2013 Biochip Technologies 1 Materials in the Life Sciences

download 2013 Biochip Technologies 1 Materials in the Life Sciences

of 41

Transcript of 2013 Biochip Technologies 1 Materials in the Life Sciences

  • 8/10/2019 2013 Biochip Technologies 1 Materials in the Life Sciences

    1/41

    IMTEK

    powerpoint

    template

    2008:Version2ofthefirstslide

    -

    T. Brandstetter

  • 8/10/2019 2013 Biochip Technologies 1 Materials in the Life Sciences

    2/41

    Content

    Materials

    and

    surface

    modifications

    (26.04.13)

    Manufacturing

    of

    Biochips

    (14.06.13)

    Biochiptechnologies Betweenresearchandroutinediagnostics(stateoftheart, 21.06.13)

    Nucleicacidbasedtechniques(28.06.13)

    Biochips

    for

    protein

    analytics

    (05.06.13)

    Otherapplications(12.07.13)

    T.

    Brandstetter/

    26.04.2013 /

    slide

    2www.imtek.de/cpi

    ummary

    . .

  • 8/10/2019 2013 Biochip Technologies 1 Materials in the Life Sciences

    3/41

    Ourprofile

    esearc an eac ng

    22 faculties

    highly interdisciplinary world of

    microsystem technology

    IMTEK and industry

    MSTBw

    Core competences of CPI

    Preparation of surfaces with tailor-made

    Topological and chemical microstructuring of surfaces

    T.

    Brandstetter/

    26.04.2013 /

    slide

    3www.imtek.de/cpi

    AFM Biochip-technologies

  • 8/10/2019 2013 Biochip Technologies 1 Materials in the Life Sciences

    4/41

    Biochiptechnologieshttp://portal.uni-freiburg.de/cpi/biochip-group-dr-brandstetter

    T.

    Brandstetter/

    26.04.2013 /

    slide

    4www.imtek.de/cpi

  • 8/10/2019 2013 Biochip Technologies 1 Materials in the Life Sciences

    5/41

    Biochips what are they?(1)

    devicesthat can contain anywhere from tens to tens of millions of individual

    sensor elements or biosensors

    The sensors are acked to ether into a acka e t icall the size of a

    microscope slide. Because so many sensors can be put into such a small

    area, a huge number of distinct tests can be done very rapidly.

    Biochips are often made using the same microfabrication technology used

    . , ,

    electronic (although they can be).

    The key premise behind biochips is, that they can do chemistry on a small

    scale. Each biosensor can be thought of as a "microreactor, which does

    T.

    Brandstetter/

    26.04.2013 /

    slide

    5www.imtek.de/cpi

    chemistry designed tosense a specific analyte.

  • 8/10/2019 2013 Biochip Technologies 1 Materials in the Life Sciences

    6/41

    Biochips what are they?(2)

    Biosensors can be made tosense a wide variety of analytes, including DNA,

    rotein antibodies and small biolo ical molecules.

    Fluorescence is often used to indicate a sensin event. Automated

    microscopy systems can be used to "read" the chip, i.e. determine which

    sensors are fluorescing

    Most biochips are 2D arrays of sensors placed carefully in a grid

    . .

    ,

    microdeposition techniquesare used. The sensors are essentially placed one

    at a time, or serially, on the chip.

    T.

    Brandstetter/

    26.04.2013 /

    slide

    6www.imtek.de/cpi

  • 8/10/2019 2013 Biochip Technologies 1 Materials in the Life Sciences

    7/41

    Biochips what are they?(3)

    HPV_3D_Katrin_N_30s_Cy5

    substrat

    dot

    3

    13 microarray

    http://en.wikipedia.org/wiki/Biochip#History

    T.

    Brandstetter/

    26.04.2013 /

    slide

    7www.imtek.de/cpi

  • 8/10/2019 2013 Biochip Technologies 1 Materials in the Life Sciences

    8/41

    Manufacturingof biochips ingeneral(1)

    1. Untreated slide

    mixed analyte solution

    2. Microarray printing

    . mmo sa on

    T.

    Brandstetter/

    26.04.2013 /

    slide

    8www.imtek.de/cpi

  • 8/10/2019 2013 Biochip Technologies 1 Materials in the Life Sciences

    9/41

    Manufacturingof biochips ingeneral(2)

    step1:print polymer mixed with DNA

    step 3:

    hybridisation

    and

    photocrosslinking

    via UV-irradiation

    T.

    Brandstetter/

    26.04.2013 /

    slide

    9www.imtek.de/cpiC OH

  • 8/10/2019 2013 Biochip Technologies 1 Materials in the Life Sciences

    10/41

    Materials and surface modifications

    T.

    Brandstetter/

    26.04.2013 /

    slide

    10www.imtek.de/cpi

  • 8/10/2019 2013 Biochip Technologies 1 Materials in the Life Sciences

    11/41

    Biochip materials (1)

    Microscope slide of glass Commercial microscope glass slides

    Silica (SiO2) + vitreous silica

    - -

    Limestone (CaCO3) + borosilicate glass-pyrex

    Magnesium Carbonate (MgCO3) + aluminosilicate glass

    + borosilicate glass

    Detailled information

    Frontiers in biochip technology

    by Wan-Li Xing, Jing Cheng

    T.

    Brandstetter/

    26.04.2013 /

    slide

    11www.imtek.de/cpi

    Published by Birkhuser, 2006ISBN 0387255680, 9780387255682

    357 pages

  • 8/10/2019 2013 Biochip Technologies 1 Materials in the Life Sciences

    12/41

    Biochip materials (2)

    Microscope slide of plastic Commercial plastic slides

    PMMA (polymethymethacrylate) + PMMA

    COC (cyclic olefin copolymer) + TOPAS

    Polycarbonate + Polycarbonate

    Polypropyrene + Polypropyrene

    T.

    Brandstetter/

    26.04.2013 /

    slide

    12www.imtek.de/cpi

    Lab Chip, 2007, 7, 856 - 862, DOI: 10.1039/b700322f

  • 8/10/2019 2013 Biochip Technologies 1 Materials in the Life Sciences

    13/41

    Biochip coatings

    directly chemically modified surfaces

    n s u syn es s on g ass + ac va e g ass y po y-car o m e,

    aminosilane, aldehyde

    an za e pro es on unmo e g ass + gra coa ng po ymers on s con g ass

    Photocrosslinking on unmodified plastic + plastic-based DNA microarrays using

    car o m e c em s ry

    + amine-modified PMMA substrates

    + activated polystyrene, polypropyrene,

    polycarbonate (PC) S.A. Fodor, R. Rava, X.C. Huang, A.C. Pease, C.P. Holmes and C.L. Adams. Science 251 (1991) 767773. M.J. Moorcroft, W.R. Meuleman, S.G. Latham, T.J. Nicholls, R.D. Egeland and E.M. Southern. NAR, 2005, Vol. 33, e75.

    N. Kimura, R. Oda, Y. Inaki and O. Suzuki. Nucleic Acids Research, 2004, Vol. 32, e68.

    H.-Y. Wang,R.L. Malek,A.E. Kwitek,A.S. Greene,T.V. Luu,B. Behbahani,B. Frank,J. Quackenbush, N.H. Lee, Genome Biol. 4 (2003), R5.

    M. Dufva, S. Petronis, L.B. Jensen, C. Krag and C.B. Christensen. Biotechniques 37 (2004) 286292, 294, 296.

    A. Kumar O. Larsson D. Parodi Z. Lian Nucleic Acids Research 2000 Vol. 28 e98.

    T.

    Brandstetter/

    26.04.2013 /

    slide

    13www.imtek.de/cpi

    M. Schena, D. Shalon, R.W. Davis, P.O. Brown, Science 270 (1995), 467470.

    De Paul S. M., Falconnet D., Pasche S., Textor M., Abel A. P., Kauffmann E., Liedtke R. and Ehrat M.. Anal. Chem. 2005, 77, 5831-5838.

    Johnson P. A., Gaspar M. A. and Levicky R. J. Am. Chem. Soc.,2004, 126, 9910-9911.

    N. Kimura, T. Nagasaka, J. Murakami, H. Sasamoto, M. Murakami, N. Tanaka and N. Matsubara. Nucleic Acids Research, 2005, Vol. 33, e46.

  • 8/10/2019 2013 Biochip Technologies 1 Materials in the Life Sciences

    14/41

    2DchipsusingSAMs(selfassembledmonolayers)

    typical DNA-chip design:

    sequence of the probe

    polyT(thymine) tailer

    adapted from: E. Southern, K. Mir, M. Shchepinov, Nature Gen., 27 (1999) 5

    + reproducibility (why is acceptance of microarrays below expectations in non-research areas?

    Weakness:

    + sensitivity

    + surface properties

    T.

    Brandstetter/

    26.04.2013 /

    slide

    14www.imtek.de/cpi

  • 8/10/2019 2013 Biochip Technologies 1 Materials in the Life Sciences

    15/41

    Askyscraperapproach

    attachment ofo gonuc eot e pro es

    3D

    polymer brushes

    polymer layer approach allows to

    improve the sensitivity

    adjust properties of the surface

    (hydrophilicity, reactivity)

    3D

    T.

    Brandstetter/

    26.04.2013 /

    slide

    15www.imtek.de/cpi

    polymer networks

  • 8/10/2019 2013 Biochip Technologies 1 Materials in the Life Sciences

    16/41

    Functional polymermonolayers

    chemisor tion of ol mers growth of polymerson surfaces

    blockco ol mers

    grafting of polymers on

    plasma modified

    surfaces

    via macroinitators

    T.

    Brandstetter/

    26.04.2013 /

    slide

    16www.imtek.de/cpi

    photochemical attachmentof polymers surface-attachedpolymer networks grafting in between

  • 8/10/2019 2013 Biochip Technologies 1 Materials in the Life Sciences

    17/41

    Photochemistry of benzophenone

    triplet formation upon n,* excitation

    biradical reacts with C,H bonds

    C O C O C

    CCH

    350 nmO

    H265 nm

    hydrogen

    abstraction

    = 100 s

    CC

    OHrecombination

    Toomey R., Freidank D. and

    Rhe J.. Swelling Behavior of

    T.

    Brandstetter/

    26.04.2013 /

    slide

    17www.imtek.de/cpi

    n, ur ace- ac e

    Polymer Networks.Macromolecules, Vol. 37, 2004,

    882-887.

  • 8/10/2019 2013 Biochip Technologies 1 Materials in the Life Sciences

    18/41

    Polymernetworks attached to polymeric substrates

    photocrosslinkableovercoat

    Me

    O OONMesimultaneous crosslinking

    Me

    polymeric substrate

    (e.g. polyurethane)

    via pendant benzophenone

    units

    swelling in

    ca. 20 m

    ~ 1 mm

    T.

    Brandstetter/

    26.04.2013 /

    slide

    18www.imtek.de/cpi

  • 8/10/2019 2013 Biochip Technologies 1 Materials in the Life Sciences

    19/41

    Microstructuringinbiochiptechnologies,twoprocedures

    I. Contact printing

    T.

    Brandstetter/

    26.04.2013 /

    slide

    19www.imtek.de/cpi

    http://www.anopoli.com/http://www.anopoli.com/

  • 8/10/2019 2013 Biochip Technologies 1 Materials in the Life Sciences

    20/41

    Microstructuringinbiochiptechnologies,contactprinting

    Omnigrid from GeneMachine

    Contact printing procedure

    65% humidity, RT

    Steel or tungsten needle with reservoir

    droplet volume 400 600 pl

    droplet diameter 140 200 m

    Process variance > 10%

    T.

    Brandstetter/

    26.04.2013 /

    slide

    20www.imtek.de/cpi

  • 8/10/2019 2013 Biochip Technologies 1 Materials in the Life Sciences

    21/41

    Microstructuringinbiochiptechnologies,contactprinting

    Pin heads make the difference.

    Split pinSpot diameters : 75m to 215 m

    Uptake volumes : 0.25l to 0.64 l

    li.c

    om/

    http://www.a

    nopo

    Solid pin

    Spot diameters : 75m to 450 m

    T.

    Brandstetter/

    26.04.2013 /

    slide

    21www.imtek.de/cpi

  • 8/10/2019 2013 Biochip Technologies 1 Materials in the Life Sciences

    22/41

    Microstructuringinbiochiptechnologies,contactprinting

    Printing with different, not aqueous, solutions is possible.

    PDMAA(Polydimethylmetacrylate) PS (Polystyrene)

    200 m

    T.

    Brandstetter/

    26.04.2013 /

    slide

    22www.imtek.de/cpi

    printing medium: ethanol printing medium: toluene

  • 8/10/2019 2013 Biochip Technologies 1 Materials in the Life Sciences

    23/41

    Microstructuringinbiochiptechnologies,contactprinting

    Spot diameter is not really controllable.

    Split pin

    Solid pin

    Printing of 0.25 m Cy5-labelled oligo-DNA in 400

    mM Napi and 1mg/ml PDMAA-co-5%MABP-co-

    2,5%VPA

    T.

    Brandstetter/

    26.04.2013 /

    slide

    23www.imtek.de/cpi

  • 8/10/2019 2013 Biochip Technologies 1 Materials in the Life Sciences

    24/41

    Microstructuringinbiochiptechnologies,contactprinting

    sca e n ng

    PDMAA layer

    PMMA 5 m /ml linin

    Printing medium toluene

    exposure after

    T.

    Brandstetter/

    26.04.2013 /

    slide

    24www.imtek.de/cpi

  • 8/10/2019 2013 Biochip Technologies 1 Materials in the Life Sciences

    25/41

    Microstructuringinbiochiptechnologies,contactprinting

    1. copolymers 2. buffer 3. PT-6000 tungsten

    PDMAA-co-5%MABP-co-2 5%VPA a 400 mM Na i

    plastic/PMMA glass/Epoxy

    (b) 200 mM Napi/3xSSC/0.75 M betaine

    2D

    . . ..

    2D_16_04_07_P2Dsp.2a 2D_16_04_07_N2Dsp.4b

    a. a. b.

    2D_04_04_07_N2Ds.4a2D_04_04_07_P2Ds.1a

    b.

    3D3D

    T.

    Brandstetter/

    26.04.2013 /

    slide

    25www.imtek.de/cpi

    3D_12_04_07_P3Dsp.11a 3D_12_04_07_N3Dsp.2a 3D_03_04_07_N3Ds.4a3D_03_04_07_P3Ds.11

  • 8/10/2019 2013 Biochip Technologies 1 Materials in the Life Sciences

    26/41

    Microstructuringinbiochiptechnologies,contactprinting

    1. copolymers 2. buffer 3. PT-6000 tungsten

    PDMAA-co-5%MABP-co-2,5%VPA (a) 400 mM Napi

    plastic/PMMA glass/Epoxy

    (b) 200 mM Napi/3xSSC/0,75 M betaine

    2D

    . . ..

    2D_16_04_07_P2Dsp.2a

    a. a. b.

    2D_xx_04_07_N2Ds.x2D_xx_04_07_P2Ds.x

    b.

    2D_16_04_07_N2Dsp.4b

    3D3D

    T.

    Brandstetter/

    26.04.2013 /

    slide

    26www.imtek.de/cpi

    3D_12_04_07_P3Dsp.11a 3D_12_04_07_N3Dsp.2a 3D_xx_04_07_N3Ds.x3D_xx_04_07_P3Ds.x

  • 8/10/2019 2013 Biochip Technologies 1 Materials in the Life Sciences

    27/41

    Microstructuringinbiochiptechnologies,contactlessprinting

    II. Contactless printing/Piezo Electric Dispenser

    http://www.scienion.de

    T.

    Brandstetter/

    26.04.2013 /

    slide

    27www.imtek.de/cpi

  • 8/10/2019 2013 Biochip Technologies 1 Materials in the Life Sciences

    28/41

    Microstructuringinbiochiptechnologies,contactlessprinting

    II. Piezo Electric dispenser

    Piezo Electric dispenser(Scienion AG)

    Contactless printing procedure

    um y,

    droplet volume 410 pl,

    droplet volume and diameter is

    adjustable

    Process variance < 10%

    T.

    Brandstetter/

    26.04.2013 /

    slide

    28www.imtek.de/cpi

    Microstr ct ring in biochip technologies contactless printing

  • 8/10/2019 2013 Biochip Technologies 1 Materials in the Life Sciences

    29/41

    Microstructuringinbiochiptechnologies,contactlessprinting

    Photos after print

    2D 3D

    3D2D = printing with PBS without polymer

    3D = printing with PBS 1 mg/ml PDMAA-co-

    5%MABP-co-2,5%VPA

    T.

    Brandstetter/

    26.04.2013 /

    slide

    29www.imtek.de/cpi

    i i i bi hi h l i l i i

  • 8/10/2019 2013 Biochip Technologies 1 Materials in the Life Sciences

    30/41

    Microstructuringinbiochiptechnologies,contactlessprinting

    rop e s ac ng

    1mg/ml polymer in distilled water

    =

    PMMA = Polymethylmetacrylate

    Small droplet with 10x

    Large droplets with 20x

    Photo after print

    T.

    Brandstetter/

    26.04.2013 /

    slide

    30www.imtek.de/cpi

    PSS PMMA

    Mi t t i i bi hi t h l i t tl i ti

  • 8/10/2019 2013 Biochip Technologies 1 Materials in the Life Sciences

    31/41

    Microstructuringinbiochiptechnologies,contactlessprinting

    onu -s ruc ur ng

    1mg/ml PDMAA-co-

    5%MABP-co-2,5%VPA inPBS

    Exposure after wash with

    PBS and 0.1% (v/v) Tween)

    T.

    Brandstetter/

    26.04.2013 /

    slide

    31www.imtek.de/cpi

    Dot morphology how to analyze?

  • 8/10/2019 2013 Biochip Technologies 1 Materials in the Life Sciences

    32/41

    Dotmorphology,howtoanalyze?

    Dot morphology, depending on

    surface properties

    print solution contact angle

    analyte concentration

    ,

    AFM

    Raster electron microscope

    T.

    Brandstetter/

    26.04.2013 /

    slide

    32www.imtek.de/cpi

    Microstructuring in biochip technologies contactless printing

  • 8/10/2019 2013 Biochip Technologies 1 Materials in the Life Sciences

    33/41

    Microstructuringinbiochiptechnologies,contactlessprinting

    r n ng w a ves, avo ng

    donut-morphology

    1mg/ml PDMAA-co-5%MABP-co-2,5%VPA in PBS

    Additive Glycerol

    0 2.5 5 10 25%(v/v)

    T.

    Brandstetter/

    26.04.2013 /

    slide

    33www.imtek.de/cpi

    Microstructuring in biochip technologies contactless printing

  • 8/10/2019 2013 Biochip Technologies 1 Materials in the Life Sciences

    34/41

    Microstructuringinbiochiptechnologies,contactlessprinting

    r n ng w w ou re a ose

    1mg/ml PDMAA-co-5%MABP

    -co-2,5%VPA in PBS

    -T+T

    125 mg/ml Trehalose (T) in PBS

    Donut-structure without

    Homogeneity in the dot

    morphology, using Trehalose

    -T

    - - - -

    http://en.wikipedia.org/wiki/Trehalose

    T.

    Brandstetter/

    26.04.2013 /

    slide

    34www.imtek.de/cpi

    glucopyranoside(,

    Trehalose) Exposure with a fluorescence microscope

  • 8/10/2019 2013 Biochip Technologies 1 Materials in the Life Sciences

    35/41

    MicrostructuringMicrostructuring ininbiochipbiochip technologiestechnologies

  • 8/10/2019 2013 Biochip Technologies 1 Materials in the Life Sciences

    36/41

    MicronasMicronas BiochipBiochip technlogytechnlogy

    Piezo Electric dispenser(Scienion AG)

    Contactless printing procedure

    80% humidity, RT

    droplet volume 390 pl,

    photodiode diameter 180 m

    pr n ng on s ruc ure sur aces

    Process variance < 10%

    T.

    Brandstetter/

    26.04.2013 /

    slide

    36www.imtek.de/cpi

    Microstructuringinbiochiptechnologies

  • 8/10/2019 2013 Biochip Technologies 1 Materials in the Life Sciences

    37/41

    MicronasBiochiptechnlogy

    Piezo Electric dispenser(Scienion AG)

    printing directly on a photodiode

    180 m

    T.

    Brandstetter/

    26.04.2013 /

    slide

    37www.imtek.de/cpi

    Microstructuringinbiochiptechnologies

  • 8/10/2019 2013 Biochip Technologies 1 Materials in the Life Sciences

    38/41

    MicronasBiochiptechnlogy

    Piezo Electric dispenser(Scienion AG)

    printing directly on a photodiode

    pattern matching using a software

    ed

    notprin

    d

    printe

    T.

    Brandstetter/

    26.04.2013 /

    slide

    38www.imtek.de/cpi

    MicrostructuringMicrostructuring inbiochiptechnologies,summaryinbiochiptechnologies,summary

  • 8/10/2019 2013 Biochip Technologies 1 Materials in the Life Sciences

    39/41

    gg p g , yp g , y

    Piezo Electric dispenser (Scienion AG)

    Droplet volume control

    Droplet diameter tunable (>100m)

    r nt ng on y w t aqueous so ut ons

    1mg/ml polymer

    Process variance < 10%

    Omnigrid from GeneMachine

    Contact rintin rocedure

    Steel or tungsten needle with reservoir

    droplet volume 400 600 pl

    .

    Printing of different solutions

    > 1mg/ml polymer possible

    T.

    Brandstetter/

    26.04.2013 /

    slide

    39www.imtek.de/cpi

    Process variance > 10%

  • 8/10/2019 2013 Biochip Technologies 1 Materials in the Life Sciences

    40/41

    Thank you for your attention!

    http://www.bilder-welten.net/de/produkt_detail.php?id=23019&catid=1623

    T.

    Brandstetter/

    26.04.2013 /

    slide

    40www.imtek.de/cpi

    Literature

  • 8/10/2019 2013 Biochip Technologies 1 Materials in the Life Sciences

    41/41

    E. Southern, K. Mir, M. Shchepinov, Nature Gen., 27 (1999) 5

    Frontiers in biochip technology, by Wan-Li Xing, Jing Cheng, Edition: illustrated, published by

    Birkhuser,2006, ISBN 0387255680, 9780387255682, 357 pages

    Lab Chip,2007, 7, 856 - 862, DOI: 10.1039/b700322f

    S.A. Fodor, R. Rava, X.C. Huang, A.C. Pease, C.P. Holmes and C.L. Adams. Science 251

    (1991) 767773.

    . . , . . , . . , . . , . . . . .

    NAR,2005, Vol. 33, e75.

    N. Kimura, R. Oda, Y. Inaki and O. Suzuki. Nucleic Acids Research,2004, Vol. 32, e68.

    H.-Y. Wan R.L. Malek A.E. Kwitek A.S. Greene T.V. Luu B. Behbahani B. Frank J.

    Quackenbush, N.H. Lee, Genome Biol. 4 (2003), R5.

    M. Dufva, S. Petronis, L.B. Jensen, C. Krag and C.B. Christensen. Biotechniques 37 (2004)

    286292, 294, 296.

    A. Kumar, O. Larsson, D. Parodi, Z. Liang, Nucleic Acids Research,2000, Vol. 28, e98.

    M. Schena, D. Shalon, R.W. Davis, P.O. Brown, Science 270 (1995), 467470.

    De Paul S. M., Falconnet D., Pasche S., Textor M., Abel A. P., Kauffmann E., Liedtke R. and

    .. . . , , - .

    Johnson P. A., Gaspar M. A. and Levicky R. J. Am. Chem. Soc.,2004, 126, 9910-9911.

    N. Kimura, T. Nagasaka, J. Murakami, H. Sasamoto, M. Murakami, N. Tanaka and N.

    Matsubara. Nucleic Acids Research 2005 Vol. 33 e46.

    T.

    Brandstetter/

    26.04.2013 /

    slide

    41www.imtek.de/cpi

    Toomey R., Freidank D. and Rhe J.. Swelling Behavior of Thin, Surface-Attached PolymerNetworks. Macromolecules, Vol. 37,2004, 882-887.