Power and Smith Chart - Sonoma State University · The Smith Chart • Developed in 1939 by P. W....

22
Power and Smith Chart Power and Smith Chart

Transcript of Power and Smith Chart - Sonoma State University · The Smith Chart • Developed in 1939 by P. W....

Page 1: Power and Smith Chart - Sonoma State University · The Smith Chart • Developed in 1939 by P. W. Smith as a graphical tool to analyze and design transmission‐line circuits

Power and Smith ChartPower and Smith Chart

Page 2: Power and Smith Chart - Sonoma State University · The Smith Chart • Developed in 1939 by P. W. Smith as a graphical tool to analyze and design transmission‐line circuits

Power Flow

• How much power is flowing and reflected?How much power is flowing and reflected? – Instantaneous P(d,t) = v(d,t).i(d,t)

• IncidentIncident 

• Reflected 

– Average power: Pav = Pavi + PavrAverage power: Pav   Pav + Pav• Time‐domain Approach

• Phasor‐domain Approach (z and t independent) – ½ Re{I*(z) . V(z)}

Page 3: Power and Smith Chart - Sonoma State University · The Smith Chart • Developed in 1939 by P. W. Smith as a graphical tool to analyze and design transmission‐line circuits

Instantaneous Power Flow

Page 4: Power and Smith Chart - Sonoma State University · The Smith Chart • Developed in 1939 by P. W. Smith as a graphical tool to analyze and design transmission‐line circuits

Average Power (Ph A h)(Phasor Approach)

Avg Power: ½ Re{I(z) * V_(z)}

Fraction of power reflected!

Page 5: Power and Smith Chart - Sonoma State University · The Smith Chart • Developed in 1939 by P. W. Smith as a graphical tool to analyze and design transmission‐line circuits

Examplep

• Assume Zo=50 ohm ZL=100+i50 ohm; WhatAssume Zo=50 ohm, ZL=100+i50 ohm; What fraction of power is reflected? 

20 percent!

Notes

Page 6: Power and Smith Chart - Sonoma State University · The Smith Chart • Developed in 1939 by P. W. Smith as a graphical tool to analyze and design transmission‐line circuits

The Smith Chart

• Developed in 1939 by P.Developed in 1939 by P. W. Smith as a graphical tool to analyze and design transmission‐line circuits

• Today, it is used to characterize the 

f fperformance of microwave circuits

Page 7: Power and Smith Chart - Sonoma State University · The Smith Chart • Developed in 1939 by P. W. Smith as a graphical tool to analyze and design transmission‐line circuits

Complex Planep

Page 8: Power and Smith Chart - Sonoma State University · The Smith Chart • Developed in 1939 by P. W. Smith as a graphical tool to analyze and design transmission‐line circuits

Smith Chart Parametric Equationsq

Equation for a circle

For a given Coef. Of Reflection various load combinations can be considered. These combinations can be represented by 

different circuits!Smith Chart help us see these variations!

Page 9: Power and Smith Chart - Sonoma State University · The Smith Chart • Developed in 1939 by P. W. Smith as a graphical tool to analyze and design transmission‐line circuits

Smith Chart Parametric Equationsq

rL circles

rL circles are contained inside the unit circle

Each node on the chart will tell us about the load characteristics and 

coef. of ref. of the line!

xL circles

Only parts of the xL circles are contained within the unit circle

Page 10: Power and Smith Chart - Sonoma State University · The Smith Chart • Developed in 1939 by P. W. Smith as a graphical tool to analyze and design transmission‐line circuits

Complete Smith Chart

Positive xL Circles

rL Circles

Negative xL Circles

Page 11: Power and Smith Chart - Sonoma State University · The Smith Chart • Developed in 1939 by P. W. Smith as a graphical tool to analyze and design transmission‐line circuits

Basic Rules• Given zL=ZL/Zo find the coefficient of reflection (COR)

– Find zL on the chart (Pt. A)– Extend it and find the angle of COR  ‐ ANGLE OF REFLECTION COEFFICIENT– Use ruler to measure the magnitude of COR: OA/OP

• Find VSWR– Draw a circle with radius of ZL

• Find Zin• Find  Zin– Find zL on the chart (Pt. A)– Extend it and find the angle of COR  ‐ ANGLE OF REFLECTION COEFFICIENT (pt. B)– Draw the SWR circle

h f h l f h ( )– Determine how far the load is from the generator: d (e.g., d=3.3 d=0.3)– From Pt. B move clockwise by 0.3. (pt. C) on WTG– Draw a line from pt C. to the origin: OC

• Input impedance Zd (any point d)p p ( y p )– Same as above – except d=y

• Find  Yin– Find Zin

Extend the OC line to the opposite side of the chart OC`– Extend the OC line to the opposite side of the chart OC– The intersection of line OC` and SWR circle is Yin

Notes

Page 12: Power and Smith Chart - Sonoma State University · The Smith Chart • Developed in 1939 by P. W. Smith as a graphical tool to analyze and design transmission‐line circuits

Basic Rules• Find  Z(dmin) or dmax

– Find zL on the chart (Pt. A)

– Extend it and find the angle of COR  ‐ ANGLE OF REFLECTION COEFFICIENT (pt. B)

– From pt. A to Vmin with be the dmin

– From pt. A to Vmax with be the dmax

Notes

Page 13: Power and Smith Chart - Sonoma State University · The Smith Chart • Developed in 1939 by P. W. Smith as a graphical tool to analyze and design transmission‐line circuits

Refer to h lthe examples in your notes

Page 14: Power and Smith Chart - Sonoma State University · The Smith Chart • Developed in 1939 by P. W. Smith as a graphical tool to analyze and design transmission‐line circuits

Matching NetworkMatching Network 

Page 15: Power and Smith Chart - Sonoma State University · The Smith Chart • Developed in 1939 by P. W. Smith as a graphical tool to analyze and design transmission‐line circuits

Example of a h kMatching Network

Page 16: Power and Smith Chart - Sonoma State University · The Smith Chart • Developed in 1939 by P. W. Smith as a graphical tool to analyze and design transmission‐line circuits

Example 4

Page 17: Power and Smith Chart - Sonoma State University · The Smith Chart • Developed in 1939 by P. W. Smith as a graphical tool to analyze and design transmission‐line circuits
Page 18: Power and Smith Chart - Sonoma State University · The Smith Chart • Developed in 1939 by P. W. Smith as a graphical tool to analyze and design transmission‐line circuits

Use the CDh hSmith Chart

Page 19: Power and Smith Chart - Sonoma State University · The Smith Chart • Developed in 1939 by P. W. Smith as a graphical tool to analyze and design transmission‐line circuits

Transient of Transmission LineTransient of Transmission Line

Page 20: Power and Smith Chart - Sonoma State University · The Smith Chart • Developed in 1939 by P. W. Smith as a graphical tool to analyze and design transmission‐line circuits

Transients

Rectangular pulse is equivalent to the sum of two step functions

Page 21: Power and Smith Chart - Sonoma State University · The Smith Chart • Developed in 1939 by P. W. Smith as a graphical tool to analyze and design transmission‐line circuits

Transient Responsep

Initial current and voltage

Reflection at the load

L d fl ti ffi i t

Second transient

Load reflection coefficient

Generator reflection coefficient

Page 22: Power and Smith Chart - Sonoma State University · The Smith Chart • Developed in 1939 by P. W. Smith as a graphical tool to analyze and design transmission‐line circuits

Bounce Diagrams