The Gallium Arsenide Wafer Problem

45
DFG Research Center MATHEON Mathematics for key technologies BMS Days Berlin 18 / 02 / 2008 The Gallium Arsenide Wafer Problem Margarita Naldzhieva joint work with Wolfgang Dreyer, Barbara Niethammer Industrial Needs versus Mathematical Capabili

description

The Gallium Arsenide Wafer Problem. Industrial Needs versus Mathematical Capabilities. Margarita Naldzhieva joint work with Wolfgang Dreyer, Barbara Niethammer. DFG Research Center M ATHEON Mathematics for key technologies. - PowerPoint PPT Presentation

Transcript of The Gallium Arsenide Wafer Problem

Page 1: The Gallium Arsenide Wafer Problem

DFG Research Center MATHEONMathematics for key technologiesBMS Days Berlin 18 / 02 / 2008

The Gallium Arsenide Wafer

Problem

Margarita Naldzhieva

joint work with Wolfgang Dreyer, Barbara Niethammer

Industrial Needs versus Mathematical Capabilities

Page 2: The Gallium Arsenide Wafer Problem

Outline

The Becker-Döring model

From Becker-Döring to Fokker-Planck

Industrial problem

Quasi-stationary and longtime behaviour of solutions

BMS Days Berlin 18 / 02 / 2008

Page 3: The Gallium Arsenide Wafer Problem

The Gallium Arsenide Wafer Problem

Single crystal gallium arsenide

Arsen concentration = 0.500082

BMS Days Berlin 18 / 02 / 2008

Page 4: The Gallium Arsenide Wafer Problem

The Gallium Arsenide Wafer Problem

Distribution of liquid droplets

Single crystal gallium arsenide

BMS Days Berlin 18 / 02 / 2008

Page 5: The Gallium Arsenide Wafer Problem

The Gallium Arsenide Wafer Problem

Single crystal gallium arsenide

Distribution of liquid droplets

Modeling of liquid droplets

BMS Days Berlin 18 / 02 / 2008

Page 6: The Gallium Arsenide Wafer Problem

The Gallium Arsenide Wafer Problem

Single crystal gallium arsenide

Distribution of liquid droplets

Modeling of liquid droplets

BMS Days Berlin 18 / 02 / 2008

Page 7: The Gallium Arsenide Wafer Problem

The Gallium Arsenide Wafer Problem

Single crystal gallium arsenide

Distribution of liquid droplets

Modeling of liquid droplets

BMS Days Berlin 18 / 02 / 2008

Page 8: The Gallium Arsenide Wafer Problem

The Becker – Döring Process

1 n + 1n +

CnW

EnW 1

n-1n

EnW

CnW 1

1+

BMS Days Berlin 18 / 02 / 2008

Page 9: The Gallium Arsenide Wafer Problem

The Becker – Döring Process

Variables

)(tn density of n - cluster

1 n + 1n +

CnW

EnW 1

n-1n

EnW

CnW 1

1+

BMS Days Berlin 18 / 02 / 2008

Page 10: The Gallium Arsenide Wafer Problem

The Becker – Döring Process

Variables

)(tn density of n - cluster

1 n + 1n +

CnW

EnW 1

n-1n

EnW

CnW 1

1+

)()( 11 tWtWJ nEnn

Cnn

11

)(1

JJtk

k

2)( 1 nJJt nnn

with

Becker-Döring system

BMS Days Berlin 18 / 02 / 2008

Page 11: The Gallium Arsenide Wafer Problem

The Becker – Döring Process

Variables

)(tn density of n - cluster

1 n + 1n +

CnW

EnW 1

n-1n

EnW

CnW 1

1+

)()( 11 tWtWJ nEnn

Cnn

11

)(1

JJtk

k

2)( 1 nJJt nnn

with

Becker-Döring system

consttnn

n

1

)(

BMS Days Berlin 18 / 02 / 2008

Page 12: The Gallium Arsenide Wafer Problem

Different Strategies, I: Ball Carr Penrose

Lyapunov Function

)1(ln)(1

n

n

nn Q

V

Transition rates

11

1 )(

nEn

nCn

bW

taW Equilibria

BMS Days Berlin 18 / 02 / 2008

)()( 11 tWtWJ nEnn

Cnn

11

)(1

JJtk

k

2)( 1 nJJt nnn

with

Becker-Döring system

Page 13: The Gallium Arsenide Wafer Problem

Different Strategies, II: Dreyer Duderstadt

Lyapunov Function

1

11

ln)(

kk

n

nnn

nnAA

BMS Days Berlin 18 / 02 / 2008

)()( 11 tWtWJ nEnn

Cnn

11

)(1

JJtk

k

2)( 1 nJJt nnn

with

Becker-Döring system

Page 14: The Gallium Arsenide Wafer Problem

Different Strategies, II: Dreyer Duderstadt

Lyapunov Function

1

11

ln)(

kk

n

nnn

nnAA

n n

BMS Days Berlin 18 / 02 / 2008

Page 15: The Gallium Arsenide Wafer Problem

Different Strategies, II: Dreyer Duderstadt

Lyapunov Function

1

11

ln)(

kk

n

nnn

nnAA

Transition rates

))((11 tW

WEn

En

Cn

Cn

BMS Days Berlin 18 / 02 / 2008

)()( 11 tWtWJ nEnn

Cnn

11

)(1

JJtk

k

2)( 1 nJJt nnn

with

Becker-Döring system

Page 16: The Gallium Arsenide Wafer Problem

Different Strategies, II: Dreyer Duderstadt

Lyapunov Function

1

11

ln)(

kk

n

nnn

nnAA

Transition rates

))((11 tW

WEn

En

Cn

Cn

2nd law of thermodynamics

)(

)(exp

))((

1

11

1

t

tAA

t nn

nnCn

En

BMS Days Berlin 18 / 02 / 2008

Page 17: The Gallium Arsenide Wafer Problem

Comparison of Transition Rates

Evaporation rates

EnW 1

))((1 tEn

1nb

Condensation rates

CnW

Cn

)(1 tan

2nd law of thermodynamics

)(

)(exp))((

1

111 t

tAAt n

n

nnCn

En

BMS Days Berlin 18 / 02 / 2008

Page 18: The Gallium Arsenide Wafer Problem

)()( 11 tWtWJ nEnn

Cnn

11

)(1

JJtk

k

2)( 1 nJJt nnn

with

Lyapunov Functions

Lyapunov Functions

)1(ln)(1

n

n

nn Q

V

)ln()(

1

11

kk

n

nnn

nnAA

)(L

0dt

dL

BMS Days Berlin 18 / 02 / 2008

Page 19: The Gallium Arsenide Wafer Problem

NNNN

Water droplets in vapour

p0T0

0 20 40 60 80 100 120 140Number of droplet atoms

1.5 107

1 107

5 108

0

T0 275 °C p011

An

n

Page 20: The Gallium Arsenide Wafer Problem

NNNN

p0T0

0 20 40 60 80 100 120 140Number of droplet atoms

1.5 107

1 107

5 108

0

T0 275 °C p011

An

n

p0

Quasi stationary Flux

0 20 40 60 80 100time intau

0

2.51017

51017

7.51017

11018

1.251018

1.51018

Jni

s^

1mc

^3

T2 °C

S

12.8

J25(t)

nmax = 40

nmax = 50

nmax = 70

t

Page 21: The Gallium Arsenide Wafer Problem

NNNN

Quasi stationary Flux

p0

0 20 40 60 80 100time intau

0

2.51017

51017

7.51017

11018

1.251018

1.51018

Jni

s^

1mc

^3

T2 °CS

12.8

J25(t)

nmax = 40

nmax = 50

nmax = 70

J25(t)

T0

p0

Model system for calculation

Skim of droplets with nmax + 1 atoms: zn + 1= 0

monomer density constant

max

Page 22: The Gallium Arsenide Wafer Problem

NNNN

Quasi stationary Flux

p0

0 20 40 60 80 100time intau

0

2.51017

51017

7.51017

11018

1.251018

1.51018

Jni

s^

1mc

^3

T2 °CS

12.8

J25(t)

nmax = 40

nmax = 50

nmax = 70

0 20 40 60 80 100time intau

0

2.51017

51017

7.51017

11018

1.251018

1.51018

Jni

s^

1mc

^3

T2°C

S

12.8

t t

Model system

J25(t)

T0

p0

Model system for calculation

Skim of droplets with nmax + 1 atoms: zn + 1= 0

monomer density constant

max

Page 23: The Gallium Arsenide Wafer Problem

Equilibrium solutions : Jn=0

Fluxes

nJ111 nnnn cbcca

Conservation of mass

1

)(1

tnn

n

Variables

)(tn

BMS Days Berlin 18 / 02 / 2008

number n-clusters

total volumenumber n-clusters

total number

)()( 11 tWtWJ nEnn

Cnn

11

)(1

JJtk

k

2)( 1 nJJt nnn

with

Becker-Döring system

Page 24: The Gallium Arsenide Wafer Problem

Equilibrium solutions

n n

nD

nn

qN

Q

)(

Equilibrium solutions : Jn=0

1)( ,111

1

k

kkD

k

kk

kk

k

kqNq

Qk

Constraints

BMS Days Berlin 18 / 02 / 2008

Page 25: The Gallium Arsenide Wafer Problem

Equilibrium solutions

n n

nD

nn

qN

Q

)(

Equilibrium solutions : Jn=0

1)( ,111

1

k

kkD

k

kk

kk

k

kqNq

Qk

Constraints

Convergence radii RBCP and RDD

nDD

nn

DDD

nBCP

nn

BCP

RqN

RnQ

1

1

BMS Days Berlin 18 / 02 / 2008

Page 26: The Gallium Arsenide Wafer Problem

Equilibrium solutions

n n

nD

nn

qN

Q

)(

Equilibrium solutions : Jn=0

Constraints

1)( ,111

1

k

kkD

k

kk

kk

k

kqNq

Qk

Convergence radii RBCP and RDD

nDD

nn

DDD

DDD

BCP

RnqNN1

and1or,1

Equilibrium conditions

nDD

nn

DDD

nBCP

nn

BCP

RqN

RnQ

1

1

BMS Days Berlin 18 / 02 / 2008

Page 27: The Gallium Arsenide Wafer Problem

nn

n

Qn1

with

Equilibrium solutions

nnn Q

Longtime behaviour of solutions I: Penrose et al.

nBCP

nn

BCP RnQ1

Equilibrium condition

BMS Days Berlin 18 / 02 / 2008

Page 28: The Gallium Arsenide Wafer Problem

Longtime behaviour of solutions I: Penrose et al.

nn

n

Qn1

with

Equilibrium solutions

nnn Q

nBCP

nn

BCP RnQ1

Equilibrium condition

. (weak*)

(strong) )( then If 0

nBCPn

nnnBCP

BCP

RQ

Qt

Asymptotical behaviour

BMS Days Berlin 18 / 02 / 2008

Page 29: The Gallium Arsenide Wafer Problem

• existence of metastable states (Penrose 1989)

• excess density described by the LSW equations (Penrose 1997, Niethammer 2003)

• convergence rate to equilibrium e-ct1/3 (Niethammer, Jabin 2003)

Longtime behaviour of solutions I: Penrose et al.

. (weak*)

(strong) )( then If 0

nBCPn

nnnBCP

BCP

RQ

Qt

Asymptotical behaviour

BMS Days Berlin 18 / 02 / 2008

Page 30: The Gallium Arsenide Wafer Problem

Modified Flux

11

11exp

n

kk

nnCnn

Cnn AAJ

)exp(1

11

111

n

kknn

Cnn

Cn AA

nJ~

Simplified Dreyer/Duderstadt Model

Current state of the artMathematical results for a modified DD model!

Mathematics for key technologies and innovation Warsaw 21 - 22 / 02 / 2008

Page 31: The Gallium Arsenide Wafer Problem

11

11

~~exp

~~~

n

kknn

Cnn

Cnn AAJ

11

1

1

~~)(

~

2~~

)(~

JJ

nJJ

kk

nnn

with

Modified Becker-Döring system

New time scale

t

dss0 1 )(

1

)()(

~tnn

Mathematics for key technologies and innovation Warsaw 21 - 22 / 02 / 2008

Simplified Dreyer/Duderstadt Model

Page 32: The Gallium Arsenide Wafer Problem

Longtime behaviour of solutions II: mod. Dreyer

BMS Days Berlin 18 / 02 / 2008

n

nn

n

nn

n

nn

RnqRq

Rq

11

1

and1

or,1

Equilibrium condition

1

11

)( ,1

k

kkD

k

kk kqNq

Equilibrium solutions

with )( nnDn qN

Page 33: The Gallium Arsenide Wafer Problem

n

nn

n

nn

n

nn

RnqRq

Rq

11

1

and1

or,1

Equilibrium condition

1

11

)( ,1

k

kkD

k

kk kqNq

Equilibrium solutions

with )( nnDn qN

for )(weak 0

(strong) )(

~ nn

depending on the Availability of the System:

Mathematics for key technologies and innovation Warsaw 21 - 22 / 02 / 2008

Longtime behaviour of solutions II: mod. Dreyer

Page 34: The Gallium Arsenide Wafer Problem

Longtime behaviour of solutions: GaAs wafer

Distribution of liquid droplets

1for nnaAn

Assumption

n

BMS Days Berlin 18 / 02 / 2008

Page 35: The Gallium Arsenide Wafer Problem

Longtime behaviour of solutions: GaAs wafer

Distribution of liquid droplets

1for nnaAn

Assumption

1

11

)( ,1

k

kkD

k

kk kqNq

Equilibrium solutions

with )( nnDn qN

relevant ?

BMS Days Berlin 18 / 02 / 2008

Page 36: The Gallium Arsenide Wafer Problem

Longtime behaviour of solutions: GaAs wafer

Distribution of liquid droplets

1for nnaAn

Assumption

relevant ?

BMS Days Berlin 18 / 02 / 2008

0 20 40 60 80 100time intau

0

2.51017

51017

7.51017

11018

1.251018

1.51018

Jni

s^

1mc

^3

T2 °C

S

12.8

J25(t)

nmax = 40

nmax = 50

nmax = 70

t

J25(t)

Page 37: The Gallium Arsenide Wafer Problem

n

n

n

nn

Cnn QQQWJ

1

1

1, 111 QQWQW nEnn

Cn)()( 11 tWtWJ n

Enn

Cnn

11

)(1

JJtk

k

2)( 1 nJJt nnn

with

Becker-Döring system

From Becker-Döring to Fokker-Planck

2for)1(

)( 1

n

nn

JJt nn

n

Mathematics for key technologies and innovation Warsaw 21 - 22 / 02 / 2008

Page 38: The Gallium Arsenide Wafer Problem

n

n

n

nn

Cnn QQQWJ

1

1

1, 111 QQWQW nEnn

Cn)()( 11 tWtWJ n

Enn

Cnn

11

)(1

JJtk

k

2)( 1 nJJt nnn

with

Becker-Döring system

From Becker-Döring to Fokker-Planck

2for)1(

)( 1

n

nn

JJt nn

n

))(,(

),(

tfxQ

xtfx

,Jxtf Dxt 1in ),(

fffxQxWJ xxxC

D ),(ln)(

Continuous System (Duncan)

Mathematics for key technologies and innovation Warsaw 21 - 22 / 02 / 2008

DxJ

Page 39: The Gallium Arsenide Wafer Problem

,Jxtf Dxt 1in ),(

fffxQxWJ xxxC

D ),(ln)(

Continuous System (Duncan)

From Becker-Döring to Fokker-Planck

)1,(

),(ln)(

tf

dxxtfxa

Dreyer/Duderstadt

Continuous thermodynamics

dx

tfNxq

xtfxtftfA

D ))(()(

),(ln),())((

with)()(,),())(( xa

D exqdxxtftfN

Mathematics for key technologies and innovation Warsaw 21 - 22 / 02 / 2008

Page 40: The Gallium Arsenide Wafer Problem

,Jxtf Dxt 1in ),(

fffxQxWJ xxxC

D ),(ln)(

Continuous System (Duncan)

From Becker-Döring to Fokker-Planck

)1,(

),(ln)(

tf

dxxtfxa

Dreyer/Duderstadt

Continuous thermodynamics

dx

tfNxq

xtfxtftfA

D ))(()(

),(ln),())((

Lyapunov Funktion, minimal at equilibria!

Mathematics for key technologies and innovation Warsaw 21 - 22 / 02 / 2008

Page 41: The Gallium Arsenide Wafer Problem

Mixed System

,MJxtf

MnJJt

dxJJJt

Dxt

nnn

D

M

kk

1in ),(

2)(

)(

1

11

1

Mixed System

Mathematics for key technologies and innovation Warsaw 21 - 22 / 02 / 2008

Page 42: The Gallium Arsenide Wafer Problem

Mixed System

,MJxtf

MnJJt

dxJJJt

Dxt

nnn

D

M

kk

1in ),(

2)(

)(

1

11

1

Mixed System

Mathematics for key technologies and innovation Warsaw 21 - 22 / 02 / 2008

fffxQxWJ xxxC

D ),(ln)(

Page 43: The Gallium Arsenide Wafer Problem

Mixed System

,MJxtf

MnJJt

dxJJJt

Dxt

nnn

D

M

kk

1in ),(

2)(

)(

1

11

1

Mixed System fffxQxWJ xxxC

D ),(ln)(

Thermodynamics and mass conservation

constdxxtxftn

dxtfNxq

xtfxtf

NqtfA

M

nn

D

M

n Dn

nn

),()(

))(()(

),(ln),(

)(ln))((

1

1

Mathematics for key technologies and innovation Warsaw 21 - 22 / 02 / 2008

Page 44: The Gallium Arsenide Wafer Problem

Mixed System

,MJxtf

MnJJt

dxJJJt

Dxt

nnn

D

M

kk

1in ),(

2)(

)(

1

11

1

Mixed System fffxQxWJ xxxC

D ),(ln)(

)1,(

0lim and

1

1

Mf

xJJJ

M

Dx

MMxD

Boundary values

Mathematics for key technologies and innovation Warsaw 21 - 22 / 02 / 2008

Page 45: The Gallium Arsenide Wafer Problem

Summary and outlook

thermodynamically consistent nucleation rates

existence of a metastable phase befor equilibrium?

Becker-Döring model for homogeneous nucleation

equilibrium solutions and asymptotical behaviour

Duncan`s PDE approximation of the discrete System?

BMS Days Berlin 18 / 02 / 2008