitors.

Page 100: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter III Graphene-based Supercapacitors Using Ionic Liquid Eutectic Mixture Electrolyte

92

Figure III - 13: Cyclic Voltammetry plot collected at room temperature in (PIP13-PYR14)-FSI. The scan

rate is 20 mV s-1, within a potential window from -2 V to 1.5 V vs. Ag.

A symmetric two-electrode Swagelok cell was assembled and tested at room temperature. The high

frequency loop observed in the Nyquist plot (Figure III – 14a) originates from the contact resistance

between the current collectors and the film [17]. The high frequency series resistance was measured at

40 Ω.cm², which is in the same range as previously reported for this electrolyte at room temperature

[12]. When going down to low frequencies, the fast increase of the imaginary part of the impedance

reveals the capacitive behavior of the electrode. The complex capacitance vs. frequencies plots are

presented in Figure III – 14b. Although the areal capacitance is only 7 mF cm-2, a small time constant

of 0.03s can be identified from the peak position of imaginary capacitance plot. This can be ascribed to

the low mass loading and high surface accessibility. Figure III – 14c shows the CVs at different scan

rates. High gravimetric capacitance of 170 F.g-1 was obtained at a scan rate of 5 mV/s within a 3.5 V

voltage range, which is comparable to that reported by Yang et al. using similar IL-graphene with EMI-

BF4 electrolyte [1]. The change of the capacitance with the scan rate is shown in Figure III – 14d. More

than 75% of the maximum capacitance was still preserved at 50 mV/s, thus highlighting the decent

power performance of the cell despite using a neat ionic liquid electrolyte. The associated volumetric

capacitance, calculated from the electrode thickness, was 50 F.cm-3 at 5 mV.s-1, which is also

comparable to conventional activated carbon powders [18].

Page 101: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter III Graphene-based Supercapacitors Using Ionic Liquid Eutectic Mixture Electrolyte

93

Figure III - 14: Electrochemical characterization at room temperature of a 2-electrode cell assembled

with dense graphene films, in eutectic mixture electrolyte: a) EIS Nyquist plot; b) Complex capacitance

vs. frequencies; c) CVs at various scan rates; d) change of the specific capacitance with the potential

scan rate.

c) Temperature study of IL-Graphene immersed in 10% (PIP13-PYR14)-FSI in acetonitrile

For high and low temperature tests, a RHD cell (see details in Chapter II) was used, which enables finely

precise control of the cell temperature from −40 up to 100oC [19]. After reaching each test temperature,

the temperature was held at least two hours before the measurements to ensure the cell has reached the

desired temperature.

Page 102: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter III Graphene-based Supercapacitors Using Ionic Liquid Eutectic Mixture Electrolyte

94

Figure III - 15: Electrochemical characterization at 40 °C, 60 °C and 80 oC of a 2-electrode cell

assembled with graphene films, in eutectic mixture electrolyte. Nyquist plots at OCV (a), CVs (b) and

change of the specific capacitance with the temperature (c).

Figure III – 15 shows the electrochemical characterization at higher temperature, namely 40 °C, 60 °C

and 80 oC, which were tested using a specific RHD cell (see experimental part). As expected, the high

frequency series resistance decreases with increasing temperature (Figure III – 15a), due to the increase

of the electrolyte conductivity. The improved capacitive behavior at elevated temperature can be seen

by the sharp increase in the imaginary part at lower resistance; it is associated with the increase of the

electrolyte conductivity with the temperature [9, 12]. The improved capacitive behavior with the

temperature is also visible on the CVs (Figure III – 15b), with capacitive electrochemical signatures.

Page 103: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter III Graphene-based Supercapacitors Using Ionic Liquid Eutectic Mixture Electrolyte

95

However, a limitation in the potential window from 3.5 V down to 3.2 V was observed when the

temperature was increased from 40 oC to 80 oC. Such a behavior is associated with the electrochemical

activity (oxidation) of the ionic liquid electrolyte at high potential, as already reported elsewhere [9].

Specific capacitance was increased from 160 F.g-1 (47 F.cm-3) up to 175 F.g-1 (51 F.cm-3) with increasing

temperature because of the viscosity decrease.

Figure III - 16: Electrochemical characterization at 0 °C, -20 °C, -30 °C and -40 oC of a 2-electrode cell

assembled with graphene films, in eutectic mixture electrolyte. Nyquist plots (a), CVs at 1 mV s-1 (b)

and change of the specific capacitance with the temperature at a scan rate of 1 mV s-1 (c).

Figure III – 16 shows the electrochemical characterizations at low and negative (sub-zero) temperature.

Owing to the high viscosity under low temperature (so the low conductivity), a slow scan rate of 1 mV

s-1 was applied. The Nyquist plot (Figure III – 16a) shows an important increase of the series resistance

Page 104: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter III Graphene-based Supercapacitors Using Ionic Liquid Eutectic Mixture Electrolyte

96

at negative temperature, in agreement with the decrease of the electrolyte conductivity [12]. The

electrochemical signature (Figure III – 16b) still shows a capacitive behavior down to -30 °C while it

becomes too resistive at -40 °C. A capacitance of 135 (40 F.cm-3) F g-1 was obtained at 0 °C and 100

(30 F.cm-3) F g-1 at -30 °C. When the temperature goes down to -40 oC, the electrochemical behavior is

governed by the ohmic drops inside the bulk of the electrolyte.

These results show that the combination of dense graphene films with a eutectic ionic liquid mixture

can be promising as an alternative to conventional porous carbons for supercapacitor applications.

Beyond the high gravimetric and volumetric capacitance obtained at room temperature (165 F.g-1 and

47 F.cm-3, respectively), the large potential window (3.5 V) and temperature operation range (from -

30°C to 80 °C) make them suitable for designing high energy density supercapacitors.

3 Conclusions

Using vacuum filtration, electrolyte immersion and selective evaporation, compact graphene films

characterized by a layer-by-layer structure was prepared and used as electrode materials for

supercapacitors without binders. In aqueous electrolyte (1M KOH), a graphene hydrogel show high

capacitance of 160 F g-1 (47 F.cm-3) within a voltage window of 1V as well as the high power

performance. However, the narrow voltage range limits the increment of energy density. Then an IL-

graphene film was tested in organic electrolyte (1 M EMI-BF4/Acetonitrile) and high capacitance of

150 F g-1 (44 F.cm-3) was obtained within a potential window from -1 to 1V vs. Ag. Furthermore, an

IL-graphene film was studied in a eutectic ionic liquid mixture (PIP13)0.5(PYR14)0.5-FSI electrolyte,

where high capacitance of 175 F.g-1 (51 F.cm-3) as well as a large potential window from -2 to 1.5 V vs.

Ag was achieved using three electrode Swagelok configuration. Besides, thanks to the use of a eutectic

ionic liquid mixture (PIP13)0.5(PYR14)0.5-FSI as electrolyte, a large working temperature window from

-40 to 80 oC can be explored. The electrochemical characterizations were carried out using a specific 2-

electrode RHD cell for studying the system in various temperatures. A maximum specific capacitance

of 175 F.g-1 (51 F.cm-3) was reached at 80 oC. Despite the capacitance at -40oC was limited at 60 F.g-1,

130 F.g-1 (40 F.cm-3) and 100 F.g-1 (30 F.cm-3) were still achieved at -20 oC and -30 oC respectively.

The voltage window was increased up to 3.5V at room temperature and 3.2V at 80 oC, thus leading to

substantial improvement in the cell energy density. Additionally, a volumetric capacitance of 50 F.cm-

Page 105: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter III Graphene-based Supercapacitors Using Ionic Liquid Eutectic Mixture Electrolyte

97

3 was achieved with a thick graphene film of 60 µm. Considering the superior performance achieved,

these materials could be a promising alternative to activated carbon operating in conventional

electrolytes for supercapacitor applications, especially under extreme temperature conditions.

This part of the work was published in Electrochim. Acta, 206 (2016) 446-451, see Ref [20].

Page 106: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter III Graphene-based Supercapacitors Using Ionic Liquid Eutectic Mixture Electrolyte

98

4 Reference

[1] X.W. Yang, C. Cheng, Y.F. Wang, L. Qiu, D. Li, Liquid-Mediated Dense Integration of Graphene

Materials for Compact Capacitive Energy Storage, Science, 341 (2013) 534-537.

[2] D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z.Z. Sun, A. Slesarev, L.B. Alemany, W.

Lu, J.M. Tour, Improved Synthesis of Graphene Oxide, Acs Nano, 4 (2010) 4806-4814.

[3] A.M. Dimiev, J.M. Tour, Mechanism of Graphene Oxide Formation, ACS Nano, (2014).

[4] X.W. Yang, J.W. Zhu, L. Qiu, D. Li, Bioinspired Effective Prevention of Restacking in Multilayered

Graphene Films: Towards the Next Generation of High-Performance Supercapacitors, Advanced

Materials, 23 (2011) 2833-+.

[5] A.M. Dimiev, L.B. Alemany, J.M. Tour, Graphene Oxide. Origin of Acidity, Its Instability in Water,

and a New Dynamic Structural Model, Acs Nano, 7 (2013) 576-588.

[6] M. Nádherná, J. Reiter, J. Moškon, R. Dominko, Lithium bis(fluorosulfonyl)imide–PYR14TFSI

ionic liquid electrolyte compatible with graphite, Journal of Power Sources, 196 (2011) 7700-7706.

[7] A.C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling,

doping and nonadiabatic effects, Solid State Communications, 143 (2007) 47-57.

[8] I. Childres, L.A. Jauregui, W. Park, H. Cao, Y.P. Chen, Raman spectroscopy of graphene and related

materials, New developments in photon and materials research, 1 (2013).

[9] W.Y. Tsai, R.Y. Lin, S. Murali, L.L. Zhang, J.K. McDonough, R.S. Ruoff, P.L. Taberna, Y. Gogotsi,

P. Simon, Outstanding performance of activated graphene based supercapacitors in ionic liquid

electrolyte from-50 to 80 degrees C, Nano Energy, 2 (2013) 403-411.

[10] K.S. Cole, R.H. Cole, Dispersion and absorption in dielectrics I. Alternating current characteristics,

The Journal of chemical physics, 9 (1941) 341-351.

[11] C. Portet, P.L. Taberna, P. Simon, E. Flahaut, C. Laberty-Robert, High power density electrodes

for Carbon supercapacitor applications, Electrochim. Acta, 50 (2005) 4174-4181.

[12] R.Y. Lin, P.L. Taberna, S. Fantini, V. Presser, C.R. Perez, F. Malbosc, N.L. Rupesinghe, K.B.K.

Teo, Y. Gogotsi, P. Simon, Capacitive Energy Storage from -50 to 100 degrees C Using an Ionic Liquid

Page 107: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter III Graphene-based Supercapacitors Using Ionic Liquid Eutectic Mixture Electrolyte

99

Electrolyte, Journal of Physical Chemistry Letters, 2 (2011) 2396-2401.

[13] Y. Chen, X.O. Zhang, D.C. Zhang, P. Yu, Y.W. Ma, High performance supercapacitors based on

reduced graphene oxide in aqueous and ionic liquid electrolytes, Carbon, 49 (2011) 573-580.

[14] S.R.C. Vivekchand, C.S. Rout, K.S. Subrahmanyam, A. Govindaraj, C.N.R. Rao, Graphene-based

electrochemical supercapacitors, J. Chem. Sci., 120 (2008) 9-13.

[15] C.N.R. Rao, K. Gopalakrishnan, U. Maitra, Comparative Study of Potential Applications of

Graphene, MoS2, and Other Two-Dimensional Materials in Energy Devices, Sensors, and Related

Areas, ACS Appl. Mater. Interfaces, 7 (2015) 7809-7832.

[16] T. Kim, G. Jung, S. Yoo, K.S. Suh, R.S. Ruoff, Activated Graphene-Based Carbons as

Supercapacitor Electrodes with Macro- and Mesopores, Acs Nano, 7 (2013) 6899-6905.

[17] C. Portet, P.L. Taberna, P. Simon, C. Laberty-Robert, Modification of Al current collector surface

by sol–gel deposit for carbon–carbon supercapacitor applications, Electrochim. Acta, 49 (2004) 905-

912.

[18] A. Burke, R&D considerations for the performance and application of electrochemical capacitors,

Electrochim. Acta, 53 (2007) 1083-1091.

[19] L. Negre, B. Daffos, P.L. Taberna, P. Simon, Solvent-Free Electrolytes for Electrical Double Layer

Capacitors, Journal of the Electrochemical Society, 162 (2015) A5037-A5040.

[20] Z. Lin, P.-L. Taberna, P. Simon, Graphene-Based Supercapacitors Using Eutectic Ionic Liquid

Mixture Electrolyte, Electrochim. Acta, 206 (2016) 446-451.

Page 108: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor
Page 109: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter IV High capacitance of Ti3C2Tx MXene in aqueous Electrolyte

101

Chapter IV High capacitance of Ti3C2Tx MXene in aqueous

Electrolyte

1 Introduction

As introduced in Chapter I, MXenes are a novel family of two-dimensional (2D) early transition metal

carbides and carbonitrides which are produced by selectively etching of the A element from MAX

phases with a formula of Mn+1XnTx, where M presents an early transition metal, X is C and/or N, n is

an integer between 1-3, Tx stands for terminated functional groups [1, 2].

MXenes have shown promising potential as electrode materials for supercapacitors in aqueous

electrolytes [3, 4], especially in sulfuric acid electrolyte, where extremely high capacitance (beyond 900

F cm-3 and 245 F g-1) have been obtained thanks to the pseudocapacitive contribution. A recent XANES

study has confirmed that the pseudocapacitive behavior comes from the continuous change of the

oxidation state of Ti surface Ti atoms upon intercalation during polarization [5].

In this Chapter, we will show how the control of the texture of the electrode can improve the

electrochemical performance of Ti3C2 MXene materials in sulfuric acid electrolyte. We propose a facile

route of making Ti3C2Tx hydrogel film by vacuum assisted filtration. After electrolyte immersion, the

Ti3C2Tx hydrogel film is pre-intercalated with electrolyte, which is believed to enhance the accessibility

of MXene surface to the electrolyte, thus increasing the capacitance and power performance.

2 MXene synthesis and electrode preparation

Multilayer Ti3C2Tx MXene flakes were prepared by selective etching of Al from Ti3AlC2 MAX phase

by a mixture solution of hydrochloric acid (HCl) and lithium fluoride (LiF) [6] as shown in Figure IV

– 1. The reaction follow the processes as mentioned in Chapter I:

Ti3AlC2 + 3HF = AlF3 + 3/2H2 + Ti3C2 (a)

Ti3C2 + 2H2O = Ti3C2 (OH)2 + H2 (b)

Ti3C2 + 2HF = Ti3C2F2 + H2 (c)

Page 110: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter IV High capacitance of Ti3C2Tx MXene in aqueous Electrolyte

102

Differently, mild mixture solution of hydrochloric acid (HCl) and lithium fluoride (LiF) can be used

instead of the hazard Hydrofluoric acid (HF). Specifically, 2 g LiF was added to 40 mL 9M HCl solution,

followed by the slow addition of 2 g of Ti3AlC2. After etching for 24 h at 35oC, the obtained Ti3C2Tx

flakes were washed until a pH value of ~ 6 was achieved. The delaminated Ti3C2Tx colloidal solution

was prepared by 1 h sonication, followed by 1 h centrifugation at 3500 rpm to eliminate the sediment.

Figure IV - 1: Schematic for the exfoliation process of MAX phases and formation of MXenes [2].

To prepare the Ti3C2Tx MXene electrode films, Ti3C2Tx colloidal solution was taken for vacuum

filtration to prepare the Ti3C2Tx hydrogel film (Figure IV – 2). By taking different amounts of Ti3C2Tx

colloidal solution for vacuum filtration, the mass loading (also film thickness) of the obtained Ti3C2Tx

hydrogel film can be roughly controlled. To make the hydrogel film, the vacuum was disconnected

immediately once there were no free Ti3C2Tx colloidal flakes on the wet filtrate cake. After vacuum

filtration, both films were immersed in acetone and carefully peeled off from the filter membrane.

Compared to dried Ti3C2Tx film (Ti3C2Tx film vacuum filtered to fully dried and refer as dried Ti3C2Tx

film afterward), the hydrogel Ti3C2Tx film is assumed to contain huge amounts of water between

Ti3C2Tx flakes, as shown in the sketch in Figure IV – 2. The obtained hydrogel film was then immersed

in H2SO4 electrolyte to replace the D.I. water in the aim of increasing the accessibility of the electrolyte

Page 111: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter IV High capacitance of Ti3C2Tx MXene in aqueous Electrolyte

103

ions to the MXene surface to the electrolytes. The electrode pellet was punched out from the Ti3C2Tx

film after electrolyte immersion for more than 24 hours, and ready for electrochemical tests.

Figure IV - 2: Schematic illustration of Ti3C2Tx/H2SO4 hydrogel film preparation procedure.

Figure IV - 3: TGA of dried and hydrogel MXene films.

To further confirm the presence of water molecule between the MXene flakes, thermogravimetric

analysis was carried out on both MXene dried film and hydrogel film under argon atmosphere. As

shown in Figure IV – 3, for the dried film, only 1.5 wt% loss is observed up to 200 oC, which can be

Page 112: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter IV High capacitance of Ti3C2Tx MXene in aqueous Electrolyte

104

ascribed to the removal of residual water trapped in MXene. Further weight loss for the dried film

originate from the decomposition of surface functional groups [7]. For the hydrogel film, 15 % of weight

is lost below 200 oC, which is believed to be the vaporization of the physical absorbed water on MXene

surface. Further weight loss occurs between 300 and 400 oC, assumed to come from the dehydration

and decomposition of surface functional groups. Lastly, the dried film losses 15 % of weight and the

hydrogel film losses more than 40 % of weight. This result suggests the presence of H2SO4 electrolyte

between the MXene flakes in the hydrogel film.

3 XRD characterization and SEM observation

Figure IV - 4: XRD patterns of Ti3AlC2 MAX phase and Ti3C2Tx MXene.

Figure IV – 4 presents the XRD patterns of the pristine Ti3AlC2 MAX phase and its corresponding

Ti3C2Tx MXene. The XRD results clearly demonstrates a drastic loss in periodical structure order after

etching. Also can be noted that the (002) peak position of the pristine Ti3AlC2 decrease from 9.7 o to

6.7o, corresponding to a c-lattice parameter increase from 18.6 Å to 27Å, which is in very good

Page 113: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter IV High capacitance of Ti3C2Tx MXene in aqueous Electrolyte

105

agreement with the previous reported results [6]. Such an expansion of interlayer spacing can be

interpreted by the presences of functional groups that are introduced during etching process [1].

Figure IV - 5: SEM images of a) cross-sectional view, b) plane view of Ti3C2Tx MXene film.

SEM images of cross-sectional and plane view of a Ti3C2Tx MXene film were shown in Figure IV – 5.

The vacuum filtered film was characterized by a wrinkle structure on the basal plane surface and a layer

by layer structure (cross-sectional view). It’s believed that such a wrinkle surface structure can enhance

surface accessibility while the layer by layer structure can result in a compact film that will benefit the

volumetric capacitance.

4 Electrochemical characterizations

Ti3C2Tx disc films were punched after electrolyte immersion used as electrodes directly without any

binders. 3 M H2SO4 was used as the electrolyte together with a layer of glass fiber (Whatman® glass

microfiber filters) as separator. For comparing purpose, platinum and glassy carbon current collectors

were used.

Three-electrode Swagelok cells (Figure IV – 6) were assembled with Ti3C2Tx film as working electrode,

overcapacitive activated carbon as counter electrode and Hg/Hg2SO4 as reference electrode. It should

Page 114: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter IV High capacitance of Ti3C2Tx MXene in aqueous Electrolyte

106

be noted that the stainless contacts will be replaced with glassy carbon rod when tested with glassy

carbon current collectors. All electrochemical tests were carried out at room temperature by using a

VMP3 potentiostat (Biologic, USA.).

Figure IV - 6: Photograph of the three-electrode Swagelok cell.

4.1 Pt current collectors

Ti3C2Tx films were first tested in 1M H2SO4 electrolyte using platinum current collectors. As shown in

Figure IV – 7a, cyclic voltammetry experiments were tested from -0.15 V down to end potential from -

0.55 to -0.8 V (vs. Hg/Hg2SO4 reference electrode), with potential step of 0.5 V. Below -0.7 V, hydrogen

evolution reaction is clearly visible. The irreversibility of the system increases when going down to -

0.8 V. As a result, in this configuration, the usable potential range is limited within -0.15 to -0.7 V vs.

Hg/Hg2SO4 reference electrode. Such a limited potential window makes it difficult for observation of

the pseudocapacitive behavior of the MXene electrode, and limits as well the energy density of the

system. Figure IV – 7b shows a Nyquist plot of the working electrode vs reference electrode. A low

ESR of 0.3 Ω.cm2 and electrolyte resistance inside the MXene electrode of 0.83 Ω.cm2 (calculated as

the difference of real resistance at 45 phase degree and ESR) are achieved. The vertical line at low

Page 115: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter IV High capacitance of Ti3C2Tx MXene in aqueous Electrolyte

107

frequencies corresponds to a typical capacitive behavior.

Figure IV - 7: electrochemical tests of Ti3C2Tx films in 1M H2SO4 using platinum current collectors: a)

CV profile at 2 mV s-1; b) Nyquist plot of the electrode, at OCP.

4.2 Glassy carbon current collector

Figure IV - 8: CV profiles at 5 mV s-1 with increasing potential ranges by a potential step of -0.1 V in 1

Page 116: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter IV High capacitance of Ti3C2Tx MXene in aqueous Electrolyte

108

M H2SO4 electrolyte.

To extend the potential range to more cathodic potentials, cyclic voltammetry (CV) tests were

performed with a cell using glassy carbon current collectors [8] at a scan rate of 5 mV s-1 within various

ranges of potential windows. Differently from the cell using Pt current collectors, this cell was tested in

a much larger potential range starting from -0.2 to -0.8 V then going down to -1.3 V by a potential step

of 0.1V, as shown in Figure IV – 8. Only for the potential below -1.2 V, the H2 evolution reaction

becomes clearly visible. Therefore, a stable electrochemical potential window from -0.2 V to -1.2 V can

be used, which is much larger than previous reported results of MXenes in acid electrolytes (maximum

of 0.6 V) [4, 6]. The CVs also show a set of broad peaks at -0.9 V vs Hg/Hg2SO4, which can be ascribed

to a pseudocapacitive redox charge storage mechanism. It has been confirmed that the titanium

oxidation state change almost linearly to applied potential [5]. Figure IV – 9a shows the Ti K-edge

XANES spectra of Ti3C2Tx at −0.4 V vs. Ag/AgCl (blue line) and 0.1 V vs. Ag/AgCl (green line)

together with the reference Ti oxides (i.e., TiO and TiO2). Then the Ti average oxidation state can be

estimated according to the linear dependence between edge energy and Ti average oxidation state

(shown in Figure IV – 8b). From the inset shown in Figure IV – 8b, we see that the average oxidation

state of Ti changes from 2.33 to 2.43 (i.e., by ≈0.1 e per Ti atom) over a 0.7 V window. Change in

titanium oxidation state is also accompanied by protonation of oxygen functional groups [9]. As a result,

the electrochemical reaction can be presented as:

Ti3C2Ox(OH)yFz + δē + δH+ Ti3C2Ox-δ(OH)y+δFz IV – 1

Since the Ti average oxidation state change linearly to the applied potential, it is of great interests to

explore the electrochemical characterizations in more negative potential.

Page 117: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter IV High capacitance of Ti3C2Tx MXene in aqueous Electrolyte

109

Figure IV - 9: a) Ti K-edge XANES spectra of Ti3C2Tx at −0.4 V (blue line) and 0.1 V (green line),

together with those of TiO (red line) and TiO2 (black line). b) Average Ti oxidation state determination

in Ti3C2Tx at various applied potentials (see inset), using the Ti K-edge energy shift of the reference

TiO and TiO2 compounds [5].

In this research, it should be noted that, 3 M instead of 1 M H2SO4 was used as electrolyte in the current

study. We found that higher concentration of protons resulted in slightly larger values of the observed

capacitance due to the higher conductivity of 3-4 M H2SO4 than that of 1M solution by almost an order

of magnitude [10]. Figure IV – 10a shows the CVs of MXene in 1 M and 3 M H2SO4 electrolyte at 5

mV/s. The peak positions in CV of 3 M is less negative than that in 1 M H2SO4, indicating a slightly

higher kinetic of Ti oxidation in 3 M H2SO4 electrolyte. Figure IV – 10b plots the capacitance vs. scan

rates, where the capacitances in 3 M H2SO4 are slightly higher than those in 1 M H2SO4 at high scan

rates.

Page 118: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter IV High capacitance of Ti3C2Tx MXene in aqueous Electrolyte

110

Figure IV - 10: a) CV profiles at 5 mV s-1; and b) comparison of capacitances vs scan rates of Ti3C2Tx

MXene in 1 M and 3M H2SO4 electrolytes, respectively.

Similarly, the operation potential range of MXene in 3 M H2SO4 electrolyte was determined by a series

of CV tests at various potential ranges, as shown in Figure IV – 11. It can be confirmed that the operation

potential range starts from -0.1 V down to -1.1 V vs. Hg/Hg2SO4.

Figure IV - 11: CV profiles at 5 mV s-1 with increasing potential ranges by a potential step of -0.1 V in

Page 119: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter IV High capacitance of Ti3C2Tx MXene in aqueous Electrolyte

111

3 M H2SO4 electrolyte.

4.3 Ti3C2Tx MXene films in H2SO4 electrolyte

Electrochemical characterizations of a Ti3C2Tx MXene film with a mass loading of 5.27 mg/cm2 and

thickness of 13 µm were tested in a three electrode configuration Swagelok cell in 3 M H2SO4. Figure

IV – 12a presents the cyclic voltammetry plots at scan rates from 2 to 20 mV s-1 within a potential

window from -0.1 V to -1.1 V vs Hg/Hg2SO4. Similarly to CVs shown in Figure 8, CVs here show

symmetric shape but with a pair of redox peaks, which is ascribed to pseudocapacitive charge storage

mechanism [5]. Figure IV – 12b shows gravimetric capacitance and coulombic efficiency vs. scan rates.

Coulombic efficiencies are always close to 100% even at slow scan rates, which suggesting a highly

reversible behavior. A high gravimetric capacitance of 370 F g-1 can be achieved at a low scan rate of 2

mV s-1 within the potential window from -0.1 to -1.1 V vs. Hg/Hg2SO4. This translates to specific charge

of 370 C/g, which is more than 3 times higher than the previous results [11]. At higher scan rate up to

100 mV s-1, a capacitance of 265 F g-1 can be still delivered. Figure IV – 12c shows the volumetric and

areal capacitance vs scan rates. A high volumetric capacitance of 1500 F cm-3 is achieved at a scan rate

of 2 mV s-1, which outperforms previous best reported result with 900 F cm-3 at the same scan rate [6].

In addition to the high volumetric capacitance, a high areal capacitance close to 2 F/cm2 is also obtained.

Even at 100 mV/s, volumetric more than 1000 F cm-3 together with areal capacitance of 1.5 F cm-2 are

still delivered. These results exceeding most state-of-the-art supercapacitor materials [12-16]. Cycling

life span were tested with galvanostatic charge/discharge at a current density of 10 A g-1 (Figure IV –

12d). After 10,000 cycles (with nearly 100% coulombic efficiency), the capacitance retention is still

beyond 90%. The inset charge/discharge plot reveals no obvious battery like charge/discharge stages

but with charging slopes, which is also a strong signal of pseudocapacitive behavior.

Page 120: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter IV High capacitance of Ti3C2Tx MXene in aqueous Electrolyte

112

Figure IV - 12: electrochemical analysis of a Ti3C2Tx MXene film with a mass loading of 5.27 mg/cm2

and thickness of 13 µm: a) CV profiles at various scan rates; b) gravimetric capacitance and coulombic

efficiency vs scan rates; c) areal capacitance and volumetric capacitance vs scan rates; and d)

capacitance retention and coulombic efficiency during 10,000 cycling tests at a current density of 10 A

g-1, inset is the corresponding galvanostatic charge/discharge plot.

4.4 Ti3C2Tx MXene films at different thickness

Ti3C2Tx MXene films with various mass loadings were also studied. Figure IV – 13a shows the CV

profiles obtained for a Ti3C2Tx MXene film with mass loading of 1.17 mg/cm2 and a corresponding

thickness of 3 µm. Decreasing the film thickness lead to higher rate performance due to the faster

diffusion rate and lower ohmic drop. The power performance (Figure IV – 13b) of the 3 µm thick film

Page 121: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter IV High capacitance of Ti3C2Tx MXene in aqueous Electrolyte

113

(1.17 mg/cm2) are impressive, with a capacitance of 375 F/g at low rate and 200 F/g at 1V per second.

These high power capability of the MXene films are assumed to stem from the electrode structure,

where pre-inserted H2SO4 electrolyte allows for fast transport inside the 2D structure. When increasing

the film thickness to 40 µm, corresponding to a weight loading of 11 mg/cm2 of electrode, the power

performance decreases as expected (higher resistance and slower diffusion rate). However, a

capacitance of 150 F/g is still achieved at 100 mV/s, which is already positively comparable with

previous results from the literature [6]. Figure IV – 13c shows the change of the volumetric capacitance

of the MXene electrodes at three different thicknesses, versus the potential san rate. For weigh loadings

up to 5 mg/cm2, the volumetric capacitance reaches 1,500 F/cm3 at low scan rate. Indeed, achieving

very high volumetric capacitance (F/cm3) is done in the literature by using small amount of active

materials as thin film. This translates in poor electrode areal capacitance (F/cm2). As mention previously,

the specific electrode structure as designed here not only allows reaching 1,500 F/cm3, but also, at the

same time, achieving high areal capacitance of 2F/cm2 of electrode (Figure IV – 13d), which is an

outstanding value compared to the state of the art results [12, 17]. When increasing the weight loading

up to 11 mg/cm2, volumetric capacitance goes down to 1,000 F/cm3, with areal capacitance of 4 F/cm2

at low scan rate. This volumetric/areal capacitance is today the best result reported for capacitive and

pseudocapacitive materials. When increasing the potential scan rate, the capacitance decrease, but 0.6

F/cm2 and 500 F/cm3 are still delivered at 500 mV/s for the 13 µm thick film. These volumetric and real

capacitances thus validate the approach proposed here.

Page 122: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter IV High capacitance of Ti3C2Tx MXene in aqueous Electrolyte

114

Figure IV - 13: a) CV profiles at various scan rates of a Ti3C2Tx MXene film with a mass loading of

1.17 mg/cm2 and thickness of 3 µm; b) gravimetric capacitance; c) volumetric capacitance; and d) areal

capacitances vs scan rates of Ti3C2Tx MXene films with thickness of 3, 13 and 40µm, respectively.

4.5 Asymmetric supercapacitor

MXene electrodes have been characterized with superior electrochemical performance in sulfuric acid

electrolyte. However, electrochemical potential window of Ti3C2Tx MXene is too limited (-0.1 to -1.1

V vs Hg/Hg2SO4) for assembling a symmetric device. Therefore, YP50 was used as positive electrode

in a hybrid device, as shown in Figure IV – 14. In this Swagelok cell, the tests were carried out in full

Page 123: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter IV High capacitance of Ti3C2Tx MXene in aqueous Electrolyte

115

cell system, while a reference electrode was still added to monitor the potential change of each electrode.

Figure IV - 14: schematic of the asymmetric cell configuration

Figure IV - 15: a) CVs of full cell; b) CV of cell, positive and negative electrodes at 2 mV s-1.

Figure IV – 15a shows the CVs of the asymmetric full cell. A large voltage window of 1.4 V is obtained

with capacitive behavior. A cell capacitance of 40 F g-1 of total electrode materials (including Ti3C2Tx

and YP50) is achieved at 2 mV s-1, which is superior to an activated carbon and MnO2 asymmetric

supercapacitor [18]. Figure IV – 15b shows the CV of the full cell and each electrode at 2 mV s-1. When

the full cell was charge from 0 to 1.4 V, the negative electrode (Ti3C2Tx electrode) potential change

Page 124: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter IV High capacitance of Ti3C2Tx MXene in aqueous Electrolyte

116

from OCP to -0.85 V vs Ref; at the same time, the positive electrode (YP50 electrode) was polarized

from OCP to 0.5 V vs ref. Each electrode is charged/discharged in their operation potential window in

sulfuric acid, thus resulting in an improved cell voltage. However, the positive potential range is limited

to less than 0.5 V. Further study will carry out by selecting suitable positive electrode with more positive

potential range to increase the cell voltage window.

4.6 EIS study in H2SO4 electrolyte

A last part was focused onto the study of the charge storage mechanism. Levi et al. [19] have shown

that running EIS measurement in 3-electrode set-up may come with artefacts associated to the relative

position of the working and counter electrode. Additionally, the use of a reference electrode with a

porous ceramic (for ion exchange) adds artefacts in the measurement at high frequency. To tackle these

issues, a three-electrode Swagelok cell was assembled, but tested in two-electrode way, as shown in

Figure IV – 16a. The cell voltage between working electrode and counter was controlled during the

scan, and each electrode potential was recorded vs the Hg/Hg2SO4 reference electrode. An

overcapacitive activated carbon film was used as counter electrode to minimize the potential variation

during polarization. As shown in Figure IV – 16b and c, during the CV test, the cell voltage is controlled

from 0 to -1 V, at the same time, the potential of counter electrode is close to constant value at -0.1 V

vs Hg/Hg2SO4, while the potential of working electrode change from -0.1 V to -1.1V vs Hg/Hg2SO4;

this is consistent with the potential range in the previous tests. Then, electrode impedance study is

performed at different voltages from -0.1 V to -0.9 V (Ew -0.2 V to -1.0 V vs Hg/Hg2SO4) with a

potential step of -0.2 V. As shown in Figure IV – 16d, Nyquist plots at all voltages show vertical lines

at low frequencies, suggesting a capacitive behavior at all voltages. It is believed that the rectangular

CV shape from 0 to -0.2 V (Ew -0.1 to -0.3 V vs Hg/Hg2SO4) corresponds to a double layer capacitive

behavior and a small high frequency loop is observed in the Nyquist plot at -0.1 V (Ew -0.2 V vs

Hg/Hg2SO4). Such a high frequency loop increases with polarized voltage, which can be ascribed to the

appearance of faradaic charge transfer resistance (pseudocapacitive behavior). Figure IV – 16e and f

show the plots of complex capacitance vs frequency. The evolution of real capacitance at low

frequencies at different voltages is consistent with the evolution trend of the discharge current in the

CV plot, which increases with polarized potential and reach a maximum value (1.9 F cm-2) at voltage

of CV peak and decrease with further polarization. The plots of imaginary capacitance vs frequency are

Page 125: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter IV High capacitance of Ti3C2Tx MXene in aqueous Electrolyte

117

applied to identify the time constants, which evolve in an exactly same trend that time constant increase

with polarized voltage and reach the maximum value (~14 s) at voltage of CV peak and decrease with

further polarization.

Figure IV - 16: a) schematic of test cell configuration; b) evolution of cell voltage and potentials of each

Page 126: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter IV High capacitance of Ti3C2Tx MXene in aqueous Electrolyte

118

electrode during CV test; c) cyclic voltammetry plot of the cell at a scan rate of 5 mV s-1; d)

electrochemical impedance spectroscopies (EIS) of the cell at different voltages from -0.1 V to -0.9 V

(Ew -0.2 V to -1.0 V vs Hg/Hg2SO4) with a potential step of -0.2 V; e and f) real and imaginary part of

complex capacitance vs frequencies, respectively.

5 Conclusions

In this chapter, electrochemical characterizations of the Ti3C2Tx MXene film was firstly compared in

H2SO4 electrolyte using Pt and glassy carbon current collectors. It is found that, by adapting glassy

carbon instead of platinum current collectors, a larger potential window of 1 V can be obtained thanks

to the larger overpotential of hydrogen evolution of glassy carbon. Secondly, the utilization of Ti3C2Tx

MXene hydrogel film with pre-intercalated electrolyte was studied in 3 M H2SO4 electrolyte. High

capacitance of 370 F g-1 was achieved within a potential window of 1V, indicating a capacity of 370

C/g, which is three time of the previous reported result. Significant volumetric capacitance of 1500 F

cm-3 as well as a high areal capacitance of 2 F cm-2 were also obtained. Further increase the weight

loading of MXene film from 5.3 up to 11 mg/cm2, volumetric capacitance goes down to 1000 F cm-3

while areal capacitance goes up to 4 F cm-2, exceeding state-of-the-art supercapacitor materials. In

addition to the exceptional capacitances, superior cyclability demonstrates a capacitance retention

beyond 90% after 10,000 cycles with coulombic efficiency close to 100%. Besides, an asymmetric full

cell make up of a YP50 positive electrode and MXene negative electrode was assembled and tested. A

cell capacitance of 40 F g-1 (an equivalent capacitance of 160 F g-1 for each electrode) is achieved at 2

mV s-1 together with a cell voltage of 1.4 V. EIS study confirms the different charge storage mechanism

at different potentials. The rectangular CV shape below -0.3 V vs. Hg/Hg2SO4 corresponds to double

layer capacitive behavior, while further polarization is believed to trigger the pseudocapacitive reaction.

This part of the work was accepted in Nature energy.

Page 127: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter IV High capacitance of Ti3C2Tx MXene in aqueous Electrolyte

119

6 Reference

[1] M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum,

Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2, Advanced Materials, 23 (2011)

4248-4253.

[2] M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-

Dimensional Transition Metal Carbides, ACS Nano, 6 (2012) 1322-1331.

[3] M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier, P.L. Taberna, M. Naguib, P.

Simon, M.W. Barsoum, Y. Gogotsi, Cation Intercalation and High Volumetric Capacitance of Two-

Dimensional Titanium Carbide, Science, 341 (2013) 1502-1505.

[4] Y. Dall'Agnese, M.R. Lukatskaya, K.M. Cook, P.L. Taberna, Y. Gogotsi, P. Simon, High

capacitance of surface-modified 2D titanium carbide in acidic electrolyte, Electrochem. Commun., 48

(2014) 118-122.

[5] M.R. Lukatskaya, S.M. Bak, X.Q. Yu, X.Q. Yang, M.W. Barsoum, Y. Gogotsi, Probing the

Mechanism of High Capacitance in 2D Titanium Carbide Using In Situ X-Ray Absorption Spectroscopy,

Adv. Energy Mater., 5 (2015).

[6] M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-

dimensional titanium carbide `clay' with high volumetric capacitance, Nature, 516 (2014) 78-81.

[7] O. Mashtalir, M.R. Lukatskaya, M.-Q. Zhao, M.W. Barsoum, Y. Gogotsi, Amine-Assisted

Delamination of Nb2C MXene for Li-Ion Energy Storage Devices, Advanced Materials, 27 (2015)

3501-3506.

[8] J.D. Benck, B.A. Pinaud, Y. Gorlin, T.F. Jaramillo, Substrate Selection for Fundamental Studies of

Electrocatalysts and Photoelectrodes: Inert Potential Windows in Acidic, Neutral, and Basic Electrolyte,

PLOS ONE, 9 (2014) e107942.

[9] M. Hu, Z. Li, T. Hu, S. Zhu, C. Zhang, X. Wang, High-Capacitance Mechanism for Ti3C2Tx MXene

by in Situ Electrochemical Raman Spectroscopy Investigation, ACS Nano, (2016).

[10] H.E. Darling, Conductivity of Sulfuric Acid Solutions, Journal of Chemical & Engineering Data,

9 (1964) 421-426.

Page 128: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter IV High capacitance of Ti3C2Tx MXene in aqueous Electrolyte

120

[11] M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-

dimensional titanium carbide 'clay' with high volumetric capacitance, Nature, 516 (2014) 78-81.

[12] M.F. El-Kady, M. Ihns, M. Li, J.Y. Hwang, M.F. Mousavi, L. Chaney, A.T. Lech, R.B. Kaner,

Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance

integrated energy storage, Proceedings of the National Academy of Sciences, 112 (2015) 4233-4238.

[13] X.-Y. Lang, B.-T. Liu, X.-M. Shi, Y.-Q. Li, Z. Wen, Q. Jiang, Ultrahigh-Power Pseudocapacitors

Based on Ordered Porous Heterostructures of Electron-Correlated Oxides, Advanced Science, 3 (2016)

1500319-n/a.

[14] M. Acerce, D. Voiry, M. Chhowalla, Metallic 1T phase MoS2 nanosheets as supercapacitor

electrode materials, Nat Nano, 10 (2015) 313-318.

[15] M. Zhu, Y. Huang, Q. Deng, J. Zhou, Z. Pei, Q. Xue, Y. Huang, Z. Wang, H. Li, Q. Huang, C. Zhi,

Highly Flexible, Freestanding Supercapacitor Electrode with Enhanced Performance Obtained by

Hybridizing Polypyrrole Chains with MXene, Adv. Energy Mater., 6 (2016) 1600969-n/a.

[16] X. Zhao, L. Zhang, S. Murali, M.D. Stoller, Q. Zhang, Y. Zhu, R.S. Ruoff, Incorporation of

Manganese Dioxide within Ultraporous Activated Graphene for High-Performance Electrochemical

Capacitors, ACS Nano, 6 (2012) 5404-5412.

[17] X.-Y. Lang, B.-T. Liu, X.-M. Shi, Y.-Q. Li, Z. Wen, Q. Jiang, Ultrahigh-Power Pseudocapacitors

Based on Ordered Porous Heterostructures of Electron-Correlated Oxides, Advanced Science, 3 (2016)

n/a-n/a.

[18] T. Brousse, P.-L. Taberna, O. Crosnier, R. Dugas, P. Guillemet, Y. Scudeller, Y. Zhou, F. Favier,

D. Bélanger, P. Simon, Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous

electrochemical supercapacitor, Journal of Power Sources, 173 (2007) 633-641.

[19] M.D. Levi, V. Dargel, Y. Shilina, D. Aurbach, I.C. Halalay, Impedance Spectra of Energy-Storage

Electrodes Obtained with Commercial Three-Electrode Cells: Some Sources of Measurement Artefacts,

Electrochim. Acta, 149 (2014) 126-135.

Page 129: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter V Capacitive Behavior of Ti3C2Tx MXene in EMI-TFSI Ionic Liquid Electrolyte

121

Chapter V Capacitive Behavior of Ti3C2Tx MXene in EMI-

TFSI Ionic Liquid Electrolyte

1 Introduction

In chapter IV, extremely high specific capacitance of 1500 F cm-3 (370 F g-1) was obtained with Ti3C2Tx

MXene hydrogel film in 3 M H2SO4 electrolyte. However, the narrow potential window (maximum of

1 V) limits the increment of energy density which is proportional to the square of potential window [1].

Until recently, MXenes were characterized in organic electrolyte with low capacitance, and a

capacitance of 85 F g-1 when carbon nanotube was added and made into a composite materials [2]. This

is because when a colloidal solution of MXene flakes is filtered to prepare an MXene paper electrode,

they restack and once the film is completely dried, the c-lattice parameter drops dramatically. In other

words, the interlayer spacing becomes smaller and this process is irreversible [3]. MXene flakes’

restacking during filtration and the associated small interlayer spacing limits the accessibility to

electrolyte ions, especially the large ions of ionic liquids, which hinders the full utilization of the surface

area, thus leading to poor electrochemical behavior in organic electrolyte [4]. Improvement has been

made by adding carbon nanotubes or graphene materials to MXene [4, 5] and making composite

materials, which enhanced the capacitance of MXene-based supercapacitors in organic electrolytes [2].

However, CNT additions to MXene decrease the gravimetric performance of the material. Accordingly,

raw MXenes in neat ionic liquid electrolytes has not been studied yet.

In this chapter, we have replaced deionized water in a Ti3C2Tx hydrogel film (as presented in Chapter

IV) with neat ionic liquid electrolyte to prevent restacking of the flakes; then the film have been

electrochemically characterized in EMI-TFSI ionic liquid electrolyte. In addition, in-situ XRD

technique was utilized to provide insights on the charge storage mechanism of Ti3C2Tx in EMI-TFSI

ionic liquid electrolyte.

2 MXene electrode preparation

Ti3C2Tx synthesis and Ti3C2Tx hydrogel film preparation are made in the same way as presented in

Page 130: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter V Capacitive Behavior of Ti3C2Tx MXene in EMI-TFSI Ionic Liquid Electrolyte

122

Chapter IV. Then, differently, Ti3C2Tx hydrogel film was immersed in EMI-TFSI ionic liquid

electrolyte instead of acid electrolyte, as shown in Figure V – 1. A Ti3C2Tx dried film was also prepared

by vacuum filtration for comparison purpose. After preparation, the Ti3C2Tx dried films were further

transferred into a vacuum oven for drying at 80 oC for 48 h. We will refer to these samples as dried

films. Hydrogel films were immersed in EMI-TFSI electrolyte to exchange the water molecules with

EMI-TFSI for more than 72 h, followed by 48 h of vacuum drying at 80 oC to remove the residual water

and acetone and will henceforth be referred to as IL-Ti3C2Tx film.

Figure V - 1: Schematic of producing IL-Ti3C2Tx film.

To further confirm the removal of water and acetone, thermogravimetric analysis (TGA) was performed

under nitrogen atmosphere with a heating rate of 3 oC per minute from room temperature up to 1000 oC.

The thermograms of IL-Ti3C2Tx film (Figure V – 2) shows no mass loss below a temperature of 250 °C,

thus evidencing the complete removal of water and acetone by vacuum drying. About 80% of the mass

is lost between 300 °C and 500 °C corresponding mainly to the decomposition of the EMI-TFSI ionic

liquid from the IL-Ti3C2Tx film [6] with a possible contribution from loss of surface functional groups

of MXene [7].

Page 131: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter V Capacitive Behavior of Ti3C2Tx MXene in EMI-TFSI Ionic Liquid Electrolyte

123

Figure V - 2: thermogravimetric analysis (TGA) of an IL-Ti3C2Tx film.

3 XRD characterizations and SEM observation

X-ray diffraction (XRD) patterns of Ti3C2Tx films were recorded using a Cu Kα radiation (λ= 0.154 nm)

in the range 2θ=5–50° at a step rate of 0.06o s-1. Figure V – 3 shows the XRD diffraction patterns of the

Ti3C2Tx dried, hydrogel and IL-Ti3C2Tx films. For comparison, all tested films were cut at the same size

and have similar weigh loading. The (002) peak around 6.5o (corresponding to a c-lattice parameter of

~ 27Å) of the dried film at the XRD pattern evidences the intercalation of water molecules between

Ti3C2Tx flakes since the c – lattice parameter of the Ti3AlC2 MAX phase is around 20 Å [8]. It has been

shown previously that vacuum drying above 100 ºC is needed to remove the water between MXene

flakes [9]. The high intensity of the (002) peak and the presence of all (00l) peaks in the XRD pattern

of the dried film can be ascribed to restacking of Ti3C2Tx flakes. However, (00l) peak intensities,

especially (002), decrease in the hydrogel and IL-Ti3C2Tx film XRD patterns, which is due to the

interruption of Ti3C2Tx flakes restacking [10]. Such an aperiodic (disordered) structure of the IL-

Ti3C2Tx film vs. the dried film is believed to enhance the accessibility of cations and anions of ionic

liquid electrolyte into the MXene layers.

Page 132: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter V Capacitive Behavior of Ti3C2Tx MXene in EMI-TFSI Ionic Liquid Electrolyte

124

Figure V - 3: XRD patterns of Ti3C2Tx dried film, hydrogel film and IL-Ti3C2Tx film.

Scanning electron microscope (SEM) observations of the Ti3C2Tx films were made using a FEG-SEM

(EOL JSM 6700F, Japan). SEM observations of the IL-Ti3C2Tx film are shown in Figures V – 4a and b.

The top view (Figure V – 4a) shows many wrinkles on the Ti3C2Tx flakes, which reveals a more

disordered structure compared to the flat dried MXene paper shown in the previous studies [11, 12].

From the cross-section view of the film in Figure V – 4b, a less compact layered structure can be

observed. The observed disordered structure is well consistent with the XRD results.

Figure V - 4: SEM images of IL-Ti3C2Tx film: a) top view; b) cross-section view.

Page 133: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter V Capacitive Behavior of Ti3C2Tx MXene in EMI-TFSI Ionic Liquid Electrolyte

125

4 Electrochemical characterizations

4.1 Electrochemical set-ups

Ti3C2Tx disc films were punched (with a diameter of 10 mm) after vacuum drying from both samples

and used as electrodes directly without any binders. 1-ethyl-3-methylimidazolium bis-

(trifluoromethylsulfonyl)-imide (EMI-TFSI) neat ionic liquid was used as the electrolyte. Two layers

of separator (Celgard@ 3501) were used together with platinum discs as current collectors. Two-

electrode Swagelok symmetric cells (as shown in Figure V – 5) were assembled and tested at room

temperature. All supercapacitors were assembled in a glove box under argon atmosphere with water and

oxygen contents less than 1 ppm.

Figure V - 5: Photograph of the two-electrode Swagelok cell.

Electrochemical impedance spectroscopy (EIS) measurements were carried out at open circuit voltage

(OCV) with an amplitude of 10 mV in a frequency range from 200 kHz to 0.01 Hz. Capacitance values

are calculated from cyclic voltammograms (CVs) by measuring the slope of the integrated discharge

charge Q versus cell voltage (V) plot. Since all the tests were performed using a symmetric cell, the

gravimetric electrode capacitance was calculated using equation V – 1:

𝐶 =2∆𝑄

∆𝑉∙𝑚 V – 1

Page 134: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter V Capacitive Behavior of Ti3C2Tx MXene in EMI-TFSI Ionic Liquid Electrolyte

126

Where 𝐶 is the specific capacitance (F g-1); ∆𝑄

∆𝑉 is the slope of the integrated discharge charge Q versus

cell voltage plot; m is the mass of Ti3C2Tx of one electrode (g).

4.2 Results and discussion

Figure V - 6: a) Nyquist plot and b) CV of Ti3C2Tx dried film tested in EMI-TFSI ionic liquid electrolyte.

Electrochemical characterizations of IL-Ti3C2Tx films with mass loading of 0.76 mg.cm-2 (mass of

Ti3C2Tx only): c) Nyquist plot of a 2-electrode Swagelok cell; d), CVs of a 2-electrode Swagelok cell

at scan rate from 20 to 500 mV s-1 within a voltage window of 3 V.

Page 135: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter V Capacitive Behavior of Ti3C2Tx MXene in EMI-TFSI Ionic Liquid Electrolyte

127

The electrochemical performance of the dried Ti3C2Tx film was first studied for comparison purpose.

The Nyquist plot (Figure V – 6a) reveals a low contact resistance at high frequencies due to the compact

structure of the film; the resistance drastically increases when the frequency is decreased, evidencing a

small electrochemical active surface area and accessibility of the surface to the ions from the electrolyte.

As a result, the impedance is similar to that of a blocking electrode with extremely high charge transfer

resistance (>200 kΩ.cm2, from the extrapolation of the semi-circle). Cyclic voltammograms (CVs) in a

2-electrode cell assembled with two identical electrodes (Figure V – 6b) shows a narrow CVs suggest

an extremely low capacitance of less than 1 F g-1 at a scan rate of 20 mV s-1.

Electrochemical performance of the IL-Ti3C2Tx films is presented in Figure V – 6c and 6d. The Nyquist

plot (Figure V – 6c), shows a low high-frequency series resistance of 1.3 Ω.cm²; the resistance at the

knee frequency is 20 Ω.cm² corresponding to a resistance of the electrolyte in the MXene electrode of

about 19 Ω.cm² which is in the same range as that reported for graphene electrodes in neat IL electrolytes

[13, 14]. The fast increase of the imaginary part of the impedance at low frequency evidences a

capacitive-like storage mechanism. Figure V – 5d shows the CVs of a 2-electrode Swagelok cell

assembled with two identical MXene electrodes, at scan rates from 20 mV s-1 to 500 mV s-1. An average

specific electrode capacitance of 70 F g-1 was obtained at a scan rate of 20 mV s-1 within a voltage

window of 3 V. To our knowledge, this is the first report of MXene materials operating in an ionic

liquid electrolyte with such a capacitance within a voltage window of 3 V. CVs of Figure V – 6d show

a set of peaks at about 0.5 V and 1.2 V. Differently from MXene in aqueous electrolytes, such features

are not assumed to come from pseudocapacitive contributions of surface functional groups since O- or

F- surface groups are not supposed to be electrochemically active in aprotic ionic liquids [15]. The

presence of these current peaks could be assigned to EMI+ and/or TFSI- insertion between the Ti3C2Tx

layers such as those observed in layered MnO2 [16, 17] or for Ti3C2Tx in organic electrolyte [2]; further

in-situ XRD studies in the next section will detail the capacitive charge storage mechanism.

The capacitance change with the scan rate is shown in Figure V – 7a. 75% of the capacitance is preserved

when the scan rate is increased from 20 mV s-1 to 500 mV s-1, which demonstrates the high power

capability of the electrodes [18]. Figure V – 7b shows the cell voltage change with time during

galvanostatic charge/discharge cycling tests (inset) as well as the related coulombic efficiency and

capacitance retention (%). After 1000 cycles, the capacitance was kept beyond 80 % of the initial

capacitance while the coulombic efficiency remains above 95%. These results evidence interesting

Page 136: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter V Capacitive Behavior of Ti3C2Tx MXene in EMI-TFSI Ionic Liquid Electrolyte

128

electrochemical properties of an IL-Ti3C2Tx film in non-aqueous electrolytes thanks to the special

electrode design proposed.

Figure V - 7: a) Change of the specific capacitance with scan rate; b) Capacitance retention test of

Ti3C2Tx film at 1 A g-1 and coulombic efficiency of 2-electrode Swagelok cell.

In addition, electrochemical properties of a thicker IL-Ti3C2Tx film (400 µm), with a mass loading of 4

mg cm-2 (mass of Ti3C2Tx only) was investigated. The Nyquist plot (Figure V – 8a) shows the change

of the imaginary vs. real part of the impedance. The high frequency series resistance is in the same range

as that of thinner films (1.1 Ω.cm²). As expected, the ionic resistance of the electrolyte inside the Ti3C2Tx

electrode, calculated from the difference between the knee frequency resistance and the high frequency

series resistance, was found to be slightly larger than that of the thinner film (22 Ω.cm²), which was

attributed to the thicker film [19]. A capacitive behavior can be observed from the CV plots in Figure

V – 8b. A capacitance of 70 F g-1 was achieved at a scan rate of 1 mV s-1 within a 3 V voltage window;

the electrode was still delivering 90% (62 F g-1) of the initial capacitance at 20 mV s-1, thus showing

decent power performance for this thick film in neat ionic liquid electrolyte. Such a thick film allows

for increasing the areal capacitance of the electrode up to 0.28 F cm-2. The IL - Ti3C2Tx film structure

can thus be tuned to prepare high capacitance electrode.

Page 137: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter V Capacitive Behavior of Ti3C2Tx MXene in EMI-TFSI Ionic Liquid Electrolyte

129

Figure V - 8: Electrochemical characterization of thick IL-Ti3C2Tx film with mass loading of 4 mg.cm-

2 (mass of Ti3C2Tx only): a) Nyquist plot of 2-electrode Swagelok cell; b) CVs of 2-electrode Swagelok

cell with voltage window of 3 V.

5 In-situ X-ray diffraction study

In last section, we presented the first investigation of Ti3C2Tx operating in 1-ethyl-3-methylimidazolium

bis-(trifluoromethylsulfonyl)-imide (EMI-TFSI) neat ionic liquid with interesting electrochemical

performance (80 F/g with high power performance). However, the charge storage mechanism still

remains unclear, with reversible peaks present on the cyclic voltammograms. In aqueous electrolytes,

such redox peaks have been ascribed to the pseudocapacitive reactions of surface functional groups of

MXenes [20]. A pseudocapacitive contribution originating from redox reactions of Ti in H2SO4

electrolyte was also shown [21]. However, surface functional groups (=O or -F) and Ti are not supposed

to be electrochemically active in aprotic ionic liquids. Intercalation of cations between MXene layers in

aqueous electrolytes was observed by in-situ XRD [22], and similar intercalation behavior was reported

for MXenes battery electrodes [23, 24]. In the present case, intercalation may occur in ionic liquid

electrolytes as well. To confirm this hypothesis, in-situ XRD technique was combined with

electrochemical characterizations to provide insights into the charge storage mechanism of Ti3C2Tx in

EMI-TFSI ionic liquid electrolyte.

Page 138: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter V Capacitive Behavior of Ti3C2Tx MXene in EMI-TFSI Ionic Liquid Electrolyte

130

5.1 Experimental

For in-situ XRD tests, a special two-electrode in-situ XRD cell (see in chapter II) was used [25]. As

shown in Figure V – 9, a freestanding MXene film working electrode was placed onto a beryllium foil

acting as the current collector without any binders; an over-capacitive activated carbon (YP50, Kuraray,

Japan) was used as the counter electrode with a Pt current collector. Before starting the in-situ XRD test,

cyclic voltammetry (CV) scanning with a rate of 20 mV s-1 was conducted for 50 cycles to stabilize the

electrochemical signature. All cells were assembled in a glove box under argon atmosphere with water

and oxygen contents less than 1 ppm.

Figure V - 9: Photo of in-situ XRD cell, reproduce from [26].

In-situ XRD patterns of the Ti3C2Tx electrodes were recorded with a Bruker D8 (Bruker, Germany)

diffractometer using Cu Kα radiation (λ=0.154 nm) in the 5–50° 2 range with a step of 0.0152o. XRD

measurements were made at constant potential, after 1-h polarization to reach the steady state.

Electrochemical impedance spectroscopy (EIS) measurements were also carried out at constant

potentials (after 1-h constant polarization to reach the steady-state) with amplitude of 10 mV at the

frequency range from 200 kHz to 0.01 Hz.

5.2 Results and discussion

Page 139: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter V Capacitive Behavior of Ti3C2Tx MXene in EMI-TFSI Ionic Liquid Electrolyte

131

Figure V – 10 shows the cyclic voltammograms (CVs) of IL-Ti3C2Tx film in neat EMI-TFSI electrolyte.

The symmetric CV shape reveals a capacitive behavior with a mean specific capacitance of 84 F g-1

within a potential range from -1.5 V to 1.5 V vs. Ag. Two pairs of peaks with small voltage offsets in

both positive (around -0.2 V) and negative (around 0.6 V) potentials ranges can be observed. The peak

potential difference increases with the potential scan rate but the process remains reversible; a similar

behavior was also reported for 2D T-Nb2O5, where an intercalation pseudocapacitance charge storage

mechanism was involved [27]. Here, a non-random intercalation of EMI+ cations and/or TFSI- anions

between stacked Ti3C2Tx flakes could explain the appearance of the peaks in negative and positive range,

respectively.

Figure V - 10: Cyclic voltammetry profiles at various scan rates from 1 to 10 mV s-1 within a potential

range from -1.5 V to 1.5 V vs. Ag in EMI-TFSI electrolyte.

In-situ XRD analysis was performed to understand the charge storage mechanism. The in-situ XRD

diffraction patterns of IL-Ti3C2Tx film were recorded at various potentials as shown in Figure V – 11.

The (005), (007) and (009) peaks - which have not been reported in previous studies - were identified,

suggesting the loss of symmetry in some stacked layers. Such behavior is similar to 1H to 1T phase

transition of MoS2 during Na+ insertion, as reported elsewhere [28]. The comparison of the patterns in

positive and negative potential ranges, shows two different sets of diffraction peaks, suggesting that

different processes are involved during positive and negative potentials ranges.

Page 140: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter V Capacitive Behavior of Ti3C2Tx MXene in EMI-TFSI Ionic Liquid Electrolyte

132

Figure V - 11: Electrochemical in-situ X-ray diffraction study of IL-Ti3C2Tx film at various constant

potentials (0.5 V steps) in EMI-TFSI electrolyte. Green squares represent peaks of the in-situ XRD cell

without working electrode. The arrows show the potential scanning direction and the red dashed lines

show the shift of Ti3C2Tx peaks.

In the positive potential range, a progressive and continuous shift of the Ti3C2Tx (00l) peaks to higher

2 values is observed with increased applied potential (from 0 V to 1.5 V), corresponding to a

continuous decrease of the interlayer spacing (distance between two MXene layers). Then the peaks

reversibly shift back to their original 2 position when discharged from 1.5 V back to 0 V, indicating

the increase of interlayer spacing. As the change of interlayer spacing can be induced by both

electrostatic or steric effects during ion intercalation [22, 29-32], the reduction of interlayer spacing

Page 141: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter V Capacitive Behavior of Ti3C2Tx MXene in EMI-TFSI Ionic Liquid Electrolyte

133

with increasing applied potential in the positive potentials range may have two origins: i) electrostatic

attraction between intercalated TFSI- anions and positively charged Ti3C2Tx layers; ii) steric effects

caused by the de-intercalation of EMI+ cations, which has been reported in both aqueous and organic

electrolytes elsewhere [2, 33]. The identification of the origins of the observed dimensional change can

possibly be done by using electrochemical quartz crystal microbalance (EQCM) or in-situ nuclear

magnetic resonance (NMR) techniques that we plan to use in the future work.

In the negative potentials range, the appearance of the (002) peak at a lower 2 degree position can be

ascribed to a pillared structure of Ti3C2Tx flakes when intercalated by EMI+ cations, which has already

been observed for MXene [2, 34] and other 2D materials [35, 36]. Increasing peak intensity when

polarized to more negative potentials also confirms the pillaring effect caused by EMI+ intercalation.

The continuous shift of the Ti3C2Tx peaks to lower 2 values occurs with decreasing applied potential,

which evidences an increased interlayer spacing; this is consistent with previous observations for

MXene electrodes in sodium-ion capacitors [37]. As shown in the in-situ analysis of V2C MXene in

sodium capacitors in Figure V – 12, when discharge from 3.5 V to 1V, the interlayer spacing increases

due to the intercalation of sodium ions and reversibly decreases when charge from 1 V to 3.5 V. In

Figure V – 11, the maximum interlayer spacing was obtained at -2 V, that is the highest negative

overpotential. EMI+ intercalation has also been proposed in Ti3C2Tx when using organic electrolyte [2].

Since the electrostatic effect will cause reduction of the interlayer spacing, the expansion of interlayer

spacing should be explained by the steric effect caused by EMI+ cations intercalation. After the negative

polarization, the sample was polarized back positively (see Figure V – 11, top). The (002) peak initially

observed at 8.5 2 degree at 0 V shifts to 9.5° when polarized to 0.5 V, which is the same position as

measured during the first positive polarization (Figure V – 11, bottom), evidencing a reversible

transition between positive and negative polarizations.

Summary, the charge storage mechanism in Ti3C2Tx with EMI-TFISI electrolyte can be described as

follows (as see in Figure V - 13): under positive polarization, the electrostatic attraction between

intercalated TFSI- anions and positively charged MXene layers and/or steric effect originating from de-

intercalation of EMI+ cations lead to a decrease of the interlayer spacing. During the negative

polarization, the steric effect of EMI+ cations intercalation accounts for the observed increase of the

interlayer spacing.

Page 142: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter V Capacitive Behavior of Ti3C2Tx MXene in EMI-TFSI Ionic Liquid Electrolyte

134

Figure V - 12: XRD patterns at different potentials. (*) Peak of unreacted V2AlC. Reproduce from ref

[37].

Figure V - 13: Schematic of cation and/or anion insertion/de-insertion during CV test.

Page 143: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter V Capacitive Behavior of Ti3C2Tx MXene in EMI-TFSI Ionic Liquid Electrolyte

135

Electrochemical impedance spectroscopy studies were carried out at various potentials versus reference

electrode. As shown in Figure IV – 14, the fast increase of the imaginary part of all Nyquist plots at low

frequencies evidences a pseudocapacitive storage mechanism. The electrode resistance Ri at various

potentials was calculated from the difference between knee frequency resistance (see dashed lines in

Figure V – 14a) and the high frequency resistance (where the imaginary part is null). Ri corresponds to

the ionic resistance of the electrolyte confined inside the 2D Ti3C2Tx structure. As can be seen in Figure

V – 14b, the ionic liquid resistance under positive potentials is higher than in the negative potentials

range, demonstrating a slower ion motion during positive polarization. This is consistent with the XRD

data that showed a more compact structure with decreasing interlayer spacing under positive

polarization, which is believed to reduce the ions motion.

Figure V - 14: a) Nyquist plot of IL-Ti3C2Tx at different potentials vs. Ag. The dashed lines show the

resistances at the knee frequencies. b) Ionic liquid diffusion resistance in Ti3C2Tx electrodes.

Page 144: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter V Capacitive Behavior of Ti3C2Tx MXene in EMI-TFSI Ionic Liquid Electrolyte

136

6 Conclusions

A Ti3C2Tx MXene hydrogel was prepared by vacuum filtration. The hydrogel film was further immersed

in EMI-TFSI ionic liquid electrolyte to prevent restacking of the MXene flakes after vacuum drying at

80ºC. Electrochemical performance of the IL-Ti3C2Tx films in EMI-TFSI ionic liquid electrolyte was

compared to a vacuum-dried Ti3C2Tx film. In contrast to a Ti3C2Tx dried film exhibiting an extremely

low capacitance of 1 F g-1 and a highly resistive behavior, the IL-Ti3C2Tx film shows a capacitance up

to 70 F g-1 at a scan rate of 20 mV s-1 and a large voltage window of 3 V thanks to the disordered

structure and larger Ti3C2Tx inter-flake spacing. The capacitive signature is preserved at high scan rates

(500 mV s-1), suggesting high power performance as well. A thick IL-Ti3C2Tx film with high mass

loading of 4 mg cm-2 shows a lower gravimetric capacitance of 62 F g-1 at a scan rate of 20 mV s-1.

Additionally, in-situ XRD characterizations were made to study the charge storage mechanism of IL-

Ti3C2Tx films in EMI-TFSI electrolyte. It was found that the interlayer spacing increases with positive

polarization and decreases under negative polarization. The shrinkage of interlayer spacing in the

positive potential range was induced by 1) electrostatic attraction between the intercalated TFSI- anions

and positively-charged Ti3C2Tx surface and/or 2) steric effect of EMI+ cations de-intercalation. Under

negative potentials, the EMI+ cations intercalation accounts for the expansion of interlayer spacing.

To our knowledge, this is the first report on MXene hydrogel and also using MXene materials in an

ionic liquid electrolyte, in which superior performance was achieved. Considering the rich chemistry of

MXene materials, we can envisage further improvement by using many other MXenes in various ionic

liquid electrolytes for supercapacitors.

These works were published in Journal of Power Sources, 326 (2016) 575-579 [38] and Electrochem.

Commun., 72 (2016) 50-53 [39].

Page 145: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter V Capacitive Behavior of Ti3C2Tx MXene in EMI-TFSI Ionic Liquid Electrolyte

137

7 Reference

[1] P.-L. Taberna, P. Simon, Electrochemical Techniques, in: Supercapacitors, Wiley-VCH Verlag

GmbH & Co. KGaA, 2013, pp. 111-130.

[2] Y. Dall’Agnese, P. Rozier, P.-L. Taberna, Y. Gogotsi, P. Simon, Capacitance of two-dimensional

titanium carbide (MXene) and MXene/carbon nanotube composites in organic electrolytes, Journal of

Power Sources, 306 (2016) 510-515.

[3] H.-W. Wang, M. Naguib, K. Page, D.J. Wesolowski, Y. Gogotsi, Resolving the Structure of

Ti3C2Tx MXenes through Multi-Level Structural Modeling of the Atomic Pair Distribution Function,

Chem. Mat., (2015) 349–359.

[4] M.-Q. Zhao, C.E. Ren, Z. Ling, M.R. Lukatskaya, C. Zhang, K.L. Van Aken, M.W. Barsoum, Y.

Gogotsi, Flexible MXene/Carbon Nanotube Composite Paper with High Volumetric Capacitance,

Advanced Materials, 27 (2015) 339-345.

[5] P. Yan, R. Zhang, J. Jia, C. Wu, A. Zhou, J. Xu, X. Zhang, Enhanced supercapacitive performance

of delaminated two-dimensional titanium carbide/carbon nanotube composites in alkaline electrolyte,

Journal of Power Sources, 284 (2015) 38-43.

[6] A.I. Horowitz, M.J. Panzer, High-performance, mechanically compliant silica-based ionogels for

electrical energy storage applications, J. Mater. Chem., 22 (2012) 16534-16539.

[7] O. Mashtalir, M.R. Lukatskaya, M.-Q. Zhao, M.W. Barsoum, Y. Gogotsi, Amine-Assisted

Delamination of Nb2C MXene for Li-Ion Energy Storage Devices, Advanced Materials, 27 (2015)

3501-3506.

[8] M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-

dimensional titanium carbide `clay' with high volumetric capacitance, Nature, 516 (2014) 78-81.

[9] M.A. Hope, A.C. Forse, K.J. Griffith, M.R. Lukatskaya, M. Ghidiu, Y. Gogotsi, C.P. Grey, NMR

reveals the surface functionalisation of Ti3C2 MXene, Phys. Chem. Chem. Phys., 18 (2016) 5099-5102.

[10] T.N. Blanton, D. Majumdar, X-ray diffraction characterization of polymer intercalated graphite

oxide, Powder Diffraction, 27 (2012) 104-107.

[11] B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B.C. Hosler, L. Hultman, P.R.C. Kent, Y. Gogotsi, M.W.

Page 146: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter V Capacitive Behavior of Ti3C2Tx MXene in EMI-TFSI Ionic Liquid Electrolyte

138

Barsoum, Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes), ACS Nano, 9

(2015) 9507-9516.

[12] M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-

Dimensional Transition Metal Carbides, ACS Nano, 6 (2012) 1322-1331.

[13] W.Y. Tsai, R.Y. Lin, S. Murali, L.L. Zhang, J.K. McDonough, R.S. Ruoff, P.L. Taberna, Y.

Gogotsi, P. Simon, Outstanding performance of activated graphene based supercapacitors in ionic liquid

electrolyte from-50 to 80 degrees C, Nano Energy, 2 (2013) 403-411.

[14] Z. Lin, P.-L. Taberna, P. Simon, Graphene-Based Supercapacitors Using Eutectic Ionic Liquid

Mixture Electrolyte, Electrochim. Acta, 206 (2016) 446-451.

[15] E. Kowsari, High-Performance Supercapacitors Based on Ionic Liquids and a Graphene

Nanostructure, in: S. Handy (Ed.) Ionic Liquids - Current State of the Art, InTech, 2015, Ch. 19, pp.

505-542.

[16] J.-K. Chang, M.-T. Lee, W.-T. Tsai, M.-J. Deng, I.W. Sun, X-ray Photoelectron Spectroscopy and

in Situ X-ray Absorption Spectroscopy Studies on Reversible Insertion/Desertion of Dicyanamide

Anions into/from Manganese Oxide in Ionic Liquid, Chem. Mat., 21 (2009) 2688-2695.

[17] T.M. Benedetti, F.F.C. Bazito, E.A. Ponzio, R.M. Torresi, Electrostatic Layer-by-Layer Deposition

and Electrochemical Characterization of Thin Films Composed of MnO2 Nanoparticles in a Room-

Temperature Ionic Liquid, Langmuir, 24 (2008) 3602-3610.

[18] D. Chunsheng, P. Ning, High power density supercapacitor electrodes of carbon nanotube films by

electrophoretic deposition, Nanotechnology, 17 (2006) 5314.

[19] P.L. Taberna, P. Simon, J.F. Fauvarque, Electrochemical characteristics and impedance

spectroscopy studies of carbon-carbon supercapacitors, Journal of the Electrochemical Society, 150

(2003) A292-A300.

[20] Y. Dall'Agnese, M.R. Lukatskaya, K.M. Cook, P.L. Taberna, Y. Gogotsi, P. Simon, High

capacitance of surface-modified 2D titanium carbide in acidic electrolyte, Electrochem. Commun., 48

(2014) 118-122.

[21] M.R. Lukatskaya, S.M. Bak, X.Q. Yu, X.Q. Yang, M.W. Barsoum, Y. Gogotsi, Probing the

Mechanism of High Capacitance in 2D Titanium Carbide Using In Situ X-Ray Absorption Spectroscopy,

Page 147: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter V Capacitive Behavior of Ti3C2Tx MXene in EMI-TFSI Ionic Liquid Electrolyte

139

Adv. Energy Mater., 5 (2015).

[22] M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier, P.L. Taberna, M. Naguib, P.

Simon, M.W. Barsoum, Y. Gogotsi, Cation Intercalation and High Volumetric Capacitance of Two-

Dimensional Titanium Carbide, Science, 341 (2013) 1502-1505.

[23] X.F. Wang, X. Shen, Y.R. Gao, Z.X. Wang, R.C. Yu, L.Q. Chen, Atomic-Scale Recognition of

Surface Structure and Intercalation Mechanism of Ti3C2TX, Journal of the American Chemical Society,

137 (2015) 2715-2721.

[24] Y. Xie, Y. Dall’Agnese, M. Naguib, Y. Gogotsi, M.W. Barsoum, H.L. Zhuang, P.R.C. Kent,

Prediction and Characterization of MXene Nanosheet Anodes for Non-Lithium-Ion Batteries, ACS

Nano, 8 (2014) 9606-9615.

[25] B. Zhang, R. Dugas, G. Rousse, P. Rozier, A.M. Abakumov, J.-M. Tarascon, Insertion compounds

and composites made by ball milling for advanced sodium-ion batteries, Nat Commun, 7 (2016).

[26] Y. Dallagnese, Study of early transition metal carbides for energy storage applications, in, vol. PhD,

Universite Paul Sabatier, 2016.

[27] V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.-L. Taberna, S.H. Tolbert, H.D. Abruña, P. Simon,

B. Dunn, High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance, Nat

Mater, 12 (2013) 518-522.

[28] X. Xie, T. Makaryan, M. Zhao, K.L. Van Aken, Y. Gogotsi, G. Wang, MoS2 Nanosheets Vertically

Aligned on Carbon Paper: A Freestanding Electrode for Highly Reversible Sodium-Ion Batteries, Adv.

Energy Mater., 6 (2016) n/a-n/a.

[29] H. Kim, D.J. Kim, D.-H. Seo, M.S. Yeom, K. Kang, D.K. Kim, Y. Jung, Ab Initio Study of the

Sodium Intercalation and Intermediate Phases in Na0.44MnO2 for Sodium-Ion Battery, Chem. Mat.,

24 (2012) 1205-1211.

[30] C.R. Fell, M. Chi, Y.S. Meng, J.L. Jones, In situ X-ray diffraction study of the lithium excess

layered oxide compound Li[Li0.2Ni0.2Mn0.6]O2 during electrochemical cycling, Solid State Ionics,

207 (2012) 44-49.

[31] M. Okubo, E. Hosono, J. Kim, M. Enomoto, N. Kojima, T. Kudo, H. Zhou, I. Honma, Nanosize

Effect on High-Rate Li-Ion Intercalation in LiCoO2 Electrode, Journal of the American Chemical

Page 148: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Chapter V Capacitive Behavior of Ti3C2Tx MXene in EMI-TFSI Ionic Liquid Electrolyte

140

Society, 129 (2007) 7444-7452.

[32] J. Segalini, E. Iwama, P.-L. Taberna, Y. Gogotsi, P. Simon, Steric effects in adsorption of ions

from mixed electrolytes into microporous carbon, Electrochem. Commun., 15 (2012) 63-65.

[33] M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall'Agnese, P. Rozier, P.L. Taberna, M. Naguib, P.

Simon, M.W. Barsoum, Y. Gogotsi, Cation Intercalation and High Volumetric Capacitance of Two-

Dimensional Titanium Carbide, Science, 341 (2013) 1502-1505.

[34] X. Wang, S. Kajiyama, H. Iinuma, E. Hosono, S. Oro, I. Moriguchi, M. Okubo, A. Yamada,

Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors, Nat Commun,

6 (2015).

[35] M.M. Hantel, R. Nesper, A. Wokaun, R. Kötz, In-situ XRD and dilatometry investigation of the

formation of pillared graphene via electrochemical activation of partially reduced graphite oxide,

Electrochim. Acta, 134 (2014) 459-470.

[36] H. Li, G. Zhu, Z. Yang, Z. Wang, Z.-H. Liu, Preparation and capacitance property of MnO2-

pillared Ni2+–Fe3+ layered double hydroxides nanocomposite, Journal of Colloid and Interface Science,

345 (2010) 228-233.

[37] Y. Dall’Agnese, P.-L. Taberna, Y. Gogotsi, P. Simon, Two-Dimensional Vanadium Carbide

(MXene) as Positive Electrode for Sodium-Ion Capacitors, The Journal of Physical Chemistry Letters,

6 (2015) 2305-2309.

[38] Z. Lin, D. Barbara, P.-L. Taberna, K.L. Van Aken, B. Anasori, Y. Gogotsi, P. Simon, Capacitance

of Ti3C2Tx MXene in ionic liquid electrolyte, Journal of Power Sources, 326 (2016) 575-579.

[39] Z. Lin, P. Rozier, B. Duployer, P.-L. Taberna, B. Anasori, Y. Gogotsi, P. Simon, Electrochemical

and in-situ X-ray diffraction studies of Ti3C2Tx MXene in ionic liquid electrolyte, Electrochem.

Commun., 72 (2016) 50-53.

Page 149: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

General conclusions

141

General Conclusions

1 Graphene-based supercapacitors

This thesis aims to enhance the energy density of graphene-based supercapacitors by using dense

graphene films. Firstly, reduced graphene oxide has been chemically prepared and processed into a

freestanding graphene hydrogel film via vacuum filtration. Such a hydrogel film was firstly

characterized in aqueous electrolyte. In 1 M KOH electrolyte, a capacitance of 160 F g-1 (47 F cm-3)

was achieved, high power performance can be observed with rectangular CV shape even at high scan

rate of 1 V s-1 but limited to a narrow voltage window of 1 V.

To study in nonaqueous electrolytes, hydrogel films were immersed in ionic liquid electrolyte, and

further vacuum dried, as a result, graphene gel films pre-intercalated with ionic liquid were obtained,

which is believed to enhance the surface accessibility of graphene surface and avoid graphene restacking.

The obtained gel film was then electrochemically characterized in both organic and ionic liquid

electrolytes, respectively.

In 1 M EMI-BF4 in acetonitrile organic electrolyte, a capacitance of 150 F g-1 (44 F cm-3) was delivered

within a large potential window of 3V, making these materials competing with the best graphene based

electrodes reported in the literature.

In (PIP13)0.5(PYR14)0.5-TFSI, a eutectic mixture ionic liquid electrolyte, a large operation temperature

range (from -40 to 80oC) was achieved. A maximum capacitance of 175 F g-1 (51 F cm-3) was reached

at 80oC thanks to the higher ion conductivity of ionic liquid electrolyte at high temperature. Owing to

the unique properties of the designed eutectic electrolyte, a slow decrease of ion conductivity at low

temperature resulted in good performance. Although the capacitance at -40oC was limited at 60 F g-1

(18 F cm-3), 130 F g-1 (40 F cm-3) and 100 F g-1 (30 F cm-3) were still achieved at -20oC and -30oC

respectively. The potential window was increased up to 3.5V at room temperature and 3.2V at 80oC,

thus leading to substantial improvement in the cell energy density. A maximum volumetric capacitance

of 51 F cm-3 was achieved with a thick graphene film of 60 µm (0.3 g/cm3). The combination of

graphene pre-intercalated with ionic liquids with a eutectic ionic liquid electrolyte that allowed reaching

Page 150: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

General conclusions

142

performance among the best reported for graphene materials.

2 MXene-based supercapacitors

Ti3C2Tx MXene materials were studied as pseudocapacitive materials for increasing capacitance and

the energy density versus carbon based supercapacitors. Ti3C2Tx MXene materials were prepared by

selective etching of Ti3AlC2 MAX phases and then processed into a freestanding hydrogel film by

vacuum filtration, followed by immersion in H2SO4 electrolyte to pre-intercalate the MXene with H2SO4

salts. Such an electrolyte pre-intercalated Ti3C2Tx MXene film is assumed to improve the MXene

surface accessibility, thus increasing the energy and power performance. By using such MXene films

as electrode material for supercapacitor, superior performance with 1500 F cm-3 (370 F g-1) was obtained

in 3 M H2SO4 aqueous electrolyte, within a potential window of 1V; this outperforms all previous

reported results of MXene materials. Besides, more 90% retention of capacitance was still achieved

after 10,000 cycles.

Then, Ti3C2Tx MXene films were investigated in EMI-TFSI ionic liquid electrolyte for the first time.

Similar process of gel preparation was also used to achieve highly accessible surface area. MXene

hydrogel films were immersed in EMI-TFSI electrolyte, further vacuum dried, then electrochemical

characterized in EMI-TFSI electrolyte. Capacitive behavior with a capacitance up to 70 F g-1 at a scan

rate of 20 mV s-1 within a large voltage window of 3 V were obtained. Rectangular CV shape at high

scan rate of 500 mV s-1 indicates good power performance. A high mass loading film of 4 mg cm-2

showed a gravimetric capacitance of 62 F g-1 at a scan rate of 20 mV s-1.

Last, in-situ X-ray diffraction technique was used to investigate the charge storage mechanism of

Ti3C2Tx MXene in EMI-TFSI ionic liquid electrolyte. The interlayer spacing was found to decrease

under positive polarization due to a) electrostatic attraction between the intercalated TFSI- anions and

positively-charged Ti3C2Tx surface and/or b) steric effect of EMI+ cations de-intercalation. The

interlayer spacing increase with negative polarization cause by steric effect of EMI+ cations insertion.

These results shed a new light on the pseudocapacitive change storage mechanism of MXene electrode

in neat ionic liquid electrolytes.

Page 151: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Perspectives

143

Perspectives

In this thesis, we studied 2D materials graphene and Ti3C2Tx MXene as electrode materials for

supercapacitor. Especially, we highlighted the first utilization of Ti3C2Tx MXene in EMI-TFSI ionic

liquid electrolyte, and superior performance was achieved. Till date, more than 70 MAX phases have

been reported [1, 2], but the established MXenes only include: Ti3C2Tx, Ti2CTx, Nb2CTx, V2CTx,

(Ti0.5Nb0.5)2CTx, (V0.5Cr0.5)3C2Tx, Ti3CNTx, Ta4C3Tx, Nb4C3Tx, and Mo2Ti2C3Tx. More MXene

materials are expected to be exfoliated from the MAX phases in the future [3]. Considering the rich

chemistry of MXene materials, we can envisage further improved by using many other MXenes in ionic

liquid electrolytes for supercapacitors. Besides, the rich species of ionic liquids electrolytes [4, 5] are

also needed to be studied in MXenes-based supercapacitors. Therefore, further research regarding

various MXenes in different ionic liquid electrolyte will be carried out.

Although, the charge storage mechanism of Ti3C2Tx MXene in EMI-TFSI electrolyte was studied by

in-situ XRD analysis in this thesis, the charge storage species with positive potential range need to be

further clarified. It has been reported that in-situ EQCM and/or NMR are powerful tools to identify the

ions adsorption/desorption or intercalation/de-intercalation in supercapacitors and batteries systems [6-

8]. Accordingly, in-situ EQCM or NMR will be applied to confirm the role of anions and cations during

positive polarization.

Reference

[1] Z.M. Sun, Progress in research and development on MAX phases: a family of layered ternary

compounds, Int. Mater. Rev., 56 (2011) 143-166.

[2] M.W. Barsoum, The Mn+1 AXn Phases and their Properties, in: Ceramics Science and Technology,

Wiley-VCH Verlag GmbH & Co. KGaA, 2010, pp. 299-347.

[3] J.C. Lei, X. Zhang, Z. Zhou, Recent advances in MXene: Preparation, properties, and applications,

Frontiers of Physics, 10 (2015) 276-286.

Page 152: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Perspectives

144

[4] M. Galiński, A. Lewandowski, I. Stępniak, Ionic liquids as electrolytes, Electrochim. Acta, 51 (2006)

5567-5580.

[5] A. Lewandowski, A. Świderska-Mocek, Ionic liquids as electrolytes for Li-ion batteries—An

overview of electrochemical studies, Journal of Power Sources, 194 (2009) 601-609.

[6] A.C. Forse, J.M. Griffin, C. Merlet, P.M. Bayley, H. Wang, P. Simon, C.P. Grey, NMR Study of

Ion Dynamics and Charge Storage in Ionic Liquid Supercapacitors, Journal of the American Chemical

Society, 137 (2015) 7231-7242.

[7] W.Y. Tsai, P.L. Taberna, P. Simon, Electrochemical Quartz Crystal Microbalance (EQCM) Study

of Ion Dynamics in Nanoporous Carbons, Journal of the American Chemical Society, 136 (2014) 8722-

8728.

[8] J.M. Griffin, A.C. Forse, W.-Y. Tsai, P.-L. Taberna, P. Simon, C.P. Grey, In situ NMR and

electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer

in supercapacitors, Nat Mater, 14 (2015) 812-819.

Page 153: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Publications

145

Publications

1. Maria R. Lukatskaya#, Sankalp Kota#, Zifeng Lin#, Meng-Qiang Zhao, Netanel Shpigel, Mikhael

D. Levi, Joseph Halim, Pierre-Louis Taberna, Michel W. Barsoum, Patrice Simon*, Yury Gogotsi*,

Ultrahigh Rate Pseudocapacitive Energy Storage in Two-dimensional Transition Metal Carbides,

Nature energy, 6 (2017) 17105. (# Equally contribution)

2. Z. Lin, P. Rozier, B. Duployer, P.-L. Taberna, B. Anasori, Y. Gogotsi, P. Simon*, Electrochemical

and in-situ X-ray diffraction studies of Ti3C2Tx MXene in ionic liquid electrolyte, Electrochem.

Commun, 72 (2016) 50-53.

3. Zifeng Lin, Daffos Barbara; Pierre-Louis Taberna; Katherine L Van Aken; Babak Anasori, Yury

Gogotsi, Patrice Simon*, Capacitance of Ti3C2Tx MXene in Ionic Liquid Electrolyte. Journal of

Power Sources. 326 (2016) 575-579.

4. Zifeng Lin, Pierre-Louis Taberna*, Patrice Simon, Graphene-Based Supercapacitors Using Eutectic

Ionic Liquid Mixture Electrolyte, Electrochim. Acta, 206 (2016) 446-451.

5. Chuanfang (John) Zhang, Sang-Hoon Park, Oskar Ronan, Andrew Harvey, Andrés Seral-Ascaso,

Zifeng Lin, Niall McEvoy, Conor S. Boland, Nina C. Berner, Georg S. Duesberg, Patrick Rozier,

Valeria Nicolosi* and Jonathan N. Coleman*,Enabling Flexible Heterostructures for Li-ion Battery

Anodes Based on Nanotube and Liquid-Phase Exfoliated 2D Gallium Chalcogenide Nanosheet

Colloidal Solutions, Small (2017) 1701677.

Page 154: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

146

Page 155: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Résumé de Thèse

147

Résumé de Thèse

Introduction générale

Le réchauffement climatique, les combustibles fossiles diminuant ainsi la demande en plein essor

de l'énergie est devenue nécessitent le développement des énergies renouvelables comme l'énergie

éolienne, l'énergie solaire, la bioénergie, l'énergie nucléaire… Ces énergies sous différentes formes

imposent l’utilisation de solutions de stockage de l’énergie. Les systèmes électrochimiques

constituent une solution intéressante, en particulier les Batteries et supercondensateurs. Ces

derniers, également nommés condensateurs électrochimiques à double couche (CEDC), présentent

des densités de puissance bien supérieures à celles des batteries mais leur développement est freiné

en partie par leur trop faible autonomie (densité d’énergie). D’efforts importants sont donc à

effectuer pour augmenter les performances en termes d’énergie de ces systèmes. L’investigation

de nouveaux matériaux actifs d’électrode offrant apparaît comme étant une clé importante.

Dans cette thèse, il a été étudié les performances capacitives de matériaux 2D comme le graphène

et MXenes, qui ont été reconnus comme matériaux d'électrode prometteurs pour les

supercondensateurs et des batteries. L’un des enjeux est d’utiliser des matériaux de type graphène

ou MXenes dans les électrolytes liquides ioniques, afin d’obtenir une grande fenêtre de potentiel,

permettant d’améliorer notablement les densités d’énergie et de puissance.

Chapitre I commence par une brève introduction des principes de base des supercondensateurs et

les développements récents. À la suite de la description des différents types de supercondensateurs

et leurs matériaux d'électrode, la synthèse et les applications des matériaux de graphène et MXenes

Page 156: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Résumé de Thèse

148

sont présentées. Ensuite, il est présenté les différents types d’électrolyte utilisés, avec leurs

avantages et inconvénients. Enfin, les objectifs de cette thèse sont présentés.

Le chapitre II est consacré à la description synthétique des principaux moyens expérimentaux mis

en œuvre pour ces travaux de thèse : Diffraction des rayons X, montages électrochimiques et

techniques de caractérisation électrochimiques.

Le chapitre III est consacré sur l’utilisation de « ionogel » de graphène comme matériaux

d’électrode auto-supporté pour supercondensateurs avec comme objectif l’augmentation de la

plage de température de fonctionnement. Leur comportement a tout d’abord été étudié en

électrolyte auqeux (1 M KOH), organique (1M EMI-BF4 dans l'acétonitrile) et liquide ionique

(PIP13)0.5(PYR14)0.5-FSI électrolytes. Puis, dans un mélange eutectique de liquides ioniques

composé de (PIP13)0.5(PYR14)0.5-FSI. Ce dernier électrolyte permet d’obtenir un comportement

capacitif dans une plage de température comprise entre -40 et 80 oC.

Le chapitre IV est consacré à l'étude d'un nouveau matériel 2D de type « ionogel » de MXenes. La

synthèse et la caractérisation du Ti3C2Tx MXene sont présentées. De très bonnes performances ont

été obtenues en milieu EMI-TFSI liquide ionique pur.

Le chapitre V est consacré au mécanisme de stockage de charge de Ti3C2Tx MXene dans EMI-

TFSI par diffraction des rayons X in-situ. Une étude par impédancemetrie a également été réalisée.

La thèse est terminée ensuit par un chapitre de conclusions générales et de perspectives.

Page 157: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Résumé de Thèse

149

Chapitre I Etude bibliographique

1.1 Introduction

Les supercondensateurs stockent l'énergie en utilisant soit l'adsorption d'ions (électrochimiques

doubles condensateurs de couche) ou des réactions d'oxydo-réduction de surface rapide (pseudo-

condensateurs). Ils peuvent compléter ou remplacer les accumulateurs électrochimiques (aussi

appelés batteries) dans le stockage d'énergie électrique et les applications de récupération d’énergie

(freinage, par exemple [1]. Une comparaison schématique du mécanisme de stockage d'énergie

des condensateurs classiques, des supercondensateurs et des batteries est présentée dans la Figure

I - 1. Pour les condensateurs classiques, deux conducteurs électriques (plaques) séparées par un

diélectrique (par exemple un isolant qui peut stocker l'énergie en devenant polarisée), l'énergie est

stockée sous forme électrostatique, lorsque deux conducteurs électriques est polarisés. Pour un

supercondensateur, les électrodes sont en contact d'un électrolyte. Les matériaux d’électrode de

grande surface spécifique (carbone activé, le plus souvent) de fortes capacités sont obtenus.

Comme pour les condensateurs classique, le processus de stockage de charges est électrostatique

(capacitif), ce qui signifie qu’il n’y a pas de transfert d'électrons à travers l'interface de

l'électrode/électrolyte. Dans le cas des batteries, le processus principale de stockage de charges est

de faradique, à savoir, le transfert d'électrons se produit à travers les doubles couches, avec un

changement notable de l'état d'oxydation du matériau d’électrode et de la chimie.

Page 158: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Résumé de Thèse

150

Figure I - 1: (a) Condensateur, (b) Supercondensateur, (c) Batterie aux ions lithium.

1.2 Matériaux bidimensionnels pour les EC

Depuis sa découverte en 2004, le graphène est devenu l'un des sujets les plus en vogue dans le

domaine de la science des matériaux. Parmi les autres domaines de la science des matériaux, la

«fièvre graphène» a également intéressé le monde des dispositifs de stockage électrochimique de

l’énergie [2]. En raison de sa surface spécifique théorique élevée (jusqu'à 2630 m2g-1), combinée

à une faible résistivité (10-6 Ω.cm) ainsi qu'une haute résistance mécanique (résistance à la traction

intrinsèque de 130 GPa et module Young (rigidité) de 1 TPa) et la stabilité chimique, le graphène

devient un matériau actif prometteur pour les accumulateurs [3-6] et les supercapacités [7-13]

Cependant, les applications sont encore limitées aujourd'hui, la principale raison étant la faible

densité des électrodes obtenues et le problème de restacking, ainsi que la capacité irréversible.

Les MXenes font partie d’une nouvelle famille de carbures et de carbonitrures de métal de

transition en deux dimensions (2D), produits par gravure sélective de l'élément A à partir de phases

MAX. Pour produire des MXenes, l'élément A est sélectivement gravé à partir de phases MAX en

utilisant de l'acide fluorhydrique (HF) ou des sels de fluorure (LiF) et des acides inorganiques, tels

Page 159: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Résumé de Thèse

151

que l'acide chlorhydrique (HCl). Compte tenu du grand groupe (plus de 70) des phases MAX, on

peut s'attendre à une chimie riche de MXenes. À ce jour, les MXenes suivants ont été étudiés:

Ti3C2Tx, Ti2CTx, Nb2CTx, V2CTx, (Ti0.5Nb0.5)2CTx, (V0.5Cr0.5)3C2Tx, Ti3CNTx, Ta4C3Tx, Nb4C3Tx,

et Mo2Ti2C3Tx. De manière similaire à leurs phases MAX initiales, les MXenes sont généralement

appelés Mn+1XnTx, où M est un métal de transition, X représente du carbone et/ou de l'azote, T

représente les terminaisons de surface (= O, -OH et/ou -F), N = 1, 2 ou 3, et x est le nombre de

groupes de terminaison par unité de formule [14-17]. Grâce à leur morphologie unique, de bonnes

conductivités électroniques, les MXenes ont montré un grand potentiel en tant que matériaux

d'électrodes à la fois pour des applications en batteries Li-ion [18-23] et en supercapacités [14, 24-

26].

1.3 Objectifs de la thèse

A) Synthétiser chimiquement le graphène et préparer des films de graphène « ionogel » denses

comme électrodes pour une application EC et étudier les performances électrochimiques dans les

électrolytes aqueux, organiques et RTIL. Nous étudierons également les performances du film de

graphène en fonction de la température dans un électrolyte à base de

([PIP13][FSI])0.5([PYR14][FSI])0.5.

B) Produire des MXenes par méthode chimique et préparer des films « ionogels » MXene comme

électrodes pour l'application EC. Le comportement électrochimique des films MXene dans des

électrolytes liquides aqueux et ioniques sera étudié avec pour object d’essayer d’élucider le

mécanisme de stockage de charge des MXenes dans les électrolytes liquides aqueux et ioniques.

Page 160: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Résumé de Thèse

152

Chapitre II Partie expérimentale

Dans ce chapitre, nous présentons des techniques de caractérisation utilisées pour caractériser et

analyser les matériaux, tels que le microscope électronique à balayage (SEM), l'analyse par

diffraction des rayons X (XRD), l'analyse gravimétrique thermique (TGA) et la spectroscopie

Raman. En outre, les montages électrochimiques et les méthodes de caractérisation seront

également discutés. Les détails expérimentaux du graphène et des MXenes synthétisés seront

décrits plus loin dans les chapitres III et IV, respectivement.

Les techniques transitoires (telles que la voltamétrie cyclique et le cyclisme galvanostatique) et les

techniques stationnaires (spectroscopie d'impédance électrochimique) ont été utilisées pour

caractériser les électrodes (cellules à trois électrodes) ou un dispositif (cellules à deux électrodes)

[27].

Chapitre III Supercapacitors à base de « ionogel » de

graphène

Dans ce chapitre, nous avons conçu une électrode de graphène en suspension et filtré sous vide,

puis immergé dans électrolyte et séché sous vide. Ce protocole a été proposé le groupe de Li [28].

Les performances électrochimiques de films de graphène ont été évaluées en électrolytes liquides

aqueux, organiques et liquides ioniques. Une grande plage de température de -40 à 80 oC a été

obtenue, grâce à l'utilisation d'un électrolyte de mélange eutectique liquide ionique.

3.1 Expérimental

Page 161: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Résumé de Thèse

153

La poudre de graphite disponible dans le commerce (graphite KS44, acheté chez IMERYS

Graphite & Carbon Corporation) a été utilisée comme matière première. L'oxyde de graphite a été

préparé par une méthode Hummers modifiée [29]. L'oxyde de graphène réduit a ensuite été obtenu

par la réduction de l'oxyde de graphène en ajoutant une solution d'hydrazine (35% en poids dans

l'eau) à la suspension colloïdale d'oxyde de graphène. Comme le montre la figure III-1, pour

préparer des électrodes de graphène, 60 ml de graphène colloïdal réduit de 0,5 mg ml-1 ont été

filtrés sous vide par une membrane Anodisc © (entreprise Whatman) avec une taille moyenne de

pores de 0,1 μm. Après filtration sous vide, le film de graphène a été soigneusement délaminé du

filtre et immergé dans de l'eau désionisée pendant une nuit pour éliminer l'hydrazine et

l'ammoniaque restantes [28].

Figure III-1: schéma de préparation du film de graphène.

3.2 Résultats

Page 162: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Résumé de Thèse

154

Une cellule Swagelok à deux électrodes symétrique a été assemblée et testée à température

ambiante. La boucle de haute fréquence observée sur le tracé de Nyquist (figure III - 2a) est

supposée provenir de la résistance de contact entre les collecteurs de courant et le film [30]. La

résistance série à haute fréquence a été mesurée à 40 Ω.cm², dans la même gamme que

précédemment signalée pour ce type d’électrolyte à température ambiante [31]. A basses

fréquences, l'augmentation rapide de la partie imaginaire de l'impédance révèle le comportement

capacitif de l'électrode. La figure III - 2b montre les CV à différentes vitesses de balayage. Une

capacité de 170 F.g-1 a été obtenue à une vitesse de balayage de 5 mV/s, dans une gamme de

potentiel de 3.5 V, ce qui dépasse les valeurs obtenues par un grand nombre de carbones.

L’évolution de la capacité avec la vistesse de balayage est illustrée à la figure III - 2c. Plus de 75%

de la capacité maximale est encore maintenue à 50 mV/s, ce qui met en évidence les performances

en puissance de ce type de matériau, malgré l'utilisation d'un électrolyte de type liquide ionique.

La capacité volumétrique associée, calculée à partir de l'épaisseur de l'électrode, était de 50 F.cm-3

à 5 mV.s-1, ce qui est également comparable aux poudres classiques de charbon actif [32], et donc

plutôt remarquable pour ce type de matériau.

Figure III – 2 : Caractérisation électrochimique à température ambiante d'une cellule à 2-électrodes

assemblée avec des films de graphène dense, dans l'électrolyte de mélange eutectique: Diagramme

Page 163: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Résumé de Thèse

155

de Nyquist (a), CV à différentes vitesses de balayage (b), évolution de la capacité spécifique avec

la vitesse de balayage potentiel (c).

Sur la figure III - 3 est montré le comportement électrochimique à des températures plus élevées,

à savoir 40 °C, 60 °C et 80 °C. Comme attendu, la résistance série à haute fréquence diminue avec

l'augmentation de la température (Figure III – 3a), en raison de la diminution de la viscosité de

l'électrolyte. Le comportement capacitif est amélioré à température élevée, comme il est possible

de le voir avec la forte augmentation de la partie imaginaire à une résistance inférieure ; ceci est

associé à l'augmentation de la conductivité ionique avec la température [31, 33]. Le comportement

capacitif amélioré avec la température est également visible sur les CV (Figure III – 3b), présentant

des signatures électrochimiques capacitives. Cependant, une diminution de la fenêtre potentielle

de 3.5 V à 3.2 V a été observée lorsque la température a été augmentée de 40 °C à 80 °C. Un tel

comportement est associé à l'activité électrochimique (oxydation) de l'électrolyte liquide ionique

à fort potentiel, comme déjà indiqué ailleurs [33]. La capacité spécifique a été augmentée de 160

F.g-1 jusqu'à 175 F.g-1, avec l’augmentation de température.

Figure III – 3 : Caractérisations électrochimiques à 40 °C, 60 °C et 80 °C d'une cellule à 2

électrodes assemblées avec des films de graphène, dans l'électrolyte du mélange eutectique.

Page 164: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Résumé de Thèse

156

Diagramme de Nyquist (a), CV (b) Et changement de la capacité spécifique avec la température

(c).

La figure III - 4 montre les caractérisations électrochimiques à basse température. En raison de la

viscosité élevée à basse température, la vitesse de balayage a été abaissée à 1 mV s-1. Le diagramme

de Nyquist (figure III - 4a) montre une augmentation importante de la résistance série aux

températures négatives, ce qui est en accord avec la diminution de la conductivité de l'électrolyte

[31]. La signature électrochimique (figure III - 4b) montre qu’un comportement capacitif est encor

présent jusqu'à -30 °C, mais devient résistif à -40 ° C. Une capacité de 135 Fg-1 a été obtenue à

0 °C et 100 Fg-1 à -30 °C.

Figure III – 4: Caractérisations électrochimiques à 0 ° C, -20 ° C, -30 ° C et -40 ° C d'une cellule

à 2 électrodes assemblée avec des films de graphène, dans l'électrolyte du mélange eutectique.

Diagramme de Nyquist (a), CV à 1 mV.s-1 (b) et changement de la capacité spécifique avec la

température à une vitesse de balayage de 1 mV.s-1 (c).

3.3 Conclusions

Page 165: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Résumé de Thèse

157

Des films autosupporté de graphène « ionogel » ont été obtenu par filtration suive d’une immersion

dans un électrolyte de type liquide ionique. Grâce à l'utilisation d'un mélange ionique liquide

eutectique comme électrolyte, une grande fenêtre de température de fonctionnement (de -40 à

80 °C) a été obtenue. Une capacité gravimétrique maximale de 175 F.g-1 a été atteinte à 80 °C.

Bien que la capacité à -40 °C est limitée à 60 F.g-1, 130 F.g-1 et 100 F.g-1 peuvent encore être

atteints à -20 oC et -30 oC, respectivement. La fenêtre potentielle a été augmentée jusqu'à 3.5 V à

température ambiante et 3.2 V à 80 °C, ce qui permet une amélioration intéressante de la densité

d'énergie. En outre, une capacité volumétrique de 50 F/cm3 a également été obtenue avec un film

de graphène épais de 60 μm. Ces matériaux apparaissent comme une alternative prometteuse au

charbon actif fonctionnant dans des électrolytes classiques pour les applications de

supercondensateurs, en particulier dans des conditions de température extrêmes.

Chapitre IV Ti3C2Tx MXene en électrolyte aqueux de

forte capacité

Dans ce chapitre, nous montrerons comment le contrôle de la texture de l'électrode peut améliorer

la performance électrochimique des matériaux Ti3C2 MXene dans un électrolyte à base d'acide

sulfurique. Nous proposons une voie facile de fabrication du film d'hydrogel Ti3C2Tx par filtration

assistée sous vide. Après l'immersion dans électrolyte, le film d'hydrogel Ti3C2Tx est pré-intercalé

avec de l'électrolyte, ce qui permet d'améliorer l'accessibilité de la surface MXene à l'électrolyte,

ce qui augmente la capacité et les performances de puissance.

Page 166: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Résumé de Thèse

158

4.1 Élaboration et mise en forme

Une première étape d’exfoliation a été réalisé à partir d’une phase de Ti3AlC2 par attaque chimique

dans un bain d'acide chlorhydrique (HCl) et de fluorure de lithium (LiF). Un dispersion colloïdale

de Ti3C2Tx est ainsi obtenue. Une deuxième étape de formation d’hydrogel est réalisée par

filtration sous vide – l’hydrogel est ensuite transformé en ionogel par immersion dans un

électrolyte (figure IV-1).

Figure IV - 1: illustration schématique de la procédure de préparation de film d'hydrogel

Ti3C2Tx/H2SO4.

4.2 Résultats

Sur la figure IV-2a sont montrés les voltamogrammes obtenus pour une électrode à 1,17 mg/cm2

de Ti3C2Tx MXene, correspondant à une épaisseur de 3 μm. Une diminution de l'épaisseur du film

conduit à des performances en puissance plus élevées de la constante de vitesse de diffusion

supérieure ainsi qu’à la diminution de la résistance électrique du film. Les performances en

Page 167: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Résumé de Thèse

159

puissance (Figure IV - 2b) du film de 3 μm d'épaisseur (1,17 mg/cm2) sont intéressante, avec une

capacité de 375 F/g à faible vitesse de blayage et 200 F/g à 1V s-1. Ce comportement en puissance

des films MXene provient a priori de la microstructure de l'électrode – H2SO4 pré-inséré permet

un transport rapide à l'intérieur de la structure 2D. En augmentant l'épaisseur du film à 40 μm,

correspondant à 11 mg/cm2 de film actif sur électrode, les performances en puissance diminue

comme attendu (diminution de la constante de vitesse de diffusion et augmentation de la résistance

électrique du film actif). Néanmoins, une capacité de 150 F/g est encore obtenue à 100 mV/s, ce

qui est déjà comparable aux résultats reportés dans la littérature [14]. La figure IV - 2c montre

l’évolution de la capacité volumétrique des électrodes MXene pour trois épaisseurs différentes, en

fonction de la vitesse de balayage. Pour des masses surfaciques allant jusqu'à 5 mg/cm2, la capacité

volumétrique atteint 1.500 F/cm3 à faible taux de balayage. Ce dernier point est tout à fait

remarquable, puisque de telles valeurs sont reportées dans la littérature mais pour des films minces

(inférieurs au µm). Ainsi, une capacité surfacique de 2F/cm2 d'électrode (Figure IV - 2d) est

obtenue, bien au-delà de ce qui a été reporté [34, 35]. Pour une masse surfacique de film allant

jusqu'à 11 mg/cm2, la capacité volumétrique reste à une valeur 1000 F/cm3, permettant d’obtenir

une capacité surfacique de 4 F/cm2 à faible vitesse de balayage. Cette capacité volumétrique /

surfacique est actuellement la meilleure valeur obtenue des matériaux capacitifs et

pseudocapacitifs. En augmentant la vitesse de balayage, la capacité diminue, mais 0,6 F/cm2 et

500 F/cm3sont encore livrés à 500 mV/s pour le film de 13 μm d'épaisseur.

Page 168: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Résumé de Thèse

160

Figure IV - 2: a) CVs à divers vitesses de balayage d'un film de Ti3C2Tx avec une masse surfacique

d’électrode de 1,17 mg/cm2 et une épaisseur de 3 μm; B) capacité massique; C) capacités

volumiques ; Et d) capacités surfacique en fonction de la vitesse de balayage des films de Ti3C2Tx

d'une épaisseur de 3, 13 et 40 μm respectivement.

4.3 Conclusions

L'utilisation du film ionogel de Ti3C2Tx a été étudiée dans l'électrolyte H2SO4 3 M. Une capacité

élevée de 370 F g-1 a été obtenue dans une fenêtre potentielle de 1V. Une capacité volumique

importante de 1500 F cm-3 ainsi qu'une capacité surfacique de 2 F cm-2 ont également été obtenues.

En augmentant encore, la masse surfacique de matériau actif (de 5,3 à 11 mg cm-2) permet

Page 169: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Résumé de Thèse

161

d’obtenir encore une capacité volumique de 1000 F cm-3, avec la capacité surfacique allant jusqu'à

4 F cm-2. Ce matériau actif d’électrode présente une très bonne cyclabilité – 90% de la capacité est

maintenue après 10 000 cycles, avec une efficacité coulombique proche de 100%.

Chapitre V Mécanisme de stockage de charges du Ti3C2Tx

dans l'électrolyte liquide ionique EMI-TFSI

Dans ce chapitre, ionogel de Ti3C2Tx (tel que présenté au chapitre IV) a été élaboré en utilisant un

électrolyte liquide ionique à base d’EMI-TFSI. Pour apporter des éléments de compréhension du

mécanisme de stockage de charges de Ti3C2Tx, de la diffraction des rayons X (DRX) in-situ a été

utilisée.

5.1 Partie expérimentale

La synthèse du ionogel de Ti3C2Tx a été réalisée de la même manière que celles présentées au

chapitre IV. Ici un liquide ionique à base d’EMI-TFSI a été utilisé.

Page 170: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Résumé de Thèse

162

5.2 Résultats

5.2.1 Caractérisations électrochimiques

Figure V-1: a) Diagramme de Nyquist et b) CV d’un film séché de Ti3C2Tx testé dans l'électrolyte

liquide ionique EMI-TFSI. Caractérisations électrochimiques des films IL- Ti3C2Tx avec un une

masse surfacique de matériau actif de 0,76 mg.cm-2 (masse de Ti3C2Tx uniquement): c) Diagramme

de Nyquist d'une cellule Swagelok à 2 électrodes; D), CVs d'une cellule Swagelok à 2 électrodes

testé à des vitesses de balayage comprises entre 20 à 500 mV s-1, dans une fenêtre de tension de 3

V.

Page 171: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Résumé de Thèse

163

Le comportement électrochimique du film Ti3C2Tx séché a d'abord été étudiée à des fins de

comparaison. Le diagramme de Nyquist (Figure V-1a) révèle une faible résistance de contact aux

hautes fréquences, en raison de la structure compacte du film ; la résistance augmente

considérablement lorsque la fréquence diminue, mettant en évidence la faible surface

électrochimiquement active. Le voltamogramme cycliques (CV) d’une cellule à 2 électrodes

assemblée avec deux électrodes identiques (Figure V-1b) donne une faible capacité, seulement 1

F g-1 à une vitesse de balayage de 20 mV s-1.

Le comportement électrochimique des films ionogels IL- Ti3C2Tx est présentée dans les figures V-

1c et 1d. Le dagramme de Nyquist (figure V-1c) montre une faible résistance série à haute

fréquence de 1,3 Ω.cm². L'augmentation rapide de la partie imaginaire de l'impédance à basse

fréquence témoigne d'un mécanisme de stockage capacitif. La figure V-1d montre les CVs d'une

cellule Swagelok à 2 électrodes assemblée avec deux électrodes de ionogel de MXene identiques,

à des vitesses de balayage comprises entre 20 mV s-1 à 500 mV s-1. Une capacité d'électrode

massique moyenne de 70 F g-1 a été obtenue à une vitesse de balayage de 20 mV s-1 avec une

tension de cellule de 3 V. À notre connaissance, c'est le premier fois qu’un matériau de type MXene

fonctionne en électrolyte liquide ionique.

5.2.2 Étude en DRX in-situ

Dans la plage de potentiel positif (oxydation entre 0 et 1,5V), on observe un déplacement

progressif et continu des pics Ti3C2Tx (00l) vers les angles supérieures (2, correspondant à une

diminution continue de l'espacement intercalaire (distance entre Deux couches MXene). Ensuite,

les pics se déplacent de manière réversible vers leur position initiale (entre 1,5V et 0), ce qui

indique l'augmentation de l'espacement entre couches. Étant donné que le changement

d'espacement intercalaire peut être induit par des effets électrostatiques ou stériques lors de

Page 172: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Résumé de Thèse

164

l'intercalation d'ions [24, 36-39], la réduction de l'espacement intercalaire avec l'augmentation du

potentiel appliqué dans la gamme des potentiels positifs peut avoir deux origines: i) attraction

électrostatique entre les anions TFSI- intercalées et couches Ti3C2Tx positivement chargées; ii) les

effets stériques causés par la dés-intercalation des cations EMI+, ce qui a été rapporté à la fois dans

des électrolytes aqueux et organiques ailleurs [40, 41].

Dans la gamme des potentiels négatifs (entre 0 et -2V), l'apparition du pic (002) à une position

inférieure de 2 ° peut être attribuée à l’insertion de cations EMI+ entre les feuillets de Ti3C2Tx, ce

qui a déjà été observé pour MXene [26, 40] et autres matériaux 2D [42, 43][44]. Étant donné que

l'effet électrostatique entraînerait une réduction de l'espacement intercalaire, l'expansion de

l'espacement intercalaire s'explique uniquement par l'effet stérique provoqué par l'intercalation des

cations EMI+.

Page 173: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Résumé de Thèse

165

Figure V-2: étude électrochimique couplée à de la diffraction des rayons X in-situ sur le film IL-

Ti3C2Tx à divers potentiels constants (un diagramme tous les 0.5 V) dans l'électrolyte EMI-TFSI.

Les carrés verts représentent des pics de la cellule XRD in situ sans électrode de travail. Les flèches

montrent le sens de balayage potentiel et les lignes pointillées rouges montrent le décalage des pics

Ti3C2Tx.

5.3 Conclusions

Un ionogel de Ti3C2Tx a été préparé par filtration sous vide puis par immersion dans un liquide

ionique de type EMI-TFSI suivi d’un sous vide à 80 ° C. La performance électrochimique des

films ionogels IL- Ti3C2Tx dans l'électrolyte liquide ionique EMI-TFSI a été comparée à un film

Page 174: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Résumé de Thèse

166

Ti3C2Tx séché au vide. Contrairement à un film séché Ti3C2Tx présentant une capacité

extrêmement faible de 1 F g-1 et un comportement hautement résistif, le film IL- Ti3C2Tx présente

une capacité jusqu'à 70 F g-1 à une vitesse de balayage de 20 mV s-1, le tout avec une tension de

cellule de 3 V. La signature capacitive est conservée à des vistesses de balayage élevées (500 mV

s-1), ce qui suggère des performances élevées. Un film épais d’IL- Ti3C2Tx avec une masse

surfacique élevée de 4 mg cm-2 montre une capacité gravimétrique inférieure de 62 F g-1 à une

vitesse de balayage de 20 mV s-1.

En outre, des caractérisations XRD in situ réalisées lors de l’oxydation et la réduction des films

IL- Ti3C2Tx dans l'électrolyte EMI-TFSI ont permis de révéler que l'espacement interfeuillet

augmente avec la polarisation positive et diminue sous polarisation négative. La diminution de

l'espacement intercalaire dans la plage de potentiel positif possiblement induit par 1) attraction

électrostatique entre les anions TFSI intercalés et la surface Ti3C2Tx chargée positivement et / ou

2) l'effet stérique de la désintercalation des cations EMI+. Sous des potentiels négatifs,

l'intercalation des cations EMI+ explique l'expansion de l'espacement interfeuillet.

Conclusions générales

I. Supercondensateur à base de graphène

Cette thèse a eu pour objectif d’améliorer la densité d’énergie des supercapacités à base de

graphène, en utilisant des films ionogels de graphène dense. Les capacités mesurées dans

l'électrolyte KOH 1 M sont de 160 F g-1 (47 F cm-3), ceci jusqu’à de 1 V s-1. Cependant, la fenêtre

de potentiel est limitée à 1 V.

Page 175: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Résumé de Thèse

167

Pour étudier dans des électrolytes non aqueux, des films ionogels à partir d’un liquide ionique ont

été réalisés. Dans 1 M EMI-BF4, dans l'électrolyte organique d'acétonitrile, une capacité de 150 F

g-1 (44 F cm-3) a été obtenue avec une fenêtre de potentiel de 3V, ce qui a permis à ces matériaux

de concurrencer les meilleures électrodes à base de graphène rapportées dans la littérature.

En utilisant un mélange eutectique de (PIP13) 0.5 (PYR14) 0.5-FSI, une grande plage de température

de fonctionnement (de -40 à 80 oC) a été atteinte. Une capacité maximale de 175 F g-1 (51 F cm-3)

a été obtenue à 80 ° C, grâce à la plus grande conductivité ionique de l'électrolyte liquide ionique

à haute température. Bien que la capacité à -40 ° C est limitée à 60 F g-1 (18 F cm-3), 130 F g-1 (40

F cm-3) et 100 F g-1 (30 F cm-3) ont été encore obtenus À -20 ° C et -30 ° C, respectivement. Une

tension de cellule de 3,5 V à température ambiante et 3,2 V à 80 ° C a été atteinte, ce qui a permis

une amélioration substantielle de la densité d'énergie. Une capacité volumique maximale de 51 F

cm-3 a été obtenue avec un film de graphène épais de 60 μm (0.3 g cm-3).

II. Supercondensateur à base de MXenes

Les matériaux Ti3C2Tx MXene ont été étudiés comme matériaux pseudocapacitifs pour augmenter

la capacité et la densité d'énergie par rapport aux supercondensateurs à base de carbone. Les

matériaux Ti3C2Tx MXene ont été préparés par attaque chimique sélective des phases Ti3AlC2

MAX, puis transformées en ionogel par filtration sous vide, suivie d'une immersion dans un

l'électrolyte d’H2SO4. En utilisant de tels films ionogels comme matériau d'électrode pour

supercondensateur, une capacité volumique élevée de 1500 F cm-3 (370 F g-1) a été obtenue dans

l'électrolyte aqueux H2SO4 3 M, dans une fenêtre potentielle de 1V; Ceci est supérieur à tous les

résultats précédents des matériaux MXene dans la littérature. En outre, plus de 90% de rétention

de capacité ont été réalisés après 10 000 cycles.

Page 176: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Résumé de Thèse

168

En transposant cette étude dans un liquide ionique (EMI-TFSI), un comportement capacitif avec

une capacité jusqu'à 70 F g-1 à une vitesse de balayage de 20 mV s-1, dans une grande fenêtre de

tension de 3 V a été possible.

Afin d’apporter des éléments de réponse concernant les mécanismes de stockage charge dans de

tels ionogels, une étude par diffraction des rayons X sous polarisation a été réalisée en milieu

liquide ionique EMI-TFSI. Il a été constaté que l'espace interfeuillet diminue en polarisation

positive en raison de a) l'attraction électrostatique entre les anions TFSI intercalés et la surface

Ti3C2Tx chargée positivement et / ou b) l'effet stérique de la désintercalation des cations EMI+.

L'espace interfeuillet augmente en polarisation négative et s’explique l'effet stérique de l'insertion

de cations EMI+.

Reference

[1] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nature Materials, 7 (2008)

845-854.

[2] R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, The role of graphene for electrochemical

energy storage, Nature materials, 14 (2015) 271-279.

[3] D.H. Wang, D.W. Choi, J. Li, Z.G. Yang, Z.M. Nie, R. Kou, D.H. Hu, C.M. Wang, L.V. Saraf,

J.G. Zhang, I.A. Aksay, J. Liu, Self-Assembled TiO2-Graphene Hybrid Nanostructures for

Enhanced Li-Ion Insertion, Acs Nano, 3 (2009) 907-914.

[4] E. Yoo, J. Kim, E. Hosono, H. Zhou, T. Kudo, I. Honma, Large reversible Li storage of

graphene nanosheet families for use in rechargeable lithium ion batteries, Nano Lett., 8 (2008)

2277-2282.

[5] Z.S. Wu, W.C. Ren, L. Wen, L.B. Gao, J.P. Zhao, Z.P. Chen, G.M. Zhou, F. Li, H.M. Cheng,

Graphene Anchored with Co3O4 Nanoparticles as Anode of Lithium Ion Batteries with Enhanced

Reversible Capacity and Cyclic Performance, Acs Nano, 4 (2010) 3187-3194.

Page 177: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Résumé de Thèse

169

[6] H.L. Wang, L.F. Cui, Y.A. Yang, H.S. Casalongue, J.T. Robinson, Y.Y. Liang, Y. Cui, H.J.

Dai, Mn3O4-Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries,

Journal of the American Chemical Society, 132 (2010) 13978-13980.

[7] R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, The role of graphene for electrochemical

energy storage, Nat Mater, 14 (2015) 271-279.

[8] M.D. Stoller, S.J. Park, Y.W. Zhu, J.H. An, R.S. Ruoff, Graphene-Based Ultracapacitors, Nano

Lett., 8 (2008) 3498-3502.

[9] Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, Supercapacitor Devices

Based on Graphene Materials, The Journal of Physical Chemistry C, 113 (2009) 13103-13107.

[10] L. Zhang, F. Zhang, X. Yang, G. Long, Y. Wu, T. Zhang, K. Leng, Y. Huang, Y. Ma, A. Yu,

Y. Chen, Porous 3D graphene-based bulk materials with exceptional high surface area and

excellent conductivity for supercapacitors, Scientific Reports, 3 (2013) 1408.

[11] Y.W. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W.W. Cai, P.J. Ferreira, A. Pirkle, R.M.

Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, R.S. Ruoff, Carbon-Based

Supercapacitors Produced by Activation of Graphene, Science, 332 (2011) 1537-1541.

[12] W. Gao, N. Singh, L. Song, Z. Liu, A.L.M. Reddy, L. Ci, R. Vajtai, Q. Zhang, B. Wei, P.M.

Ajayan, Direct laser writing of micro-supercapacitors on hydrated graphite oxide films, Nat Nano,

6 (2011) 496-500.

[13] C.G. Liu, Z.N. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-Based Supercapacitor with an

Ultrahigh Energy Density, Nano Lett., 10 (2010) 4863-4868.

[14] M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-

dimensional titanium carbide `clay' with high volumetric capacitance, Nature, 516 (2014) 78-81.

[15] B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B.C. Hosler, L. Hultman, P.R.C. Kent, Y. Gogotsi,

M.W. Barsoum, Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes), ACS

Nano, 9 (2015) 9507-9516.

[16] M. Naguib, Y. Gogotsi, Synthesis of Two-Dimensional Materials by Selective Extraction,

Accounts Chem. Res., 48 (2015) 128-135.

[17] M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th Anniversary Article: MXenes:

A New Family of Two-Dimensional Materials, Advanced Materials, 26 (2014) 992-1005.

Page 178: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Résumé de Thèse

170

[18] M. Naguib, J. Come, B. Dyatkin, V. Presser, P.-L. Taberna, P. Simon, M.W. Barsoum, Y.

Gogotsi, MXene: a promising transition metal carbide anode for lithium-ion batteries, Electrochem.

Commun., 16 (2012) 61-64.

[19] M. Naguib, J. Halim, J. Lu, K.M. Cook, L. Hultman, Y. Gogotsi, M.W. Barsoum, New Two-

Dimensional Niobium and Vanadium Carbides as Promising Materials for Li-Ion Batteries,

Journal of the American Chemical Society, 135 (2013) 15966-15969.

[20] O. Mashtalir, M.R. Lukatskaya, M.Q. Zhao, M.W. Barsoum, Y. Gogotsi, Amine-Assisted

Delamination of Nb2C MXene for Li-Ion Energy Storage Devices, Advanced Materials, 27 (2015)

3501-3506.

[21] Z.Y. Lin, D.F. Sun, Q. Huang, J. Yang, M.W. Barsoum, X.B. Yan, Carbon nanofiber bridged

two-dimensional titanium carbide as a superior anode for lithium-ion batteries, J. Mater. Chem. A,

3 (2015) 14096-14100.

[22] D.D. Sun, M.S. Wang, Z.Y. Li, G.X. Fan, L.Z. Fan, A.G. Zhou, Two-dimensional Ti3C2 as

anode material for Li-ion batteries, Electrochem. Commun., 47 (2014) 80-83.

[23] D. Er, J. Li, M. Naguib, Y. Gogotsi, V.B. Shenoy, Ti3C2 MXene as a High Capacity Electrode

Material for Metal (Li, Na, K, Ca) Ion Batteries, ACS Appl. Mater. Interfaces, 6 (2014) 11173-

11179.

[24] M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier, P.L. Taberna, M.

Naguib, P. Simon, M.W. Barsoum, Y. Gogotsi, Cation Intercalation and High Volumetric

Capacitance of Two-Dimensional Titanium Carbide, Science, 341 (2013) 1502-1505.

[25] M. Hu, Z. Li, H. Zhang, T. Hu, C. Zhang, Z. Wu, X. Wang, Self-assembled Ti3C2Tx MXene

film with high gravimetric capacitance, Chem. Commun., 51 (2015) 13531-13533.

[26] X. Wang, S. Kajiyama, H. Iinuma, E. Hosono, S. Oro, I. Moriguchi, M. Okubo, A. Yamada,

Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors, Nat

Commun, 6 (2015).

[27] P.-L. Taberna, P. Simon, Electrochemical Techniques, in: Supercapacitors, Wiley-VCH

Verlag GmbH & Co. KGaA, 2013, pp. 111-130.

[28] X.W. Yang, C. Cheng, Y.F. Wang, L. Qiu, D. Li, Liquid-Mediated Dense Integration of

Graphene Materials for Compact Capacitive Energy Storage, Science, 341 (2013) 534-537.

[29] D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z.Z. Sun, A. Slesarev, L.B. Alemany,

W. Lu, J.M. Tour, Improved Synthesis of Graphene Oxide, Acs Nano, 4 (2010) 4806-4814.

Page 179: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Résumé de Thèse

171

[30] C. Portet, P.L. Taberna, P. Simon, C. Laberty-Robert, Modification of Al current collector

surface by sol–gel deposit for carbon–carbon supercapacitor applications, Electrochim. Acta, 49

(2004) 905-912.

[31] R.Y. Lin, P.L. Taberna, S. Fantini, V. Presser, C.R. Perez, F. Malbosc, N.L. Rupesinghe,

K.B.K. Teo, Y. Gogotsi, P. Simon, Capacitive Energy Storage from -50 to 100 degrees C Using

an Ionic Liquid Electrolyte, Journal of Physical Chemistry Letters, 2 (2011) 2396-2401.

[32] A. Burke, R&D considerations for the performance and application of electrochemical

capacitors, Electrochim. Acta, 53 (2007) 1083-1091.

[33] W.Y. Tsai, R.Y. Lin, S. Murali, L.L. Zhang, J.K. McDonough, R.S. Ruoff, P.L. Taberna, Y.

Gogotsi, P. Simon, Outstanding performance of activated graphene based supercapacitors in ionic

liquid electrolyte from-50 to 80 degrees C, Nano Energy, 2 (2013) 403-411.

[34] X.-Y. Lang, B.-T. Liu, X.-M. Shi, Y.-Q. Li, Z. Wen, Q. Jiang, Ultrahigh-Power

Pseudocapacitors Based on Ordered Porous Heterostructures of Electron-Correlated Oxides,

Advanced Science, 3 (2016) n/a-n/a.

[35] M.F. El-Kady, M. Ihns, M. Li, J.Y. Hwang, M.F. Mousavi, L. Chaney, A.T. Lech, R.B. Kaner,

Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-

performance integrated energy storage, Proceedings of the National Academy of Sciences, 112

(2015) 4233-4238.

[36] H. Kim, D.J. Kim, D.-H. Seo, M.S. Yeom, K. Kang, D.K. Kim, Y. Jung, Ab Initio Study of

the Sodium Intercalation and Intermediate Phases in Na0.44MnO2 for Sodium-Ion Battery, Chem.

Mat., 24 (2012) 1205-1211.

[37] C.R. Fell, M. Chi, Y.S. Meng, J.L. Jones, In situ X-ray diffraction study of the lithium excess

layered oxide compound Li[Li0.2Ni0.2Mn0.6]O2 during electrochemical cycling, Solid State

Ionics, 207 (2012) 44-49.

[38] M. Okubo, E. Hosono, J. Kim, M. Enomoto, N. Kojima, T. Kudo, H. Zhou, I. Honma,

Nanosize Effect on High-Rate Li-Ion Intercalation in LiCoO2 Electrode, Journal of the American

Chemical Society, 129 (2007) 7444-7452.

[39] J. Segalini, E. Iwama, P.-L. Taberna, Y. Gogotsi, P. Simon, Steric effects in adsorption of

ions from mixed electrolytes into microporous carbon, Electrochem. Commun., 15 (2012) 63-65.

Page 180: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Résumé de Thèse

172

[40] Y. Dall’Agnese, P. Rozier, P.-L. Taberna, Y. Gogotsi, P. Simon, Capacitance of two-

dimensional titanium carbide (MXene) and MXene/carbon nanotube composites in organic

electrolytes, Journal of Power Sources, 306 (2016) 510-515.

[41] M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall'Agnese, P. Rozier, P.L. Taberna, M.

Naguib, P. Simon, M.W. Barsoum, Y. Gogotsi, Cation Intercalation and High Volumetric

Capacitance of Two-Dimensional Titanium Carbide, Science, 341 (2013) 1502-1505.

[42] M.M. Hantel, R. Nesper, A. Wokaun, R. Kötz, In-situ XRD and dilatometry investigation of

the formation of pillared graphene via electrochemical activation of partially reduced graphite

oxide, Electrochim. Acta, 134 (2014) 459-470.

[43] H. Li, G. Zhu, Z. Yang, Z. Wang, Z.-H. Liu, Preparation and capacitance property of MnO2-

pillared Ni2+–Fe3+ layered double hydroxides nanocomposite, Journal of Colloid and Interface

Science, 345 (2010) 228-233.

[44] Y. Dall’Agnese, P.-L. Taberna, Y. Gogotsi, P. Simon, Two-Dimensional Vanadium Carbide

(MXene) as Positive Electrode for Sodium-Ion Capacitors, The Journal of Physical Chemistry

Letters, 6 (2015) 2305-2309.

Page 181: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Abstract:

This thesis aims at studying the electrochemical properties of graphene and MXenes materials used as

electrode in supercapacitor applications. The first part starts with the graphene synthesis and electrode

films preparation. After immersion in a solution of 10wt% ((PIP13)0.5(PYR14)0.5-TFSI) in acetonitrile

electrolyte and vacuum drying, a graphene gel film was obtained and electrochemically characterized in

(PIP13)0.5(PYR14)0.5-TFSI ionic liquid mixture electrolyte. The combination of high-voltage electrolyte with

fully accessible, high surface area graphene film enables to achieve high gravimetric capacitance up to 175

F/g in neat ionic liquid electrolyte. A large operation temperature range from -40 to 80 oC was achieved

thanks to the use of (PIP13)0.5(PYR14)0.5-TFSI ionic liquid eutectic mixture which does not show any phase

change down to -60°C.

In a second part, we processed 2-Dimmensional Ti3C2Tx MXene materials into gel film using a similar

approach that we did for graphene. Ti3C2Tx shows extremely high capacitance of 380 F/g and 1500 F/cm3 in

3 M H2SO4 electrolyte, which i) surpass all the reported results for MXenes so far and ii) show at least

similar performance than pseudocapacitive materials such as RuO2. Besides, Ti3C2Tx MXene gel films were

also studied in neat ionic liquid electrolyte (EMI-TFSI). A capacitance of 80 F/g was achieved with good rate

performance, which is today the best performance obtained in neat ionic liquid for these materials. More

interestingly, the charge storage mechanism was further studied by in-situ XRD technique. This in-situ study

has evidenced two different charge storage mechanism. During negative polarization, the interlayer spacing

in MXene flakes increases due to steric effect during EMI+ cation insertion. Differently, the decrease in the

interlayer spacing during positive polarization was ascribed to i) electrostatic attraction between the

intercalated TFSI- anions and positively-charged Ti3C2Tx surface and/or ii) a steric effect of EMI+ cations de-

intercalation. This thesis presents the promising potential for using Graphene and MXenes as electrode

materials for supercapacitor, and shed lights on further development of these materials.

Page 182: MergedFile - Thèses en ligne de l'Université Toulouse IIIthesesups.ups-tlse.fr/3688/1/2017TOU30157.pdf · Chapter III focuses on graphene electrode materials for supercapacitor

Résumé:

Cette thèse vise à étudier les propriétés électrochimiques de graphène et de MXenes utilisés en tant que

matériaux d’électrodes pour supercondensateurs. La première partie concerne la synthèse du graphène et

la préparation des films d'électrode. Après immersion dans un mélange contenant une concentration de

10wt% de mélange de liquides ionique ((PYP13)0.5(PYR14)0.5-TFSI) dans l'acétonitrile et séchage sous vide,

un film de gel de graphène est obtenu, qui est ensuite caractérisé électrochimiquement dans l’électrolyte

((PYP13)0.5(PYR14)0.5-TFSI pur ; une capacité de 175F/g est alors obtenue. L’intérêt de cette méthode de

synthèse est d'améliorer l'accessibilité de la surface du graphène en pré-intercalant entre les feuillets les

liquides ioniques. L’utilisation de ce mélange eutectique de liquides ioniques (PYP13)0.5(PYR14)0.5-TFSI

permet également d’augmenter considérablement la plage de température d’utilisation du système (de -

40°C à 80°C), grâce à l’absence de solidification du mélange eutectique jsuque -60°C.

Dans une deuxième partie, nous nous sommes intéressés à de nouveaux matériaux 2 Dimmensions, les

MXènes, et plus particulièrement à la phase Ti3C2Tx. Des films de Ti3C2Tx. ont été préparés suivant le même

protocole que précédemment, à la différence près que les feuillets de MXènes ont d’abord été pré-

intercalés avec H2SO4. Les électrodes de Ti3C2Tx ainsi préparées montrent des capacités extrêmement

élevées de 380 F/ g avec des capacités volumiques dépassant les 1500 F/cm3 dans l'électrolyte 3 M H2SO4.

Ces performances surpassent tous les résultats rapportés pour les MXenes à ce jour ; ces capacités sont

même comparables avec celles obtenues avec des matériaux pseudocapacitifs comme le RuO2. Pour

terminer, les électrodes de Ti3C2Tx pré-intercalées avec du liquide ionique EMI-TFSI ont été étudiées dans

l'électrolyte liquide ionique pur (EMI-TFSI). Des capacités atteignant 80 F/g ont tout d’abord été obtenues

dans un domaine de potentiel de 3 V, ce qui constitue à ce jour les meilleurs résultats obtenus avec les

MXenes en milieu liquide ionique pur. En plus de ces performances électrochimiques remarquables, le

mécanisme de stockage des charges a également été étudié diffraction des RX in-situ. Les résultats ont

montré que la distance entre deux feuillets de MXenes augmente lors de polarisations négatives du fait de

l’effet stérique associé à l'insertion des cations EMI+. Différemment, la diminution de cette même distance

inter-feuillets durant les polarisations positives a été attribuée à a) l'attraction électrostatique entre les

anions TFSI intercalés et la surface Ti3C2Tx chargée positivement et/ou à b) l'effet stérique lors de la

désinsertion des cations EMI+ présents.

Cette thèse montre le potentiel prometteur de graphène et MXenes pré-intercalés avec des électrolytes de

type liquides ioniques en tant que matériaux d'électrodes pour la réalisation de supercondensateurs de

grande densité d’énergie fonctionnant en milieu aqueux ou organique.