Dr. Nirav Vyas numerical method 1.pdf

download Dr. Nirav Vyas numerical method 1.pdf

of 32

Transcript of Dr. Nirav Vyas numerical method 1.pdf

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    1/92

    Numerical Methods

    N. B. Vyas

    Department of Mathematics,Atmiya Institute of Tech. and Science,

    Rajkot (Guj.)

    N.B.V yas−Department of M athematics, AIT S − Rajkot

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    2/92

    Introduction

    There are two types of functions: (i) Algebraic function and(ii) Transcendental function

    N.B.V yas−Department of M athematics, AIT S − Rajkot

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    3/92

    Introduction

    There are two types of functions: (i) Algebraic function and

    (ii) Transcendental function

    An  algebraic function   is informally a function thatsatisfies a polynomial equation

    N.B.V yas−Department of M athematics, AIT S − Rajkot

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    4/92

    Introduction

    There are two types of functions: (i) Algebraic function and

    (ii) Transcendental function

    An  algebraic function   is informally a function thatsatisfies a polynomial equation

    A function which is not algebraic is called a  transcendental

    function.

    N.B.V yas−Department of M athematics, AIT S − Rajkot

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    5/92

    Introduction

    There are two types of functions: (i) Algebraic function and

    (ii) Transcendental function

    An  algebraic function   is informally a function thatsatisfies a polynomial equation

    A function which is not algebraic is called a  transcendental

    function.The values of  x  which satisfy the equation  f (x) = 0 arecalled  roots   of  f (x).

    N.B.V yas−Department of M athematics, AIT S − Rajkot

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    6/92

    Introduction

    There are two types of functions: (i) Algebraic function and

    (ii) Transcendental function

    An  algebraic function   is informally a function thatsatisfies a polynomial equation

    A function which is not algebraic is called a  transcendental

    function.The values of  x  which satisfy the equation  f (x) = 0 arecalled  roots   of  f (x).

    If  f (x) is quadratic, cubic or bi-quadratic expression, then

    algebraic formulae are available for getting the solution.

    N.B.V yas−Department of M athematics, AIT S − Rajkot

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    7/92

    Introduction

    There are two types of functions: (i) Algebraic function and

    (ii) Transcendental function

    An  algebraic function   is informally a function thatsatisfies a polynomial equation

    A function which is not algebraic is called a  transcendental

    function.The values of  x  which satisfy the equation  f (x) = 0 arecalled  roots   of  f (x).

    If  f (x) is quadratic, cubic or bi-quadratic expression, then

    algebraic formulae are available for getting the solution.If  f (x) is a higher degree polynomial or transcendentalfunction then algebraic methods are not available.

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    E

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    8/92

    Errors

    It is never possible to measure anything exactly.

    N.B.V yas−Department of M athematics, AIT S − Rajkot

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    9/92

    E

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    10/92

    Errors

    It is never possible to measure anything exactly.

    So in order to make valid conclusions, it is good to make theerror as small as possible.

    The result of any physical measurement has two essentialcomponents :

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Errors

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    11/92

    Errors

    It is never possible to measure anything exactly.

    So in order to make valid conclusions, it is good to make theerror as small as possible.

    The result of any physical measurement has two essentialcomponents :

    i) A numerical value

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Errors

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    12/92

    Errors

    It is never possible to measure anything exactly.

    So in order to make valid conclusions, it is good to make theerror as small as possible.

    The result of any physical measurement has two essentialcomponents :

    i) A numerical value

    ii) A degree of uncertainty Or Errors.

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Errors

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    13/92

    Errors

    Exact Numbers:  There are the numbers in which there isno uncertainty and no approximation.

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Errors

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    14/92

    Errors

    Exact Numbers:  There are the numbers in which there isno uncertainty and no approximation.

    Approximate Numbers:  These are the numbers whichrepresent a certain degree of accuracy but not the exact

    value.

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Errors

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    15/92

    Errors

    Exact Numbers:  There are the numbers in which there isno uncertainty and no approximation.

    Approximate Numbers:  These are the numbers whichrepresent a certain degree of accuracy but not the exact

    value.These numbers cannot be represented in terms of finitenumber of digits.

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Errors

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    16/92

    Errors

    Exact Numbers:  There are the numbers in which there isno uncertainty and no approximation.

    Approximate Numbers:  These are the numbers whichrepresent a certain degree of accuracy but not the exact

    value.These numbers cannot be represented in terms of finitenumber of digits.

    Significant Digits:  It refers to the number of digits in a

    number excluding leading zeros.

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Bisection Method

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    17/92

    Bisection Method

    Consider a continuous function  f (x).

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Bisection Method

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    18/92

    Bisection Method

    Consider a continuous function  f (x).

    Numbers a < b  such that  f (a) and  f (b) have opposite signs.

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Bisection Method

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    19/92

    Bisection Method

    Consider a continuous function  f (x).

    Numbers a < b  such that  f (a) and  f (b) have opposite signs.

    Let  f (a) be negative and  f (b) be positive for [a, b].

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Bisection Method

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    20/92

    Bisection Method

    Consider a continuous function  f (x).

    Numbers a < b  such that  f (a) and  f (b) have opposite signs.

    Let  f (a) be negative and  f (b) be positive for [a, b].

    Then there exists at least one point(root), say  x,  a < x < bsuch that  f (x) = 0.

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Bisection Method

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    21/92

    Bisection Method

    Consider a continuous function  f (x).

    Numbers a < b  such that  f (a) and  f (b) have opposite signs.

    Let  f (a) be negative and  f (b) be positive for [a, b].

    Then there exists at least one point(root), say  x,  a < x < bsuch that  f (x) = 0.

    Now according to Bisection method, bisect the interval [a, b],

    x1 =  a + b

    2  (a < x1  < b).

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Bisection Method

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    22/92

    Bisection Method

    Consider a continuous function  f (x).

    Numbers a < b  such that  f (a) and  f (b) have opposite signs.

    Let  f (a) be negative and  f (b) be positive for [a, b].

    Then there exists at least one point(root), say  x,  a < x < bsuch that  f (x) = 0.

    Now according to Bisection method, bisect the interval [a, b],

    x1 =  a + b

    2  (a < x1  < b).

    If  f (x1) = 0 then  x1  be the root of the given equation.

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Bisection Method

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    23/92

    Consider a continuous function  f (x).

    Numbers a < b  such that  f (a) and  f (b) have opposite signs.

    Let  f (a) be negative and  f (b) be positive for [a, b].

    Then there exists at least one point(root), say  x,  a < x < bsuch that  f (x) = 0.

    Now according to Bisection method, bisect the interval [a, b],

    x1 =  a + b

    2  (a < x1  < b).

    If  f (x1) = 0 then  x1  be the root of the given equation.

    Otherwise the root lies between  x1  and  b  if  f (x1) 

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    24/92

    Consider a continuous function  f (x).

    Numbers a < b  such that  f (a) and  f (b) have opposite signs.

    Let  f (a) be negative and  f (b) be positive for [a, b].

    Then there exists at least one point(root), say  x,  a < x < bsuch that  f (x) = 0.

    Now according to Bisection method, bisect the interval [a, b],

    x1 =  a + b

    2  (a < x1  < b).

    If  f (x1) = 0 then  x1  be the root of the given equation.

    Otherwise the root lies between  x1  and  b  if  f (x1)  0.Then again bisect this interval to get next point  x2.

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Bisection Method

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    25/92

    Consider a continuous function  f (x).

    Numbers a < b  such that  f (a) and  f (b) have opposite signs.

    Let  f (a) be negative and  f (b) be positive for [a, b].

    Then there exists at least one point(root), say  x,  a < x < bsuch that  f (x) = 0.

    Now according to Bisection method, bisect the interval [a, b],

    x1 =  a + b

    2  (a < x1  < b).

    If  f (x1) = 0 then  x1  be the root of the given equation.

    Otherwise the root lies between  x1  and  b  if  f (x1)  0.Then again bisect this interval to get next point  x2.

    Repeat the above procedure to generate  x1, x2, . . .  till theroot upto desired accuracy is obtained.

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Bisection Method

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    26/92

    Characteristics:

    1 This method always slowly converge to a root.

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Bisection Method

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    27/92

    Characteristics:

    1 This method always slowly converge to a root.2 It gives only one root at a time on the the selection of small

    interval near the root.

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Bisection Method

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    28/92

    Characteristics:

    1 This method always slowly converge to a root.2 It gives only one root at a time on the the selection of small

    interval near the root.3 In case of the multiple roots of an equation, other initial

    interval can be chosen.

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Bisection Method

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    29/92

    Characteristics:

    1 This method always slowly converge to a root.2 It gives only one root at a time on the the selection of small

    interval near the root.3 In case of the multiple roots of an equation, other initial

    interval can be chosen.4 Smallest interval must be selected to obtain immediate

    convergence to the root, .

    N.B.V yas−Department of M athematics, AIT S − Rajkot

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    30/92

    Bisection Method- Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    31/92

    Sol.   Let  f (x) = x3 − x − 1 = 0

    N.B.V yas−

    Department of M athematics, AIT S−

    Rajkot

    Bisection Method- Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    32/92

    Sol.   Let  f (x) = x3 − x − 1 = 0

    f (0) =

    N.B.V yas−

    Department of M athematics, AIT S−

    Rajkot

    Bisection Method- Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    33/92

    Sol.   Let  f (x) = x3 − x − 1 = 0

    f (0) =  −1 

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    34/92

    Sol.   Let  f (x) = x3 − x − 1 = 0

    f (0) =  −1 

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    35/92

    Sol.   Let  f (x) = x3 − x − 1 = 0

    f (0) =  −1 

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    36/92

    Sol.   Let  f (x) = x3 − x − 1 = 0

    f (0) =  −1 

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    37/92

    Sol.   Let  f (x) = x3 − x − 1 = 0

    f (0) =  −1 

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    38/92

    Sol.   Let  f (x) = x3 − x − 1 = 0

    f (0) =  −1 

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    39/92

    Sol.   Let  f (x) = x3 − x − 1 = 0

    f (0) =  −1 

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    40/92

    Sol.   Let  f (x) = x3 − x − 1 = 0

    f (0) =  −1 

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    41/92

    Sol.   Let  f (x) = x3 − x − 1 = 0

    f (0) =  −1 

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    42/92

    Ex. Find real root of  x3 − 4x + 1 = 0 correct upto four

    decimal places using Bisection method

    N.B.V yas−

    Department of M athematics, AIT S−

    Rajkot

    Bisection Method- Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    43/92

    Ex. Find real root of  x2 − lnx − 12 = 0 correct upto

    three decimal places using Bisection method

    N.B.V yas−

    Department of M athematics, AIT S−

    Rajkot

    Newton-Raphson Method(N-R Method)

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    44/92

    Graphical derivation of the Method:

    Consider the portion of the graph  y = f (x) which crossesX − axis  at  R  corresponding to the equation  f (x) = 0.

    N.B.V yas−

    Department of M athematics, AIT S−

    Rajkot

    Newton-Raphson Method(N-R Method)

    G hi l d i i f h M h d

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    45/92

    Graphical derivation of the Method:

    Consider the portion of the graph  y = f (x) which crossesX − axis  at  R  corresponding to the equation  f (x) = 0.

    Let  B  be the point on the curve corresponding to the initialguess  x0  at  A.

    N.B.V yas−

    Department of M athematics, AIT S−

    Rajkot

    Newton-Raphson Method(N-R Method)

    G hi l d i ti f th M th d

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    46/92

    Graphical derivation of the Method:

    Consider the portion of the graph  y = f (x) which crossesX − axis  at  R  corresponding to the equation  f (x) = 0.

    Let  B  be the point on the curve corresponding to the initialguess  x0  at  A.

    The tangent at  B  cuts the  X − axis at  C  which gives firstapproximation x1.

    N.B.V yas−

    Department of M athematics, AIT S−

    Rajkot

    Newton-Raphson Method(N-R Method)

    G hi l d i ti f th M th d

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    47/92

    Graphical derivation of the Method:

    Consider the portion of the graph  y = f (x) which crossesX − axis  at  R  corresponding to the equation  f (x) = 0.

    Let  B  be the point on the curve corresponding to the initialguess  x0  at  A.

    The tangent at  B  cuts the  X − axis at  C  which gives firstapproximation x1. Thus  AB = f (x0) and  AC  = x0 − x1

    N.B.V yas−

    Department of M athematics, AIT S−

    Rajkot

    Newton-Raphson Method(N-R Method)

    G hi l d i ti f th M th d

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    48/92

    Graphical derivation of the Method:

    Consider the portion of the graph  y = f (x) which crossesX − axis  at  R  corresponding to the equation  f (x) = 0.

    Let  B  be the point on the curve corresponding to the initialguess  x0  at  A.

    The tangent at  B  cuts the  X − axis at  C  which gives firstapproximation x1. Thus  AB = f (x0) and  AC  = x0 − x1

    Now  ∠ACB = α,  tanα = AB

    AC 

    N.B.V yas−

    Department of M athematics, AIT S−

    Rajkot

    Newton-Raphson Method(N-R Method)

    Graphical derivation of the Method:

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    49/92

    Graphical derivation of the Method:

    Consider the portion of the graph  y = f (x) which crossesX − axis  at  R  corresponding to the equation  f (x) = 0.

    Let  B  be the point on the curve corresponding to the initialguess  x0  at  A.

    The tangent at  B  cuts the  X − axis at  C  which gives firstapproximation x1. Thus  AB = f (x0) and  AC  = x0 − x1

    Now  ∠ACB = α,  tanα = AB

    AC 

    ∴ f (x0) =  f (x0)

    x0 − x1

    N.B.V yas−

    Department of M athematics, AIT S−

    Rajkot

    Newton-Raphson Method(N-R Method)

    Graphical derivation of the Method:

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    50/92

    Graphical derivation of the Method:

    Consider the portion of the graph  y = f (x) which crossesX − axis  at  R  corresponding to the equation  f (x) = 0.

    Let  B  be the point on the curve corresponding to the initialguess  x0  at  A.

    The tangent at  B  cuts the  X − axis at  C  which gives firstapproximation x1. Thus  AB = f (x0) and  AC  = x0 − x1

    Now  ∠ACB = α,  tanα = AB

    AC 

    ∴ f (x0) =  f (x0)

    x0 − x1

    ∴ x0 − x1 =  f (x0

    (x0)

     ⇒ x0 −  f (x0

    (x0)

     = x1

    N.B.V yas−

    Department of M athematics, AIT S−

    Rajkot

    Newton-Raphson Method(N-R Method)

    Graphical derivation of the Method:

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    51/92

    Graphical derivation of the Method:

    Consider the portion of the graph  y = f (x) which crossesX − axis  at  R  corresponding to the equation  f (x) = 0.

    Let  B  be the point on the curve corresponding to the initialguess  x0  at  A.

    The tangent at  B  cuts the  X − axis at  C  which gives firstapproximation x1. Thus  AB = f (x0) and  AC  = x0 − x1

    Now  ∠ACB = α,  tanα = AB

    AC 

    ∴ f (x0) =  f (x0)

    x0 − x1

    ∴ x0 − x1 =  f (x0

    (x0)

     ⇒ x0 −  f (x0

    (x0)

     = x1

    ∴ x1 = x0 −  f (x0)

    f (x0)

    N.B.V yas−

    Department of M athematics, AIT S−

    Rajkot

    Newton-Raphson Method(N-R Method)Graphical derivation of the Method:

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    52/92

    Graphical derivation of the Method:

    Consider the portion of the graph  y = f (x) which crossesX − axis  at  R  corresponding to the equation  f (x) = 0.

    Let  B  be the point on the curve corresponding to the initialguess  x0  at  A.

    The tangent at  B  cuts the  X − axis at  C  which gives firstapproximation x1. Thus  AB = f (x0) and  AC  = x0 − x1

    Now  ∠ACB = α,  tanα = AB

    AC 

    ∴ f (x0) =  f (x0)

    x0 − x1

    ∴ x0 − x1 =  f (x0

    (x0)

     ⇒ x0 −  f (x0

    (x0)

     = x1

    ∴ x1 = x0 −  f (x0)

    f (x0)

    In general  xn+1 = xn −  f (xn)

    f (xn); where  n = 0, 1, 2, 3, . . .

    N.B.V yas−

    Department of M athematics, AIT S−

    Rajkot

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    53/92

    Derivation of the Newton-

    Raphson method. f(x)

    f x0   B

    y= f(x)

     AC 

     AB=)α  tan(

     

    x1  x0 

    XC AαR

    01 0

    0

    ( )

    ( )

     f x x x

     f x

    = −

    00

    0 1

    ( )'( )

      f x f x

     x x=

    4

    N.B.V yas−

    Department of M athematics, AIT S−

    Rajkot

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    54/92

    Newton-Raphson method

     x

     

    f(x)

    1n nn x = x -  f (x )+ ′

      x0  

    f(x1)

    x2  x1  x0  X

    ( )0, 0 x f x

    α

    3

    N.B.V yas−

    Department of M athematics, AIT S−

    Rajkot

    N-R Method:

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    55/92

    Advantages:

    Converges Fast (if it converges).

    Requires only one guess.

    N.B.V yas−

    Department of M athematics, AIT S−

    Rajkot

    Drawbacks:Divergence at inflection point.

    S l ti f th i iti l it ti l f th t th t

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    56/92

    Selection of the initial guess or an iteration value of the root thatis close to the inflection point of the function  f (x) may start

    diverging away from the root in the Newton-Raphson method.

    N.B.V yas−

    Department of M athematics, AIT S−

    Rajkot

    N-R Method:(Drawbacks)

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    57/92

    Division by zero

    N.B.V yas−

    Department of M athematics, AIT S−

    Rajkot

    N-R Method:(Drawbacks)

    Results obtained from the N-R method may oscillate about

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    58/92

    Results obtained from the N R method may   oscillate aboutthe local maximum or minimum  without converging on aroot but converging on the local maximum or minimum.

    For example for  f (x) = x2 + 2 = 0 the equation has no real roots.

    N.B.V yas−

    Department of M athematics, AIT S−

    Rajkot

    N-R Method:(Drawbacks)

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    59/92

    Root Jumping

    N.B.V yas−

    Department of M athematics, AIT S−

    Rajkot

    N-R Method

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    60/92

    Iterative formula for finding   q th root:

    xq −N  = 0 i.e.   x =  N 1q

    N.B.V yas−

    Department of M athematics, AIT S−

    Rajkot

    N-R Method

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    61/92

    Iterative formula for finding   q th root:

    xq −N  = 0 i.e.   x =  N 1q

    Let  f (x) = xq −N 

    N.B.V yas−

    Department of M athematics, AIT S−

    Rajkot

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    62/92

    N-R Method

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    63/92

    Iterative formula for finding   q th root:

    xq −N  = 0 i.e.   x =  N 1q

    Let  f (x) = xq −N 

    ∴ f (x) = qxq−1

    Now by N-R method,  xn+1 = xn −  f (xn)

    f (xn)  = xn −

     (xn)q −N 

    q (xn)q−1

    N.B.V yas−

    Department of M athematics, AIT S−

    Rajkot

    N-R Method

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    64/92

    Iterative formula for finding   q th root:

    xq −N  = 0 i.e.   x =  N 1q

    Let  f (x) = xq −N 

    ∴ f (x) = qxq−1

    Now by N-R method,  xn+1 = xn −  f (xn)

    f (xn)  = xn −

     (xn)q −N 

    q (xn)q−1

    = xn − 1

    q xn +

      N 

    q (xn)q−1

    N.B.V yas−

    Department of M athematics, AIT S−

    Rajkot

    N-R Method

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    65/92

    Iterative formula for finding   q th root:

    xq −N  = 0 i.e.   x =  N 1q

    Let  f (x) = xq −N 

    ∴ f (x) = qxq−1

    Now by N-R method,  xn+1 = xn −  f (xn)

    f (xn)  = xn −

     (xn)q −N 

    q (xn)q−1

    = xn − 1

    q xn +

      N 

    q (xn)q−1

    xn+1 =

     1

    (q − 1)

    xn +

      N 

    (xn)q−1

    ; n

     = 0,

    1,

    2, . . .

    N.B.V yas−

    Department of M athematics, AIT S−

    Rajkot

    N-R Method

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    66/92

    Iterative formula for finding   q th root:

    xq −N  = 0 i.e.   x =  N 1q

    Let  f (x) = xq −N 

    ∴ f (x) = qxq−1

    Now by N-R method,  xn+1 = xn −  f (xn)

    f (xn)  = xn −

     (xn)q −N 

    q (xn)q−1

    = xn − 1

    q xn +

      N 

    q (xn)q−1

    xn+1 =

     1

    (q −

    1)xn +

      N 

    (xn)q−1

    ; n

     = 0,

    1,

    2, . . .

    N.B.V yas−

    Department of M athematics, AIT S−

    Rajkot

    N-R Method

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    67/92

    Iterative formula for finding reciprocal of a positive number

    N :

    x =  1

      i.e.  1

    x

     −N  = 0

    Let  f (x) =  1

    x −N 

    N.B.V yas−

    Department of M athematics, AIT S−

    Rajkot

    Secant Method

    In N-R method two functions f and f are required to be

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    68/92

    In N R method two functions  f   and  f  are required to beevaluate per step.

    N.B.V yas−

    Department of M athematics, AIT S−

    Rajkot

    Secant Method

    In N-R method two functions f and f are required to be

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    69/92

    In N R method two functions  f   and  f  are required to beevaluate per step.

    Also it requires to evaluate derivative of  f  and sometimes it isvery complicated to evaluate  f .

    N.B.V yas−

    Department of M athematics, AIT S−

    Rajkot

    Secant Method

    In N-R method two functions  f   and  f  are required to be

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    70/92

    R f f qevaluate per step.

    Also it requires to evaluate derivative of  f  and sometimes it isvery complicated to evaluate  f .

    Often it requires a very good initial guess.

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Secant Method

    In N-R method two functions  f   and  f  are required to be

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    71/92

    f f qevaluate per step.

    Also it requires to evaluate derivative of  f  and sometimes it isvery complicated to evaluate  f .

    Often it requires a very good initial guess.

    To overcome these drawbacks, the derivative of  f  of the function

    f   is approximated as  f 

    (xn) = f (xn−1) − f (xn)

    xn−1 − xn

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Secant Method

    In N-R method two functions  f   and  f  are required to be

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    72/92

    f f qevaluate per step.

    Also it requires to evaluate derivative of  f  and sometimes it isvery complicated to evaluate  f .

    Often it requires a very good initial guess.

    To overcome these drawbacks, the derivative of  f  of the function

    f   is approximated as  f 

    (xn) = f (xn−1) − f (xn)

    xn−1 − xnTherefore formula of N-R method becomes

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Secant Method

    In N-R method two functions  f   and  f  are required to be

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    73/92

    f f

    evaluate per step.

    Also it requires to evaluate derivative of  f  and sometimes it isvery complicated to evaluate  f .

    Often it requires a very good initial guess.

    To overcome these drawbacks, the derivative of  f  of the function

    f   is approximated as  f 

    (xn) = f (xn−1) − f (xn)

    xn−1 − xnTherefore formula of N-R method becomes

    xn+1 = xn −  f (xn)

    f (xn−1)−f (xn)

    xn−1−xn

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Secant Method

    In N-R method two functions  f   and  f  are required to be

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    74/92

    evaluate per step.

    Also it requires to evaluate derivative of  f  and sometimes it isvery complicated to evaluate  f .

    Often it requires a very good initial guess.

    To overcome these drawbacks, the derivative of  f  of the function

    f   is approximated as  f 

    (xn) = f (xn−1) − f (xn)

    xn−1 − xnTherefore formula of N-R method becomes

    xn+1 = xn −  f (xn)

    f (xn−1)−f (xn)

    xn−1−xn ∴   xn+1 = xn − f (xn)

      xn−1 − xn

    f (xn−1) − f (xn)

    where  n = 1, 2, 3, . . .,  f (xn−1) = f (xn)

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Secant Method

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    75/92

    This method requires two initial guesses

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Secant Method

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    76/92

    This method requires two initial guesses

    The two initial guesses do not need to bracket the root of the

    equation, so it is not classified as a bracketing method.

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Secant Method

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    77/92

    Geometrical interpretation of Secant Method:

    Consider a continuous function  y = f (x)

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Secant Method

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    78/92

    Geometrical interpretation of Secant Method:

    Consider a continuous function  y = f (x)

    Draw the straight line through the points (xn, f (xn)) and(xn−1, f (xn−1))

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Secant Method

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    79/92

    Geometrical interpretation of Secant Method:

    Consider a continuous function  y = f (x)

    Draw the straight line through the points (xn, f (xn)) and(xn−1, f (xn−1))

    Take the  x−coordinate of intersection with  X −axis as  xn+1

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Secant Method

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    80/92

    Geometrical interpretation of Secant Method:

    Consider a continuous function  y = f (x)

    Draw the straight line through the points (xn, f (xn)) and(xn−1, f (xn−1))

    Take the  x−coordinate of intersection with  X −axis as  xn+1

    From the figure  ABE  and  DCE  are similar triangles.

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Secant Method

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    81/92

    Geometrical interpretation of Secant Method:

    Consider a continuous function  y = f (x)

    Draw the straight line through the points (xn, f (xn)) and(xn−1, f (xn−1))

    Take the  x−coordinate of intersection with  X −axis as  xn+1

    From the figure  ABE  and  DCE  are similar triangles.

    Hence  AB

    DC   =

     AE 

    DE  ⇒

      f (xn)

    f (xn−1) =

      xn − xn+1

    xn−1 − xn+1

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Secant Method

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    82/92

    Geometrical interpretation of Secant Method:

    Consider a continuous function  y = f (x)

    Draw the straight line through the points (xn, f (xn)) and(xn−1, f (xn−1))

    Take the  x−coordinate of intersection with  X −axis as  xn+1

    From the figure  ABE  and  DCE  are similar triangles.

    Hence  AB

    DC   =

     AE 

    DE  ⇒

      f (xn)

    f (xn−1) =

      xn − xn+1

    xn−1 − xn+1

    ∴   xn+1 = xn − f (xn)  xn−1 − xn

    f (xn−1) − f (xn)

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Secant Method

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    83/92

    NOTE:

    Do not combine the secant formula and write it in the form asfollows because it has enormous loss of significance errors

    xn+1 =  xnf (xn−1) − xn−1f (xn)f (xn−1) − f (xn)

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Secant Method

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    84/92

    General Features:

    The secant method is an open method and may not converge.

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Secant Method

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    85/92

    General Features:

    The secant method is an open method and may not converge.

    It requires fewer function evaluations.

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Secant Method

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    86/92

    General Features:

    The secant method is an open method and may not converge.

    It requires fewer function evaluations.

    In some problems the secant method will work when Newton’smethod does not and vice-versa.

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Secant Method

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    87/92

    General Features:

    The secant method is an open method and may not converge.

    It requires fewer function evaluations.

    In some problems the secant method will work when Newton’smethod does not and vice-versa.

    The method is usually a bit slower than Newton’s method. It ismore rapidly convergent than the bisection method.

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Secant Method

    G l F

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    88/92

    General Features:

    The secant method is an open method and may not converge.

    It requires fewer function evaluations.

    In some problems the secant method will work when Newton’smethod does not and vice-versa.

    The method is usually a bit slower than Newton’s method. It ismore rapidly convergent than the bisection method.

    This method does not require use of the derivative of thefunction.

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Secant Method

    G l F t

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    89/92

    General Features:

    The secant method is an open method and may not converge.

    It requires fewer function evaluations.

    In some problems the secant method will work when Newton’smethod does not and vice-versa.

    The method is usually a bit slower than Newton’s method. It ismore rapidly convergent than the bisection method.

    This method does not require use of the derivative of thefunction.

    This method requires only one function evaluation per iteration.

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Secant Method

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    90/92

    Disadvantages:

    There is no guaranteed error bound for the computed value.

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Secant Method

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    91/92

    Disadvantages:

    There is no guaranteed error bound for the computed value.

    It is likely to difficulty of  f (x) = 0. This means  X −axis is

    tangent to the graph of  y = f (x)

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Secant Method

  • 8/20/2019 Dr. Nirav Vyas numerical method 1.pdf

    92/92

    Disadvantages:

    There is no guaranteed error bound for the computed value.

    It is likely to difficulty of  f (x) = 0. This means  X −axis is

    tangent to the graph of  y = f (x)Method may converge very slowly or not at all.

    N.B.V yas−Department of M athematics, AIT S − Rajkot