Smith Chart 2.0

download Smith Chart 2.0

of 27

Transcript of Smith Chart 2.0

  • 7/30/2019 Smith Chart 2.0

    1/27

    SMITH CHART EXAMPLES

    Dragica Vasileska

    ASU

  • 7/30/2019 Smith Chart 2.0

    2/27

    Smith Chart for the Impedance Plot

    jxrZZzo

    +==

    It will be easier if we normalize the load impedance to thecharacteristic impedance of the transmission line attached to the

    load.

    +=

    1

    1z

    Since the impedance is a complex number, the reflection coefficientwill be a complex number

    jvu +=

    ( ) 22

    22

    vu1

    vu1r

    +

    =

    ( ) 22 vu1

    v2x

    +

    =

  • 7/30/2019 Smith Chart 2.0

    3/27

    Real Circles

    1 0.5 0 0.5 1

    1

    0.5

    0.5

    1

    { }Re

    { }Im

    r=0r=1/3

    r=1

    r=2.5

  • 7/30/2019 Smith Chart 2.0

    4/27

    Imaginary Circles

    1 0.5 0 0.5 1

    1

    0.5

    0.5

    1

    { }Re

    { }Im

    x=1/3 x=1 x=2.5

    x=-1/3 x=-1 x=-2.5

  • 7/30/2019 Smith Chart 2.0

    5/27

  • 7/30/2019 Smith Chart 2.0

    6/27

    Normalized AdmittancejbgYZ

    Y

    Yy o

    o

    +===

    +

    =1

    1y

    ( ) 22

    22

    vu1vu1g++

    =

    ( ) 22 vu1

    v2b

    ++

    =

    ( )22

    2

    g11v

    g1gu

    +=+

    ++

    ( ) 2

    2

    2

    b1

    b1v1u =

    +++

    These are equations forcircles on the (u,v) plane

  • 7/30/2019 Smith Chart 2.0

    7/27

    Real admittance

    1 0.5 0 0.5 1

    1

    0.5

    0.5

    1

    { }Re

    { }Im

    g=1/3g=1g=2.5

  • 7/30/2019 Smith Chart 2.0

    8/27

    Complex Admittance

    1 0.5 0 0.5 1

    1

    0.5

    0.5

    1

    b=-1 b=-1/3

    b=2.5 b=1/3

    b=1

    b=-2.5

    { }Im

    { }Re

  • 7/30/2019 Smith Chart 2.0

    9/27

    Matching

    For a matching network that contains elements

    connected in series and parallel, we will need twotypes of Smith chartsimpedance Smith chartadmittance Smith Chart

    The admittance Smith chart is the impedanceSmith chart rotated 180 degrees.We could use one Smith chart and flip the reflection

    coefficient vector 180 degrees when switchingbetween a series configuration to a parallelconfiguration.

  • 7/30/2019 Smith Chart 2.0

    10/27

    TowardGenerator

    Away FromGenerator

    Constant

    ReflectionCoefficient Circle

    Full Circle is One HalfWavelength SinceEverything Repeats

  • 7/30/2019 Smith Chart 2.0

    11/27

    Matching Example

    0=

    100s

    P =50Z0 M

    Match 100 load to a 50 system at 100MHz

    A 100 resistor in parallel would do the trick but of

    the power would be dissipated in the matching network.We want to use only lossless elements such as inductorsand capacitors so we dont dissipate any power in thematching network

  • 7/30/2019 Smith Chart 2.0

    12/27

    Matching Example We need to go from

    z=2+j0 to z=1+j0 onthe Smith chart

    We wont get anycloser by addingseries impedance sowe will need to addsomething in parallel.

    We need to flip overto the admittancechart

    ImpedanceChart

  • 7/30/2019 Smith Chart 2.0

    13/27

    Matching Example y=0.5+j0

    Before we add the

    admittance, add amirror of the r=1circle as a guide.

    AdmittanceChart

  • 7/30/2019 Smith Chart 2.0

    14/27

    Matching Example y=0.5+j0

    Before we add theadmittance, add amirror of the r=1circle as a guide

    Now add positiveimaginaryadmittance.

    Admittance

    Chart

  • 7/30/2019 Smith Chart 2.0

    15/27

    Matching Example y=0.5+j0

    Before we add the

    admittance, add amirror of the r=1circle as a guide

    Now add positive

    imaginaryadmittance jb = j0.5

    AdmittanceChart

    ( )

    pF16C

    CMHz1002j50

    5.0j

    5.0jjb

    =

    =

    =

    pF16 100

  • 7/30/2019 Smith Chart 2.0

    16/27

    Matching Example We will now add

    series impedance

    Flip to theimpedance SmithChart

    We land at on ther=1 circle at x=-1

    ImpedanceChart

  • 7/30/2019 Smith Chart 2.0

    17/27

    Matching Example Add positive

    imaginary

    admittance to get toz=1+j0

    ImpedanceChart

    pF16

    100

    ( ) ( )

    nH80L

    LMHz1002j500.1j

    0.1jjx

    =

    =

    =

    nH80

  • 7/30/2019 Smith Chart 2.0

    18/27

    Matching Example

    This solution wouldhave also worked

    ImpedanceChart

    pF32

    100

    nH160

  • 7/30/2019 Smith Chart 2.0

    19/27

    Mainstream vs. RF Electronics

  • 7/30/2019 Smith Chart 2.0

    20/27

    Substrate

    Buffer

    Drain

    n-type active layerL

    n+ cap

    Gate

    n+ cap

    Source

    Substrate

    Barrier / buffer

    Channel layer

    Drain

    BarrierL

    n+ cap

    Gate

    n+ cap

    2DEG channel

    Source

    MESFETMetal-Semiconductor FET

    HEMTHigh Electron Mobility TransistorChannel: twodimensional electrongas (2DEG) at the inter-

    face channel layer - barrier

  • 7/30/2019 Smith Chart 2.0

    21/27

    E. Simulation Examples Example #1

    This Example gives comparison of the device output characte-

    ristics of a single quantum-well structure when using drift-dif-fusion and energy balance models

    Example #2

    Simulation results of a pseudomorphic HEMT structure: devicetransfer and output characteristics with extraction of some

    significant device parameters, such as threshold voltage,

    maximum saturation current, etc.

    Example #3

    This is a follow-up of Example #2, in which AC analysis isperformed and the device S-parameters calculated.

  • 7/30/2019 Smith Chart 2.0

    22/27

    Example 1

  • 7/30/2019 Smith Chart 2.0

    23/27

    Example 1 (contd)

  • 7/30/2019 Smith Chart 2.0

    24/27

    Example 1 (contd)

  • 7/30/2019 Smith Chart 2.0

    25/27

    Example 2

  • 7/30/2019 Smith Chart 2.0

    26/27

    Example 3

  • 7/30/2019 Smith Chart 2.0

    27/27

    Example 3 (contd)