ars.els-cdn.com · Web view[2] L. Yang, S. Zhou, W. Yang, Polypyrrole directly bonded to air-plasma...

13
Supporting Information Hydrogen-bonding power interfacial load transfer of carbon fabric/polypyrrole composite pseudo- supercapacitor electrode with improved electrochemical stability Xin Jin a, * , He Wang b , Yamin Liu a , Hongjie Wang b , Wenyu Wang b, *, Tong Lin c a State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China b School of Textiles, Tianjin Polytechnic University, Tianjin 300387, China c Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia * Corresponding author:

Transcript of ars.els-cdn.com · Web view[2] L. Yang, S. Zhou, W. Yang, Polypyrrole directly bonded to air-plasma...

Page 1: ars.els-cdn.com · Web view[2] L. Yang, S. Zhou, W. Yang, Polypyrrole directly bonded to air-plasma activated carbon nanotube as electrode materials for high-performance supercapacitor,

Supporting Information

Hydrogen-bonding power interfacial load transfer of carbon

fabric/polypyrrole composite pseudo-supercapacitor electrode with

improved electrochemical stability

Xin Jin a, * , He Wang b, Yamin Liu a, Hongjie Wang b, Wenyu Wang b, *, Tong Lin c

a State Key Laboratory of Separation Membranes and Membrane Processes, School of

Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387,

China

b School of Textiles, Tianjin Polytechnic University, Tianjin 300387, China

c Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia

* Corresponding author:

Xin Jin , E-mail: [email protected]

Wenyu Wang, E-mail: [email protected]

Page 2: ars.els-cdn.com · Web view[2] L. Yang, S. Zhou, W. Yang, Polypyrrole directly bonded to air-plasma activated carbon nanotube as electrode materials for high-performance supercapacitor,

Fig. S1 SEM of fibers a) CF; b)PCF; c) CF/PPy; d) PCF/PPy

Fig. S2 Fiber diameter distribution

The SEM of fibers and a fiber diameter distribution pictures shown in Fig.S1 and Fig.S2, respectively. We can see that the surface became roughness and the average diameter of fiber increased a little after pyrrole polymerization on the surface of CF and PCF.

Table S1. The surface chemical composition results of samples based on XPS.

Samples CF PCF CF/PPy PCF/PPyO/C 4.9 33.2 9 8

C-C/% 86.1 37.5 44.4 42.8COH/% 6.79 24.1 0 0C=O/% 6.4 13.5 26.4 24.3

COOH/% 0.76 24.9 0 0C-N/% 0 0 29.2 32.9

a b c d

Page 3: ars.els-cdn.com · Web view[2] L. Yang, S. Zhou, W. Yang, Polypyrrole directly bonded to air-plasma activated carbon nanotube as electrode materials for high-performance supercapacitor,

Fig. S3. The surface roughness of a-CF, b-PCF, c-CF/PPy, and d-PCF/PPy.

Fig. S4. The roughness and IFSS relationship curves of composites sample

S-3

Page 4: ars.els-cdn.com · Web view[2] L. Yang, S. Zhou, W. Yang, Polypyrrole directly bonded to air-plasma activated carbon nanotube as electrode materials for high-performance supercapacitor,

Fig. S5. CV curves of CF, PCF, CF/PPy, PCF/PPy at 20 mV s-1.

Fig. S6. GCD curves of CF, PCF, CF/PPy, PCF/PPy at 0.5 mA cm-2.

Table S2. The electrochemical performance results of samples based GCD curves.Current(mA)

Currentdensity

(mA cm-2)

Discharge time ∆t (s)

Areal capacitance (mF cm-2)

Capacitance retention(%)

1 0.5 349 449 218 281 100 1002 1 137 215 171 269 78 963 1.5 83 138 156 259 72 924 2 56 96 140 240 64 855 2.5 34 72 106 225 49 80

S-4

Page 5: ars.els-cdn.com · Web view[2] L. Yang, S. Zhou, W. Yang, Polypyrrole directly bonded to air-plasma activated carbon nanotube as electrode materials for high-performance supercapacitor,

Fig. S7. The first and last charge/discharge curves of (a) CF/PPy and (b) PCF/PPy at

2.5 mA cm-2.

S-5

Page 6: ars.els-cdn.com · Web view[2] L. Yang, S. Zhou, W. Yang, Polypyrrole directly bonded to air-plasma activated carbon nanotube as electrode materials for high-performance supercapacitor,

The calculation process of gravimetric capacitances of CF, PCF, CF/PPy, and

PCF/PPy is as following based on the Equation (6) in the experimental section.

M=M 1+M 2=1mg+0.4mg=1.4mg

2M=2×1.4mg=2.8mg

W%=M 2

M×100 %=0.4

1.4×100 %=28.6 %

CCF=I ×∆ t

2M 1×∆V= 0.5×36.8

2×1×0.8=11.5F g−1

CPCF=I ×∆ t

2M 1×∆V= 0.5×97.6

2×1×0.8=30.5 F g−1

CCF/PPy=I ×∆ t

2M ×∆V× 1W %

= 0.5×348.82×1.4×0.8

× 128.6 %

=272 F g−1

CPCF /PPy=I ×∆ t

2M ×∆V× 1W%

= 0.5×449.62×1.4×0.8

× 128.6 %

=351F g−1

where M (mg) is the mass of single electrode, M 1 (mg) and M 2 (mg) are the mass of

carbon substrate and active PPy, 2M (mg) is the total mass of two electrodes in the

supercapacitor, W% is the active material to electrode mass ratio, and CCF, CPCF,

CCF/PPy, and CPCF /PPy are gravimetric capacitances of CF, PCF, CF/PPy, and PCF/PPy.

S-6

Page 7: ars.els-cdn.com · Web view[2] L. Yang, S. Zhou, W. Yang, Polypyrrole directly bonded to air-plasma activated carbon nanotube as electrode materials for high-performance supercapacitor,

Table S3. Performances of supercapacitors based on carbon materials/PPy composite electrodes

Carbon

substrateElectrolyte Capacitance

Rate

capability

(%)

Cycling

numbers

Retention

rate (%)Ref.

Carbon

fabric

2M

NaCl

281 mF cm-2

(0.5 mA cm-2)

351 F g-1

80 400093 Our

work

(0.5 A g-1) (0.5-2.5 mA cm-2) (2.5 mA cm-2)

Carbon

cloth

2M

H2SO4

341.2 mF cm-2

(1 mA cm-2)

70

(1-20 mA cm-2)

10000

(8 mA cm-2)96

1

2016

Carbon

nanotube

1M

H2SO4

264 F g-1

(5 mA cm-2)-

1000

(5 mA cm-2)89

2

2015

Carbon paper

1M

H2SO4

15.9 mF cm-2

(1 mA cm-2)

58

(1-10 mA cm-2)

1000

(3 mA cm-2)51.3

3

2014

Graphene1M

H2SO4

420 F g-1

(0.5 A g-1)

57

(0.5-5 A g-1)

200

(1 A g-1)93

4

2013

Graphene2M

H2SO4

400 F g-1

(0.3 A g-1)

81

(0.3-1.5 A g-1)

200

(1.5 A g-1)88

5

2012

Graphene1M

H2SO4

482 F g-1

(0.5 A g-1)

46

(0.5-5 A g-1)

1000

(0.5 A g-1)95

6

2011

Graphene1M

KCl

285 F g-1

(0.5 A g-1)

73

(0.5-10 A g-1)

800

(2 A g-1)92

7

2010

Carbon

aerogel

6M

KOH

433 F g-1

(1 mV s-1)

73

(1-10 mV s-1)

500

(1 A g-1)-

8

2010

Carbon

fiber

6M

KOH

588 F g-1

(30 mV s-1)

93

(30-200 mV s-1)- -

9

2006

S-7

Page 8: ars.els-cdn.com · Web view[2] L. Yang, S. Zhou, W. Yang, Polypyrrole directly bonded to air-plasma activated carbon nanotube as electrode materials for high-performance supercapacitor,

References[1] D.-Y. Feng, Y. Song, Z.-H. Huang, X.-X. Xu, X.-X. Liu, Rate capability improvement of polypyrrole via integration with functionalized commercial carbon cloth for pseudocapacitor, J. Power Sources 324 (2016) 788-797.[2] L. Yang, S. Zhou, W. Yang, Polypyrrole directly bonded to air-plasma activated carbon nanotube as electrode materials for high-performance supercapacitor, Electrochim. Acta 153 (2015) 76-82.[3] C. Yang, J. Shen, C. Wang, H. Fei, H. Bao, G. Wang, All-solid-state asymmetric supercapacitor based on reduced graphene oxide/carbon nanotube and carbon fiber paper/polypyrrole electrodes, J. Mater. Chem. A 2 (5) (2014) 1458-1464.[4] Y. Liu, Y. Zhang, G. Ma, Z. Wang, K. Liu, H. Liu, Ethylene glycol reduced graphene oxide/polypyrrole composite for supercapacitor, Electrochim. Acta 88 (2013) 519-525.[5] H.-H. Chang, C.-K. Chang, Y.-C. Tsai, C.-S. Liao, Electrochemically synthesized graphene/polypyrrole composites and their use in supercapacitor, Carbon 50 (6) (2012) 2331-2336.[6] D. Zhang, X. Zhang, Y. Chen, P. Yu, C. Wang, Y. Ma, Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors, J. Power Sources 196 (14) (2011) 5990-5996.[7] A. Liu, C. Li, H. Bai, G. Shi, Electrochemical deposition of polypyrrole/sulfonated graphene composite films, J. Phys. Chem. C 114 (51) (2010) 22783-22789.[8] H. An, Y. Wang, X. Wang, L. Zheng, X. Wang, L. Yi, et al., Polypyrrole/carbon aerogel composite materials for supercapacitor, J. Power Sources 195 (19) (2010) 6964-6969.[9] J.-H. Kim, Y.-S. Lee, A.K. Sharma, C.G. Liu, Polypyrrole/carbon composite electrode for high-power electrochemical capacitors, Electrochim. Acta 52 (4) (2006) 1727-1732.

S-8