PCR quantitative en temps réel Lydie Pradel. PCR.

24
PCR quantitative en temps réel Lydie Pradel

Transcript of PCR quantitative en temps réel Lydie Pradel. PCR.

Page 1: PCR quantitative en temps réel Lydie Pradel. PCR.

PCR quantitativeen temps réel

Lydie Pradel

Page 2: PCR quantitative en temps réel Lydie Pradel. PCR.
Page 3: PCR quantitative en temps réel Lydie Pradel. PCR.

PCR

Page 4: PCR quantitative en temps réel Lydie Pradel. PCR.

PCR semi-quantitative25 cycles

Page 5: PCR quantitative en temps réel Lydie Pradel. PCR.

Sybr Green Fluorogenic 5’Nuclease Assay

Binds dsDNA Use Taqman probe

Page 6: PCR quantitative en temps réel Lydie Pradel. PCR.

Sybr Green fluoresces upon binding to double stranded PCR product

Emitted Fluorescence is proportional to amount of amplified product detected in every sample

Page 7: PCR quantitative en temps réel Lydie Pradel. PCR.

Specificity check of Sybr Green

Gel or melting curve analysis (Real-time PCR system)

Sharp, single peak indicates specific amplification

Page 8: PCR quantitative en temps réel Lydie Pradel. PCR.

Non specific amplification (genomic DNA and RT-qPCR)

Page 9: PCR quantitative en temps réel Lydie Pradel. PCR.
Page 10: PCR quantitative en temps réel Lydie Pradel. PCR.

Signal generation with TaqMan Probe

Uses2 principles:- FRET technology- 5’-Nuclease activity of the Taq polymerase

PCR specificity (primers)Hybridization specificity (probe)

Dyes: FAM, VIC, TAMRA

Page 11: PCR quantitative en temps réel Lydie Pradel. PCR.

TaqMan Probe Sybr Green

Specificityprimer binding Primer bindingProbe hybridizationPCR conditions PCR conditions

FlexibilityMultiplex easy, only primers neededSNP detection

OptimizationCkeck primer dimer formation

Page 12: PCR quantitative en temps réel Lydie Pradel. PCR.

Thermal Cycling Protocol (Applied Biosystem)

95°C 10’ Activation of AmpliTaq Gold Polymerase95°C 15’’ Denaturation60°C 1’ Annealing/Extension

Page 13: PCR quantitative en temps réel Lydie Pradel. PCR.

This inert dye, whose fluorescence does not change during the reaction, may be added to quantitative, real-time PCR reactions to normalize the well-to-well differences that may occur due to artifacts such as pipetting errors or instrument limitations.

Passive reference ROX dye

ROX dye normalizes for non-PCR related fluorescence variation

FAM dye

ROX dye

RnFAM dye

ROX dye

Rn

Sample 1 Sample 2

Rn= Reporter/Passive reference

Fluo

recs

ence

Fluo

recs

ence

Page 14: PCR quantitative en temps réel Lydie Pradel. PCR.

From fluorescence to results

105 104 103 104 103

Page 15: PCR quantitative en temps réel Lydie Pradel. PCR.

Primer specificity: efficiency

If slope= -3,32 efficiency becomes 1

Page 16: PCR quantitative en temps réel Lydie Pradel. PCR.

Quantification

Absolute quantificationStandard curve

Relative quantification

Relative increase or decrease

No standard curve

Calculation of results by comparison of Ct value« comparative Ct method »

Definition of - Endogenous Control- Calibrator

Page 17: PCR quantitative en temps réel Lydie Pradel. PCR.

Endogenous Control (EC)

- Amount of cDNA per well

- Constant expression level in all samples

- EC normalizes for

- RNA input measurement errors

- RT efficiency variations

Ex: Actine, GAPDH …

Page 18: PCR quantitative en temps réel Lydie Pradel. PCR.

Calibrator: an example using four samples

timet=0 t=12 t=24 t=48

Total RNA Total RNA Total RNA Total RNA

cDNA cDNA cDNA cDNA

Calibrator

Page 19: PCR quantitative en temps réel Lydie Pradel. PCR.

Comparison of Target Gene and Endogenous Control

Ct=24-14=10

Ct=14 Ct=24

Rn

Cycles

Target gene

Endogenous control

What if we added the double amount of cDNA ?

Page 20: PCR quantitative en temps réel Lydie Pradel. PCR.

What if we added the double amount of cDNA ?

Ct=14 Ct=24

Ct=23-13=10

Rn

Cycles

Target gene

Endogenous control

Ct=13 Ct=23

Page 21: PCR quantitative en temps réel Lydie Pradel. PCR.

Ct=15 Ct=35

Rn

Cycles

EC

TG

Comparative Ct method: an example using the four samples

Ct=15 Ct=30

Rn

Cycles

EC

TG

Ct=9 Ct=24

Rn

Cycles

EC

TG

Ct=14 Ct=34

Rn

Cycles

EC

TG

t=0 t=12h

t=24h t=48h

Page 22: PCR quantitative en temps réel Lydie Pradel. PCR.

Comparative Ct Method calculation Steps

Step 1: Normalisation to endogenous control

Ct target gene – Ct Endogenous gene =Ct

(do both for calibrator and sample)

Step 2: Normalization to calibrator sample

Ct Sample - Ct Calibrator = Ct

Step3: Use the formula

2-Ct

Page 23: PCR quantitative en temps réel Lydie Pradel. PCR.

Ct=15 Ct=35

Rn

Cycles

EC

TG

Ct=15 Ct=30

Rn

Cycles

EC

TG

t= 0 t= 12h

t= 0 t= 12h

Threshold Threshold

Ct = Ct target gene – Ct Endogenous gene

Ctt=0 35-15= 20 Ctt=12 30-15= 15

Ct = Ct Sample - Ct Calibrator

Ct 15-20= -5

2-Ct

2^-(-5)= 32

Page 24: PCR quantitative en temps réel Lydie Pradel. PCR.

Relative quantification of the 4 samples

50

40

30

20

0

10

Samples

X-f

old

exp

ress

ion

t = 0

t = 12 h

t = 24 h

t = 48 h

Calibratort=0

1

32 35

4