Exoskeletons, Exomusculatures, Exosuits: Dynamic...

7
excerpt from the book: Biomechatronics, Popovic, Academic Press, Elsevier, 2019. (No of pages 668) ISBN 978-0-12-812939-5 https://doi.org/10.1016/C2016-0-04132-3 Copyright © 2019 Elsevier Inc. All rights reserved. Chapter 11, Pages 305-331 Exoskeletons, Exomusculatures, Exosuits: Dynamic Modeling and Simulation Yunus Ziya Arslan*, Derya Karabulut*, Faruk Ortes*, Marko B. Popovic *ISTANBUL UNIVERSITY, ISTANBUL, TURKEY WORCESTER POLYTECHNIC INSTITUTE, WORCESTER, MA, UNITED STATES Abstract Exoskeleton, exomusculature, and exosuit technologies have been advanced in a highly accelerated manner in the recent decades. In the first part of this chapter, these device concepts are appropriately defined and recent progress in this field is briefly reviewed. The second part of this chapter is focused on dynamic modeling and simulation of musculoskeletal system for exoskeleton designs. CHAPTER OUTLINE 11.1 Introduction to Wearable Exoskeletons, Exomusculatures, and Exosuits ................................. 305 11.2 Dynamic Modeling and Simulation of the Human Musculoskeletal System for Exoskeleton Designs .............................................................................................................. 311 11.2.1 Construction of the Musculoskeletal Model ........................................................................311 11.2.2 Modeling of the Muscle-Tendon Unit ..................................................................................313 11.2.3 Model Validation .................................................................................................................316 11.2.4 Motion Analysis ...................................................................................................................318 11.2.5 Exoskeleton .........................................................................................................................319

Transcript of Exoskeletons, Exomusculatures, Exosuits: Dynamic...

Page 1: Exoskeletons, Exomusculatures, Exosuits: Dynamic ...users.wpi.edu/~mpopovic/pages/Biomechatronics_Chapter_11.pdfstudy, in: Wearable Robotics: Challenges and Trends, 2017, pp. 9–13.

excerpt from the book: Biomechatronics, Popovic, Academic Press, Elsevier, 2019. (No of pages 668) ISBN 978-0-12-812939-5 https://doi.org/10.1016/C2016-0-04132-3 Copyright © 2019 Elsevier Inc. All rights reserved. Chapter 11, Pages 305-331

Exoskeletons, Exomusculatures, Exosuits: Dynamic Modeling and Simulation Yunus Ziya Arslan*, Derya Karabulut*, Faruk Ortes*, Marko B. Popovic†

*ISTANBUL UNIVERSITY, ISTANBUL, TURKEY †WORCESTER POLYTECHNIC INSTITUTE,

WORCESTER, MA, UNITED STATES

Abstract

Exoskeleton, exomusculature, and exosuit technologies have been advanced in a highly accelerated

manner in the recent decades. In the first part of this chapter, these device concepts are appropriately

defined and recent progress in this field is briefly reviewed. The second part of this chapter is focused on

dynamic modeling and simulation of musculoskeletal system for exoskeleton designs.

CHAPTER OUTLINE

11.1 Introduction to Wearable Exoskeletons, Exomusculatures, and Exosuits ................................. 305

11.2 Dynamic Modeling and Simulation of the Human Musculoskeletal System for

Exoskeleton Designs .............................................................................................................. 311

11.2.1 Construction of the Musculoskeletal Model ........................................................................311

11.2.2 Modeling of the Muscle-Tendon Unit ..................................................................................313

11.2.3 Model Validation .................................................................................................................316

11.2.4 Motion Analysis ...................................................................................................................318

11.2.5 Exoskeleton .........................................................................................................................319

Page 2: Exoskeletons, Exomusculatures, Exosuits: Dynamic ...users.wpi.edu/~mpopovic/pages/Biomechatronics_Chapter_11.pdfstudy, in: Wearable Robotics: Challenges and Trends, 2017, pp. 9–13.

11.3 Computational Musculoskeletal Modeling and Simulation ..................................................... 320

11.3.1 Scale Tool ............................................................................................................................322

11.3.2 Inverse Kinematics ..............................................................................................................322

11.3.3 Inverse Dynamics ................................................................................................................323

11.3.4 Static Optimization .............................................................................................................324

11.3.5 Integration of the Exoskeleton Dynamics to the Simulation Software ................................324

References .................................................................................................................................... 327

Biomechatronics. https://doi.org/10.1016/B978-0-12-812939-5.00011-2

© 2019 Elsevier Inc. All rights reserved.

[chapter content intentionally omitted]

References

[1] R. Schulte, The characteristics of the mckibben artificial muscle, Appl. External Power Prosthet. Orthet.

874 (1962) 94–115.

[2] M. Vukobratovic, D. Hristic, Z. Stojiljkovic, Development of active anthropomorphic exoskeletons, J.

Med. Biol. Eng. 12 (1974) 66–80.

[3] S. Castro, E. Lugo, P. Ponce, A.Molina, Assistive robotic exoskeleton for helping limb girdle muscular

dystrophy, in: International Conference on Mechatronics, Electronics and Automotive Engineering,

ICMEAE, 2013, pp. 27–32.

[4] M. Dollar, H.Herr, Lower extremity exoskeletons and active orthoses: challenges and state-of-the-art,

IEEE Trans. Robot. 24 (2008) 144–158.

[5] P. Beyl, M. Van Damme, R. Van Ham, D. Lefeber, Design and control concepts of an exoskeleton for

gait rehabilitation, in: Second IEEE Ras & Embs International Conference on Biomedical Robotics and

Biomechatronics, BIOROB, 2008, pp. 103–108.

[6] Popovic M. B. Biomechanics and Robotics. 2014. 351 pages, Copyright © Pan Stanford Publishing Pte.

Ltd., Singapore, ISBN 978-981-4411-37-0 (Hardcover), 978-981-4411-38-7 (eBook).

[7] L. Goode, Are Exoskeletons the Future of Physical Labor? Ford and Others are Experimenting With

Wearable Robotics, The Verge, 2017. https://www.theverge.com/2017/12/5/16726004/verge-nextlevel-

season-two-industrial-exoskeletons-ford-ekso-suitx (accessed 10.03.18).

Page 3: Exoskeletons, Exomusculatures, Exosuits: Dynamic ...users.wpi.edu/~mpopovic/pages/Biomechatronics_Chapter_11.pdfstudy, in: Wearable Robotics: Challenges and Trends, 2017, pp. 9–13.

[8] Lockheed Martin Exoskeleton Technologies: Media,

https://www.lockheedmartin.com/us/products/exoskeleton/media.html (accessed 10.03.18).

[9] NASA-IHMC X1 Mina Exoskeleton, http://robots.ihmc.us/x1-mina-exoskeleton/ (accessed 10.03.18).

[10] G.J. Androwis, K.J. Nolan, Evaluation of a robotic exoskeleton for gait training in acute stroke: a case

study, in: Wearable Robotics: Challenges and Trends, 2017, pp. 9–13.

[11] K. Karunakaran, G. Androwis, R. Foulds, Natural user-controlled ambulation of lower extremity

exoskeletons for individuals with spinal cord injury, in: Wearable Robotics: Challenges and Trends,

Springer International Publishing, 2017, pp. 121–125.

[12] A. Dollar, H. Herr, Lower extremity exoskeletons and active orthoses: challenges and state-of-the-art,

IEEE Trans. Robot. 24 (1) (2008).

[13] Popovic M, Sridar S, Majeika C, Deisadze N, Giancarlo E. Variable Stiffness Devices and Methods of

Use. United States Patent and Trademark Office, AssigneeWorcester Polytechnic Institute, US Patent App.

15/154,443, 2013.

[14] S. Sridar, C.J. Majeika, P. Schaffer, M. Bowers, S. Ueda, A.J. Barth, J.L. Sorrells, J.T. Wu, T.R. Hunt, M.

Popovic, Hydro Muscle—a novel soft fluidic actuator, in: IEEE International Conference on Robotics and

Automation (ICRA), 2016, pp. 4014–4021.

[15] M. Bowers, C. Harmalkar, S. Sridar, C. Majeika, C. Kaan, G. Iannacchione, M. Popovic, An approach to

HydroBone and other variable stiffness structures, in: Proceedings of the 20th International Conference

on Composite Structures (ICCS20) in Paris, France, 2017.

[16] Popovic MB, Onal C, McCarthy G, Corso N, Effraimidis D, Jennings B. Actuators and Methods of Use

(Hydro Artificial Muscles). United States Patent and Trademark Office, Assignee Worcester Polytechnic

Institute. 2015. Serial No.: 62/011,830. Filed: June 13, 2014. US Patent 20,150,359,698.

[17] G. McCarthy, D. Effraimidis, B. Jennings, N. Corso, C. Onal, M.B. Popovic, Hydraulically actuated

muscle (HAM) exo-musculature, in: Robot Makers: The Future of Digital Rapid Design and Fabrication of

Robots" (RoMa)Workshop, the 2014 Robotics: Science and Systems Conference, Berkeley, CA, July 12,

2014.

[18] O. Lee, How It Feels To Walk With Honda’s Cyborg Legs, https://gizmodo.com/5212161/how-it-

feelsto-walk-with-hondas-cyborg-legs (accessed 10.03.18).

[19] Y.C. Lin, T.W. Dorn, A.G. Schache, M.G. Pandy, Comparison of different methods for estimating muscle

forces in human movement, Proc. Inst. Mech. Eng. Part H J. Eng. Med. 226 (2012) 103–112.

[20] R.W. Jackson, C.L. Dembia, S.C. Delp, S.H. Collins, Estimated Changes inMuscle-Level Dynamics and

Energetics Under Different Levels of Exoskeleton-Applied Work and Torque, (2015).

[21] K.M. Steele, M.S. DeMers, M.H. Schwartz, S.L. Delp, Compressive tibiofemoral force during crouch

gait, Gait Post. 35 (4) (2012) 556–560.

[22] E.M. Arnold, S.R. Hamner, A. Seth, M. Millard, S.L. Delp, How muscle fiber lengths and velocities affect

muscle force generation as humans walk and run at different speeds, J. Exp. Biol. 216 (2013) 2150–2160.

Page 4: Exoskeletons, Exomusculatures, Exosuits: Dynamic ...users.wpi.edu/~mpopovic/pages/Biomechatronics_Chapter_11.pdfstudy, in: Wearable Robotics: Challenges and Trends, 2017, pp. 9–13.

[23] R. Balasubramanian, J. Montgomery, K. Mardula, C. Allan, Implanted miniature engineering

mechanisms in tendon-transfer surgery improve robustness of post-surgery hand function, in: The 6th

Hamlyn Symposium on Medical Robotics, 2013.

[24] B.A. Knarr, D.S. Reisman, S.A. Binder-Macleod, J.S. Higginson, Understanding compensatory strategies

for muscle weakness during gait by simulating activation deficits seen post-stroke, Gait Post. 38 (2013)

270–275.

[25] I.S. Dhindsa, R. Agarwal, H.S. Ryait, Principal component analysis-based muscle identification for

myoelectric-controlled exoskeleton knee, J. Appl. Stat. 44 (10) (2016) 1707–1720.

[26] M.G. Pandy, R. Barr, M. Kutz, Biomechanics of the musculoskeletal system, in: Standard Handbook of

Biomedical Engineering and Design, The McGraw-Hill Companies, Inc., USA, 2003 (Chapter 6).

[27] M. Wesseling, F. De Groote, L. Bosmans, W. Bartels, C. Meyer, K. Desloovere, I. Jonkers, Subject

specific geometrical detail rather than cost function formulation affects hip loading calculation, Comput.

Methods Biomech. Biomed. Eng. 19 (2016) 1475–1488.

[28] Z. Lerner, B.G. Gadomski, K. Haussler, C.M. Puttlitz, R.C. Browning, Modulating tibiofemoral contact

forces in the sheep hindlimb via treadmill walking: predictions from an OpenSim musculoskeletal model,

J. Orthop. Res. 33 (2014) 1128–1133.

[29] J.B. Saunders, V.T. Inman, H.D. Eberhart, The major determinants in normal and pathological gait, J.

Bone Joint Surg. Am. 35-A (1953) 543–558.

[30] M.G. Pandy, Computer modeling and simulation of human movement, Ann. Rev. Biomed. Eng. 3

(2001) 245–273.

[31] A.F. Huxley, Muscle structure and theories of contraction, Prog. Biophys. Biophys. Chem. 7 (1957)

255–318.

[32] A.V. Hill, The heat of shortening and the dynamic constants of muscle, Proc. R. Soc. B 126 (1938) 136–

195.

[33] F.E. Zajac, Muscle and tendon: properties, models, scaling, and application to biomechanics and

motor control, Crit. Rev. Biomed. Eng. 11 (1989) 359–411.

[34] S.P. Magnusson, E.B. Simonsen, P. Aagaard, M. Kjaer, Biomechanical responses to repeated stretches

in human hamstring muscle in vivo, Am. J. Sports Med. 24 (1996) 622–628.

[35] M.L. Audu, D.T. Davy, The influence of muscle model complexity in musculoskeletal motion modeling,

J. Biomech. Eng. 107 (1985) 147–157.

[36] A.M. Gordon, A.F. Huxley, F.J. Julian, The variation in isometric tension with sarcomere length in

vertebrate muscle fibres, J. Physiol. 184 (1966) 170–192.

[37] M. Epstein, W. Herzog, Theoretical Models of Skeletal Muscle: Biological and Mathematical

Considerations, John Wiley and Sons, New York, 1998.

Page 5: Exoskeletons, Exomusculatures, Exosuits: Dynamic ...users.wpi.edu/~mpopovic/pages/Biomechatronics_Chapter_11.pdfstudy, in: Wearable Robotics: Challenges and Trends, 2017, pp. 9–13.

[38] M. Blumel, S.L. Hooper, C. Guschlbauer, W.E. White, A. Buschges, Determining all parameters

necessary to build Hill-type muscle models from experiments on single muscles, Biol. Cybern. 106 (2012)

543–558.

[39] W. Herzog, History dependence of skeletal muscle force production: implications for movement

control, Hum. Mov. Sci. 23 (5) (2004) 591–604.

[40] K.N. An, K. Takahashi, T.P. Harrigan, E.Y. Chao, Determination of muscle orientations and moment

arms, ASME J. Biomech. Eng. 106 (3) (1984) 280–282.

[41] R.H. Jensen, D.T. Davy, An investigation of muscle lines of action about the hip: a centroid line

approach vs the straight line approach, J. Biomech. 8 (1975) 103–110.

[42] M.R. Pierrynowski, Analytic representation of muscle line of action and geometry, in: P. Allard, I.A.F.

Stokes, J.P. Blanchi (Eds.), Three-Dimensional Analysis of Human Movement, Human Kinetics, Champaign,

1995, pp. 214–256.

[43] E.M. Arnold, S.R.Ward, R.L. Lieber, S.L. Delp, A model of the lower limb for analysis of human

movement, Ann. Biomed. Eng. 38 (2) (2010) 269–279.

[44] M.D.K. Horsman, H.F.J.M. Koopman, F.C.T. van der Helm, L.P. Prose, H.E.J. Veeger, Morphological

muscle and joint parameters for musculoskeletal modelling of the lower extremity, Clin. Biomech. 22 (2)

(2007) 239–247.

[45] S.R. Simon, Quantification of human motion: gait analysis benefits and limitations to its application

to clinical problems, J. Biomech. 37 (2004) 1869–1880.

[46] M.P. Kadaba, H.K. Ramakrishnan, M.E. Wootten, Measurement of lower extremity kinematics during

level walking, J. Orthop. Res. 8 (3) (1990) 383–392.

[47] R.B. Davis, S. Ounpuu, D. Tyburski, J.R. Gage, A gait analysis data collection and reduction technique,

Hum. Mov. Sci. 10 (1991) 575–587.

[48] J. O’Connor, C.L. Vaughan, B.L. Davis (Eds.), Dynamics of Human Gait, second ed., Kiboho Publishers,

Cape Town, SA, 1999.

[49] A. Cappozzo, Gait analysis methodology, Hum. Mov. Sci. 3 (1984) 27–50.

[50] H. Herr, Exoskeletons and orthoses: classification design challenges and future directions, J.

Neuroeng. Rehabil. 6 (2009).

[51] H.S. Lo, S.Q. Xie, Exoskeleton robots for upper-limb rehabilitation: state of the art and future

prospects, Med. Eng. Phys. 34 (3) (2012) 261–268.

[52] J. Rosen, M. Brand, M.B. Fuchs, M. Arcan, A myosignal-based powered exoskeleton system, IEEE

Trans. Syst. Man Cybern. Syst. Hum. 31 (2001) 210–222.

[53] J.C. Perry, J. Rosen, S. Burns,Upper-limb powered exoskeleton design, IEEE/ASME Trans.Mechatron.

12 (4) (2007) 408–417.

Page 6: Exoskeletons, Exomusculatures, Exosuits: Dynamic ...users.wpi.edu/~mpopovic/pages/Biomechatronics_Chapter_11.pdfstudy, in: Wearable Robotics: Challenges and Trends, 2017, pp. 9–13.

[54] S. Viteckova, P. Kutilek, M. Jirina, Wearable lower limb robotics: a review, Biocybern. Biomed. Eng.

33 (2) (2013) 96–105.

[55] B.J. Fregly, M.L. Boninger, D.J. Reinkensmeyer, Personalized neuromusculoskeletal modeling to

improve treatment of mobility impairments: a perspective from European research sites, J. Neuroeng.

Rehabil. 9 (2012) 1–11.

[56] C.R. Winby, D.G. Lloyd, T.F. Besier, T.B. Kirk, Muscle and external load contribution to knee joint

contact loads during normal gait, J. Biomech. 42 (2009) 2294–2300.

[57] C. Fleischer, G. Hommel, A human–exoskeleton interface utilizing electromyography, IEEE Trans.

Robot. 24 (2008) 827–882.

[58] S.L. Delp, F. Anderson, A.S. Arnold, J.P. Loan, A.Habib, C. John, E. Guendelman,D.G. Thelen, OpenSim:

open-source software to create and analyze dynamic simulations of movement, IEEE Trans. Biomed. Eng.

54 (11) (2007) 1940–1952.

[59] H. Hatze, The complete optimization of a human motion, Math. Biosci. 28 (1976) 99–135.

[60] M.A. Marra, V. Vanheule, R. Fluit, B.H. Koopman, J. Rasmussen, N. Verdonschot, A subject-specific

musculoskeletal modeling framework to predict invivo mechanics of total knee arthroplasty, J. Biomech.

Eng. 137 (2015).

[61] T.S. Buchanan, D.G. Lloyd, K. Manal, T.F. Besier, Neuromusculoskeletal modeling: estimation of

muscle forces and joint moments and movements from measurements of neural command, J. Appl.

Biomech. 20 (2004) 367–395.

[62] S.J. Piazza, Muscle-driven forward dynamic simulations for the study of normal and pathological gait,

J. Neuroeng. Rehabil. 3 (5) (2006) 1–7.

[63] M. Damsgaard, J. Rasmussen, S.T. Christensen, E. Surma, M. de Zee, Analysis of musculoskeletal

systems in the AnyBody modeling system, Simul. Model. Pract. Theory 14 (8) (2006) 1100–1111.

[64] A.J. van den Bogert, T. Geijtenbeek, O. Even-Zohar, F. Steenbrink, E.C. Hardin, A real-time system for

biomechanical analysis of human movement and muscle function, Med. Biol. Eng. Comput. 51 (10) (2013)

1069–1077.

[65] J. Shippen, B. May, Calculation of muscle loading and joint contact forces in Irish dance, J. Dance Med.

Sci. (2010).

[66] Y.Z. Arslan, A. Jinha, M. Kaya, W. Herzog, Prediction of muscle forces using static optimization for

different contractile conditions, J. Mech. Med. Biol. 13 (2013) 1–13.

[67] R.D. Crowninshield, R.A. Brand, A physiologically based criterion of muscle force prediction in

locomotion, J. Biomech. 14 (11) (1981) 793–801.

[68] A. Erdemir, S. McLean, W. Herzog, A.J. van den Bogert, Model-based estimation of muscle forces

exerted during movements, Clin. Biomech. 22 (2) (2007) 131–154.

[69] O. Ashkani, A. Maleki, N. Jamshidi, Design, simulation and modelling of auxiliary exoskeleton to

improve human gait cycle, Aust. Phys. Eng. Sci. Med. 40 (1) (2016) 137–144.

Page 7: Exoskeletons, Exomusculatures, Exosuits: Dynamic ...users.wpi.edu/~mpopovic/pages/Biomechatronics_Chapter_11.pdfstudy, in: Wearable Robotics: Challenges and Trends, 2017, pp. 9–13.

[70] R.W. Jackson, C.L. Dembia, S.L. Delp, S.H. Collins, Muscle-tendon mechanics explain unexpected

effects of exoskeleton assistance on metabolic rate during walking, J. Exp. Biol. (2017).

[71] H. Kawamoto, Y. Sankai, Comfortable power assist control method for walking aid by HAL-3, in: IEEE

International Conference on Systems, Man and Cybernetics, 4, 2002, p. 6.

[72] B.Weinberg, J. Nikitczuk, S. Patel, B. Patritti, C. Mavroidis, P. Bonato, P. Canavan, Control and human

testing of an active knee rehabilitation orthotic device, in: IEEE International Conference on Robotics and

Automation, 2007, pp. 4126–4133.

[73] V. Samadi, S. Talebian, A. Aliai, Examining the Effect of Lumber Sacral Support on Pattern Moving

Control While Combined Move Trunk, Tehran Medical Science University, 2008, pp. 54–62.

[74] D.J. Farris, B.D. Robertson, G.S. Sawicki, Elastic ankle exoskeletons reduce soleus muscle force but

not work in human hopping, J. Appl. Physiol. 115 (2013) 579–585.

[75] D.J. Farris, J.L. Hicks, S.L. Delp, G.S. Sawicki, Musculoskeletal modelling deconstructs the paradoxical

effects of elastic ankle exoskeletons on plantar-flexor mechanics and energetics during hopping, J. Exp.

Biol. 217 (2014) 4018–4028.

[76] M. Cenciarini, A. Dollar, Biomechanical considerations in the design of lower limb exoskeletons, in:

IEEE International Conference on Rehabilitation Robotics, ETH Zurich, 2011, pp. 1–6.

[77] A. Zoss, H. Kazerooni, Design of an electrically actuated lower extremity exoskeleton, Adv. Robot. 20

(2006) 967–988.