Dr. Nirav Vyas fourierseries1.pdf

download Dr. Nirav Vyas fourierseries1.pdf

of 123

Transcript of Dr. Nirav Vyas fourierseries1.pdf

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    1/215

    Fourier Series

    N. B. Vyas

    Department of Mathematics,Atmiya Institute of Tech. and Science,

    Rajkot (Guj.) - INDIA

    N. B. Vyas   Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    2/215

    Periodic Function

    A function  f (x) which satisfies the relation  f (x) = f (x + T ) forall real  x  and some fixed  T   is called   Periodic function.

    N. B. Vyas   Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    3/215

    Periodic Function

    A function  f (x) which satisfies the relation  f (x) = f (x + T ) forall real  x  and some fixed  T   is called   Periodic function.

    The smallest positive number  T , for which this relation holds, iscalled the  period   of  f (x).

    N. B. Vyas   Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    4/215

    Periodic Function

    A function  f (x) which satisfies the relation  f (x) = f (x + T ) forall real  x  and some fixed  T   is called   Periodic function.

    The smallest positive number  T , for which this relation holds, iscalled the  period   of  f (x).

    If  T   is the period of  f (x) then

    N. B. Vyas   Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    5/215

    Periodic Function

    A function  f (x) which satisfies the relation  f (x) = f (x + T ) forall real  x  and some fixed  T   is called   Periodic function.

    The smallest positive number  T , for which this relation holds, iscalled the  period   of  f (x).

    If  T   is the period of  f (x) then

    f (x) = f (x + T ) = f (x + 2T ) = . . . =  f (x + nT )

    N. B. Vyas   Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    6/215

    Periodic Function

    A function  f (x) which satisfies the relation  f (x) = f (x + T ) forall real  x  and some fixed  T   is called   Periodic function.

    The smallest positive number  T , for which this relation holds, iscalled the  period   of  f (x).

    If  T   is the period of  f (x) then

    f (x) = f (x + T ) = f (x + 2T ) = . . . =  f (x + nT )

    f (x) = f (x− T ) = f (x− 2T ) = . . . =  f (x− nT )

    N. B. Vyas   Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    7/215

    Periodic Function

    A function  f (x) which satisfies the relation  f (x) = f (x + T ) forall real  x  and some fixed  T   is called   Periodic function.

    The smallest positive number  T , for which this relation holds, iscalled the  period   of  f (x).

    If  T   is the period of  f (x) then

    f (x) = f (x + T ) = f (x + 2T ) = . . . =  f (x + nT )

    f (x) = f (x− T ) = f (x− 2T ) = . . . =  f (x− nT )

    ∴   f (x) = f (x± nT ), where  n   is a positive integer

    N. B. Vyas   Fourier Series

    P F

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    8/215

    Periodic Function

    A function  f (x) which satisfies the relation  f (x) = f (x + T ) forall real  x  and some fixed  T   is called   Periodic function.

    The smallest positive number  T , for which this relation holds, iscalled the  period   of  f (x).

    If  T   is the period of  f (x) then

    f (x) = f (x + T ) = f (x + 2T ) = . . . =  f (x + nT )

    f (x) = f (x− T ) = f (x− 2T ) = . . . =  f (x− nT )

    ∴   f (x) = f (x± nT ), where  n   is a positive integer

    Eg.  Sinx

    , Cosx

    , Secx

     and Cosecx

     are periodic functions with period2π

    N. B. Vyas   Fourier Series

    P F

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    9/215

    Periodic Function

    A function  f (x) which satisfies the relation  f (x) = f (x + T ) forall real  x  and some fixed  T   is called   Periodic function.

    The smallest positive number  T , for which this relation holds, iscalled the  period   of  f (x).

    If  T   is the period of  f (x) then

    f (x) = f (x + T ) = f (x + 2T ) = . . . =  f (x + nT )

    f (x) = f (x− T ) = f (x− 2T ) = . . . =  f (x− nT )

    ∴   f (x) = f (x± nT ), where  n   is a positive integer

    Eg.  Sinx

    , Cosx

    , Secx

     and Cosecx

     are periodic functions with period2π

    tanx and  cotx  are periodic functions with period  π.

    N. B. Vyas   Fourier Series

    E & O

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    10/215

    Even & Odd functions

    A function  f (x) is said to be even if  f (−x) = f (x).

    N. B. Vyas   Fourier Series

    Even & Odd functions

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    11/215

    Even & Odd functions

    A function  f (x) is said to be even if  f (−x) = f (x).

    Eg.   x2 and  cosx  are even function.

    N. B. Vyas   Fourier Series

    Even & Odd functions

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    12/215

    Even & Odd functions

    A function  f (x) is said to be even if  f (−x) = f (x).

    Eg.   x2 and  cosx  are even function.

       c

    −c

    f (x)dx = 2    c

    0

    f (x)dx  ; if  f (x) is an even function.

    N. B. Vyas   Fourier Series

    Even & Odd functions

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    13/215

    Even & Odd functions

    A function  f (x) is said to be even if  f (−x) = f (x).

    Eg.   x2 and  cosx  are even function.

       c

    −c

    f (x)dx = 2    c

    0

    f (x)dx  ; if  f (x) is an even function.

    A function  f (x) is said to be odd  if  f (−x) = −f (x).

    N. B. Vyas   Fourier Series

    Even & Odd functions

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    14/215

    Even & Odd functions

    A function  f (x) is said to be even if  f (−x) = f (x).

    Eg.   x2 and  cosx  are even function.

       c

    −c

    f (x)dx = 2    c

    0

    f (x)dx  ; if  f (x) is an even function.

    A function  f (x) is said to be odd  if  f (−x) = −f (x).

    Eg.   x3 and  sinx  are odd function.

    N. B. Vyas   Fourier Series

    Even & Odd functions

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    15/215

    Even & Odd functions

    A function  f (x) is said to be even if  f (−x) = f (x).

    Eg.   x2 and  cosx  are even function.

       c

    −c

    f (x)dx = 2    c

    0

    f (x)dx  ; if  f (x) is an even function.

    A function  f (x) is said to be odd  if  f (−x) = −f (x).

    Eg.   x3 and  sinx  are odd function.

       c

    −c

    f (x)dx = 0 ; if  f (x) is an odd function.

    N. B. Vyas   Fourier Series

    Some Important Formula

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    16/215

    Some Important Formula   eax sin bx dx =

      eax

    a2 + b2(asinbx − bcosbx) + c

    N. B. Vyas   Fourier Series

    Some Important Formula

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    17/215

    Some Important Formula   eax sin bx dx =

      eax

    a2 + b2(asinbx − bcosbx) + c

       eax cos bx dx =   e

    ax

    a2 + b2(a cosbx + b sinbx) + c

    N. B. Vyas   Fourier Series

    Some Important Formula

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    18/215

    Some Important Formula   eax sin bx dx =

      eax

    a2 + b2(asinbx − bcosbx) + c

       eax cos bx dx =   e

    ax

    a2 + b2(a cosbx + b sinbx) + c 

      c+2π

    c

    sin nx dx = −

    cos nx

    n c+2π

    c

    = 0, n = 0

    N. B. Vyas   Fourier Series

    Some Important Formula

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    19/215

    Some Important Formula   eax sin bx dx =

      eax

    a2 + b2(asinbx − bcosbx) + c

       eax cos bx dx =   e

    ax

    a2 + b2(a cosbx + b sinbx) + c 

      c+2π

    c

    sin nx dx = −cos nx

    n

    c+2π

    c

    = 0, n = 0

       c+2πc

    cos nx dx =

    sin nxn

    c+2πc

    = 0, n = 0

    N. B. Vyas   Fourier Series

    Some Important Formula

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    20/215

    Some Important Formula   eax sin bx dx =

      eax

    a2 + b2(asinbx − bcosbx) + c

       eax cos bx dx =   e

    ax

    a2 + b2(a cosbx + b sinbx) + c 

      c+2π

    c

    sin nx dx = −cos nx

    n

    c+2π

    c

    = 0, n = 0

       c+2πc

    cos nx dx =

    sin nxn

    c+2πc

    = 0, n = 0

       c+2π

    c

    sinmxcosnxdx = 1

    2    c+2π

    c

    2sinmxcosnxdx

    N. B. Vyas   Fourier Series

    Some Important Formula

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    21/215

    Some Important Formula   eax sin bx dx =

      eax

    a2 + b2(asinbx − bcosbx) + c

       eax cos bx dx =   e

    ax

    a2 + b2(a cosbx + b sinbx) + c 

      c+2π

    c

    sin nx dx = −cos nx

    n

    c+2π

    c

    = 0, n = 0

       c+2πc

    cos nx dx =

    sin nxn

    c+2πc

    = 0, n = 0

       c+2π

    c

    sinmxcosnxdx = 1

    2    c+2π

    c

    2sinmxcosnxdx

    = 12

       c+2π

    c

    [sin (m + n)x + sin (m − n)x] dx

    N. B. Vyas   Fourier Series

    Some Important Formula

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    22/215

    S    eax sin bx dx =

      eax

    a2 + b2(asinbx − bcosbx) + c

       eax cos bx dx =   e

    ax

    a2 + b2(a cosbx + b sinbx) + c 

      c+2π

    c

    sin nx dx = −cos nx

    n

    c+2π

    c

    = 0, n = 0

       c+2πc

    cos nx dx =

    sin nxn

    c+2πc

    = 0, n = 0

       c+2π

    c

    sinmxcosnxdx = 1

    2    c+2π

    c

    2sinmxcosnxdx

    = 12

       c+2π

    c

    [sin (m + n)x + sin (m − n)x] dx

    = −1

    2 cos (m + n)x

    m + n  +

     cos (m − n)x

    m − n c+2π

    c

    = 0, n = 0

    N. B. Vyas   Fourier Series

    Some Important Formula

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    23/215

       c+2π

    c

    cosmxcosnxdx =   12

       c+2π

    c

    2cosmxcosnxdx

    N. B. Vyas   Fourier Series

    Some Important Formula

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    24/215

       c+2π

    c

    cosmxcosnxdx =   12

       c+2π

    c

    2cosmxcosnxdx

    =   12

       c+2

    π

    c

    [cos (m + n)x + cos (m − n)x] dx

    N. B. Vyas   Fourier Series

    Some Important Formula

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    25/215

       c+2π

    c

    cosmxcosnxdx =   12

       c+2π

    c

    2cosmxcosnxdx

    =   12

       c+2πc

    [cos (m + n)x + cos (m − n)x] dx

    =   12

    sin (m + n)x

    m + n  +

     sin (m − n)x

    m − n c+2π

    c

    = 0, m = n

       c+2π

    c

    sinmxsinnxdx

    N. B. Vyas   Fourier Series

    Some Important Formula

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    26/215

       c+2π

    c

    cosmxcosnxdx =   12

       c+2π

    c

    2cosmxcosnxdx

    =   12

       c+2πc

    [cos (m + n)x + cos (m − n)x] dx

    =   12

    sin (m + n)x

    m + n  +

     sin (m − n)x

    m − n c+2π

    c

    = 0, m = n

       c+2π

    c

    sinmxsinnxdx = 0

       c+2π

    c

    sinnxcosnxdx

    N. B. Vyas   Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    27/215

    Some Important Formula

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    28/215

       c+2π

    c

    cosmxcosnxdx =   12

       c+2π

    c

    2cosmxcosnxdx

    =   12

       c+2πc

    [cos (m + n)x + cos (m − n)x] dx

    =   12

    sin (m + n)x

    m + n  +

     sin (m − n)x

    m − n

    c+2π

    c

    = 0, m = n

       c+2π

    c

    sinmxsinnxdx = 0

       c+2π

    c

    sinnxcosnxdx = 0, n = 0   c+2π

    c

    cos2 nx dx

    N. B. Vyas   Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    29/215

    Some Important Formula

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    30/215

       c+2π

    c

    cosmxcosnxdx =   12

       c+2π

    c

    2cosmxcosnxdx

    =   12

       c+2πc

    [cos (m + n)x + cos (m − n)x] dx

    =   12

    sin (m + n)x

    m + n  +

     sin (m − n)x

    m − n

    c+2π

    c

    = 0, m = n

       c+2π

    c

    sinmxsinnxdx = 0

       c+2π

    c

    sinnxcosnxdx = 0, n = 0   c+2π

    c

    cos2 nx dx  = π

       c+2π

    c

    sin2 nxdx

    N. B. Vyas   Fourier Series

    Some Important Formula

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    31/215

       c+2π

    c

    cosmxcosnxdx =   12

       c+2π

    c

    2cosmxcosnxdx

    =   12

       c+2πc

    [cos (m + n)x + cos (m − n)x] dx

    =   12

    sin (m + n)x

    m + n  +

     sin (m − n)x

    m − n

    c+2π

    c

    = 0, m = n

       c+2π

    c

    sinmxsinnxdx = 0

       c+2π

    c

    sinnxcosnxdx = 0, n = 0   c+2π

    c

    cos2 nx dx  = π

       c+2π

    c

    sin2 nxdx  = π

    N. B. Vyas   Fourier Series

    Some Important Formula

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    32/215

    (Leibnitz’s Rule)To integrate the product of twofunctions, one of which is power of  x   . We apply the

    generalized rule of integration by parts   uvdx =  u v1 − u

    v2 + u v3 − u

    v4 + . . .

    N. B. Vyas   Fourier Series

    Some Important Formula

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    33/215

    (Leibnitz’s Rule)To integrate the product of twofunctions, one of which is power of  x   . We apply the

    generalized rule of integration by parts   uvdx =  u v1 − u

    v2 + u v3 − u

    v4 + . . .

    Eg.    x3 e−2x dx

    N. B. Vyas   Fourier Series

    Some Important Formula

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    34/215

    (Leibnitz’s Rule)To integrate the product of twofunctions, one of which is power of  x   . We apply the

    generalized rule of integration by parts   uvdx =  u v1 − u

    v2 + u v3 − u

    v4 + . . .

    Eg.    x3 e−2x dx= x3

    e−2x

    −2

    − 3x2

      e−2x

    (−2)2

     + 6x

      e−2x

    (−2)3

    − 6

      e−2x

    (−2)4

    N. B. Vyas   Fourier Series

    Some Important Formula

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    35/215

    (Leibnitz’s Rule)To integrate the product of twofunctions, one of which is power of  x   . We apply the

    generalized rule of integration by parts   uvdx =  u v1 − u

    v2 + u v3 − u

    v4 + . . .

    Eg.    x3 e−2x dx= x3

    e−2x

    −2

    − 3x2

      e−2x

    (−2)2

     + 6x

      e−2x

    (−2)3

    − 6

      e−2x

    (−2)4

    = −1

    8 e−2x (4x3 + 6x2 + 6x + 3)

    N. B. Vyas   Fourier Series

    Some Important Formula

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    36/215

    (Leibnitz’s Rule)To integrate the product of twofunctions, one of which is power of  x   . We apply the

    generalized rule of integration by parts   uvdx =  u v1 − u

    v2 + u v3 − u

    v4 + . . .

    Eg.    x3 e−2x dx= x3

    e−2x

    −2

    − 3x2

      e−2x

    (−2)2

     + 6x

      e−2x

    (−2)3

    − 6

      e−2x

    (−2)4

    = −1

    8

     e−2x (4x3 + 6x2 + 6x + 3)

    sin nπ = 0

    N. B. Vyas   Fourier Series

    Some Important Formula

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    37/215

    (Leibnitz’s Rule)To integrate the product of twofunctions, one of which is power of  x   . We apply the

    generalized rule of integration by parts   uvdx =  u v1 − u

    v2 + u v3 − u

    v4 + . . .

    Eg.    x3 e−2x dx= x3

    e−2x

    −2

    − 3x2

      e−2x

    (−2)2

     + 6x

      e−2x

    (−2)3

    − 6

      e−2x

    (−2)4

    = −1

    8

     e−2x (4x3 + 6x2 + 6x + 3)

    sin nπ = 0 and  cos nπ = (−1)n

    N. B. Vyas   Fourier Series

    Some Important Formula

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    38/215

    (Leibnitz’s Rule)To integrate the product of twofunctions, one of which is power of  x   . We apply the

    generalized rule of integration by parts   uvdx =  u v1 − u

    v2 + u v3 − u

    v4 + . . .

    Eg.    x3 e−2x dx= x3

    e−2x

    −2

    − 3x2

      e−2x

    (−2)2

     + 6x

      e−2x

    (−2)3

    − 6

      e−2x

    (−2)4

    = −1

    8

     e−2x (4x3 + 6x2 + 6x + 3)

    sin nπ = 0 and  cos nπ = (−1)n

    sin

    n +   12

    π = (−1)n

    N. B. Vyas   Fourier Series

    Some Important Formula

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    39/215

    (Leibnitz’s Rule)To integrate the product of twofunctions, one of which is power of  x   . We apply the

    generalized rule of integration by parts   uvdx =  u v1 − u

    v2 + u v3 − u

    v4 + . . .

    Eg.    x3 e−2x dx= x3

    e−2x

    −2

    − 3x2

      e−2x

    (−2)2

     + 6x

      e−2x

    (−2)3

    − 6

      e−2x

    (−2)4

    = −1

    8

     e−2x (4x3 + 6x2 + 6x + 3)

    sin nπ = 0 and  cos nπ = (−1)n

    sin

    n +   12

    π = (−1)n and  cos

    n +   1

    2

    π = 0

    N. B. Vyas   Fourier Series

    Some Important Formula

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    40/215

    (Leibnitz’s Rule)To integrate the product of twofunctions, one of which is power of  x   . We apply the

    generalized rule of integration by parts   uvdx =  u v1 − u

    v2 + u v3 − u

    v4 + . . .

    Eg.    x3 e−2x dx= x3

    e−2x

    −2

    − 3x2

      e−2x

    (−2)2

     + 6x

      e−2x

    (−2)3

    − 6

      e−2x

    (−2)4

    = −1

    8

     e−2x (4x3 + 6x2 + 6x + 3)

    sin nπ = 0 and  cos nπ = (−1)n

    sin

    n +   12

    π = (−1)n and  cos

    n +   1

    2

    π = 0

    where n   is integer.

    N. B. Vyas   Fourier Series

    Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    41/215

    The Fourier series for the function  f (x) in the intervalc < x < c + 2π  is given by

    N. B. Vyas   Fourier Series

    Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    42/215

    The Fourier series for the function  f (x) in the intervalc < x < c + 2π  is given by

    f (x) =  a0

    2  +

    ∞n=1

    an cos nx +∞n=1

    bn sin nx

    N. B. Vyas   Fourier Series

    Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    43/215

    The Fourier series for the function  f (x) in the intervalc < x < c + 2π  is given by

    f (x) =  a0

    2  +

    ∞n=1

    an cos nx +∞n=1

    bn sin nx

    where a0 =   1π

       c+2πc

    f (x) dx

    N. B. Vyas   Fourier Series

    Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    44/215

    The Fourier series for the function  f (x) in the intervalc < x < c + 2π  is given by

    f (x) =  a0

    2  +

    ∞n=1

    an cos nx +∞n=1

    bn sin nx

    where a0 =   1π

       c+2πc

    f (x) dx

    an =  1

    π

       c+2π

    c

    f (x) cosnxdx

    N. B. Vyas   Fourier Series

    Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    45/215

    The Fourier series for the function  f (x) in the intervalc < x < c + 2π  is given by

    f (x) =  a0

    2  +

    ∞n=1

    an cos nx +∞n=1

    bn sin nx

    where a0 =   1π

       c+2πc

    f (x) dx

    an =  1

    π

       c+2π

    c

    f (x) cosnxdx

    bn =   1π

       c+2πc

    f (x) sin nx dx

    N. B. Vyas   Fourier Series

    Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    46/215

    Corollary 1: If  c = 0, the interval becomes 0  < x

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    47/215

    Corollary 1: If  c = 0, the interval becomes 0  < x

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    48/215

    Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    49/215

    Corollary 1: If  c = 0, the interval becomes 0  < x

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    50/215

    Corollary 1: If  c = 0, the interval becomes 0  < x

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    51/215

    Corollary 2: If  c = −π, the interval becomes  −π

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    52/215

    Corollary 2: If  c = −π, the interval becomes  −π

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    53/215

    Corollary 2: If  c = −π, the interval becomes  −π

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    54/215

    Corollary 2: If  c = −π, the interval becomes  −π

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    55/215

    Corollary 2: If  c = −π, the interval becomes  −π

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    56/215

    Fourier Series

    S i l C 1 If th i t l i d f ( ) i

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    57/215

    Special Case 1: If the interval is  −c < x < c  and  f (x) is anodd function i.e.   f (−x) = −f (x). Let  C  = π

    f (x) =   a0

    2  +

    ∞n=1

    an cos nx +∞n=1

    bn sin nx

    N. B. Vyas   Fourier Series

    Fourier Series

    S i l C 1 If th i t l i < < d f ( ) i

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    58/215

    Special Case 1: If the interval is  −c < x < c  and  f (x) is anodd function i.e.   f (−x) = −f (x). Let  C  = π

    f (x) =   a0

    2  +

    ∞n=1

    an cos nx +∞n=1

    bn sin nx

    where a0 =  1

    π    π

    −π

    f (x) dx = 0

    N. B. Vyas   Fourier Series

    Fourier Series

    S i l C 1 If th i t l i < < d f ( ) i

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    59/215

    Special Case 1: If the interval is  −c < x < c  and  f (x) is anodd function i.e.   f (−x) = −f (x). Let  C  = π

    f (x) =   a0

    2  +

    ∞n=1

    an cos nx +∞n=1

    bn sin nx

    where a0 =  1

    π    π

    −π

    f (x) dx = 0

    an =  1

    π

       π

    −π

    f (x) cosnxdx = 0

    N. B. Vyas   Fourier Series

    Fourier Series

    Special Case 1: If the interval is c < x < c and f (x) is an

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    60/215

    Special Case 1: If the interval is  −c < x < c  and  f (x) is anodd function i.e.   f (−x) = −f (x). Let  C  = π

    f (x) =   a0

    2  +

    ∞n=1

    an cos nx +∞n=1

    bn sin nx

    where a0 =  1

    π    π

    −π

    f (x) dx = 0

    an =  1

    π

       π

    −π

    f (x) cosnxdx = 0

    because  cos nx  is an even function ,  f (x)cos nx  is an oddfunction

    N. B. Vyas   Fourier Series

    Fourier Series

    Special Case 1: If the interval is c < x < c and f (x) is an

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    61/215

    Special Case 1: If the interval is  −c < x < c  and  f (x) is anodd function i.e.   f (−x) = −f (x). Let  C  = π

    f (x) =   a0

    2  +

    ∞n=1

    an cos nx +∞n=1

    bn sin nx

    where a0 =  1

    π    π

    −π

    f (x) dx = 0

    an =  1

    π

       π

    −π

    f (x) cosnxdx = 0

    because  cos nx  is an even function ,  f (x)cos nx  is an oddfunction

    bn =   1π

       π−π

    f (x) sin nx dx =   2π

       π0

    f (x) sin nx dx

    N. B. Vyas   Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    62/215

    Fourier Series

    Special Case 2: If the interval is −c < x < c and f (x) is an

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    63/215

    Special Case 2: If the interval is  −c < x < c  and  f (x) is aneven function i.e.   f (−x) = f (x). Let  C  = π

    N. B. Vyas   Fourier Series

    Fourier Series

    Special Case 2: If the interval is −c < x < c and f (x) is an

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    64/215

    Special Case 2: If the interval is   c < x < c  and  f (x) is aneven function i.e.   f (−x) = f (x). Let  C  = π

    f (x) =   a0

    2  +

    ∞n=1

    an cos nx +∞n=1

    bn sin nx

    N. B. Vyas   Fourier Series

    Fourier Series

    Special Case 2: If the interval is −c < x < c and f (x) is an

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    65/215

    Special Case 2: If the interval is   c < x < c  and  f (x) is aneven function i.e.   f (−x) = f (x). Let  C  = π

    f (x) =   a02

      +∞n=1

    an cos nx +∞n=1

    bn sin nx

    where a0 =  1

    π    π

    −π

    f (x) dx =  2

    π    π

    0

    f (x) dx

    N. B. Vyas   Fourier Series

    Fourier Series

    Special Case 2: If the interval is −c < x < c and f (x) is an

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    66/215

    Special Case 2: If the interval is   c < x < c  and  f (x) is aneven function i.e.   f (−x) = f (x). Let  C  = π

    f (x) =   a02

      +∞n=1

    an cos nx +∞n=1

    bn sin nx

    where a0 =  1

    π    π

    −π

    f (x) dx =  2

    π    π

    0

    f (x) dx

    an =  1π

       π

    −π

    f (x) cosnxdx =  2π

       π

    0

    f (x) cosnxdx

    N. B. Vyas   Fourier Series

    Fourier Series

    Special Case 2: If the interval is  −c < x < c  and  f (x) is an

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    67/215

    Spec a Case t e te va s c < x < c a d f (x) s aeven function i.e.   f (−x) = f (x). Let  C  = π

    f (x) =   a02

      +∞n=1

    an cos nx +∞n=1

    bn sin nx

    where a0 =  1

    π    π

    −π

    f (x) dx =  2

    π    π

    0

    f (x) dx

    an =  1π

       π

    −π

    f (x) cosnxdx =   2π

       π

    0

    f (x) cosnxdx

    because  cos nx  is an even function ,  f (x)cos nx  is an evenfunction

    N. B. Vyas   Fourier Series

    Fourier Series

    Special Case 2: If the interval is  −c < x < c  and  f (x) is an

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    68/215

    p f ( )even function i.e.   f (−x) = f (x). Let  C  = π

    f (x) =   a02

      +∞n=1

    an cos nx +∞n=1

    bn sin nx

    where a0 =  1

    π    π

    −π

    f (x) dx =  2

    π    π

    0

    f (x) dx

    an =  1π

       π

    −π

    f (x) cosnxdx =   2π

       π

    0

    f (x) cosnxdx

    because  cos nx  is an even function ,  f (x)cos nx  is an evenfunction

    bn =   1π

       π−π

    f (x) sin nx dx = 0

    N. B. Vyas   Fourier Series

    Fourier Series

    Special Case 2: If the interval is  −c < x < c  and  f (x) is an

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    69/215

    p f ( )even function i.e.   f (−x) = f (x). Let  C  = π

    f (x) =   a02

      +∞n=1

    an cos nx +∞n=1

    bn sin nx

    where a0 =  1

    π    π

    −π

    f (x) dx =  2

    π    π

    0

    f (x) dx

    an =  1π

       π

    −π

    f (x) cosnxdx =   2π

       π

    0

    f (x) cosnxdx

    because  cos nx  is an even function ,  f (x)cos nx  is an evenfunction

    bn =   1π

       π−π

    f (x) sin nx dx = 0

    because  sin nx  is an odd function ,  f (x)sin nx  is an oddfunction

    N. B. Vyas   Fourier Series

    Example

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    70/215

    Ex. Obtain Fourier series of  f (x) =

    π − x

    2

    2in the

    interval 0 ≤ x ≤ 2π. Hence deduce thatπ2

    12 =

      1

    12 −

      1

    22 +

      1

    32 − . . .

    N. B. Vyas   Fourier Series

    Example

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    71/215

    Ex. Obtain Fourier series of  f (x) =

    π − x

    2

    2in the

    interval 0 ≤ x ≤ 2π. Hence deduce thatπ2

    12 =

      1

    12 −

      1

    22 +

      1

    32 − . . .

    N. B. Vyas   Fourier Series

    Example

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    72/215

    Sol.  Step 1.  The Fourier series of  f (x) is given by

    N. B. Vyas   Fourier Series

    Example

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    73/215

    Sol.  Step 1.  The Fourier series of  f (x) is given by

    f (x) =  a0

    2  +

    ∞n=1

    (an cos nx + bn sin nx) . . .  (1)

    N. B. Vyas   Fourier Series

    Example

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    74/215

    Sol.  Step 1.  The Fourier series of  f (x) is given by

    f (x) =  a0

    2  +

    ∞n=1

    (an cos nx + bn sin nx) . . .  (1)

    where a0 =  1

    π   2π

    0

    f (x) dx

    N. B. Vyas   Fourier Series

    Example

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    75/215

    Sol.  Step 1.  The Fourier series of  f (x) is given by

    f (x) =  a0

    2  +

    ∞n=1

    (an cos nx + bn sin nx) . . .  (1)

    where a0 =  1

    π   2π

    0

    f (x) dx

    an =  1

    π

       2π

    0

    f (x) cos nx dx

    N. B. Vyas   Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    76/215

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    77/215

    Example

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    78/215

    Step 2.   Now a0 =   1π

       2π0

    f (x) dx

    N. B. Vyas   Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    79/215

    Example

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    80/215

    Step 2.   Now a0 =   1π

       2π0

    f (x) dx

    a0  =  1

    π

       2π

    0

    (π − x)2

    4  dx

    =   14π

    (π − x)3

    (−3)

    0

    = −   112π

    (−π3 − π3)

    N. B. Vyas   Fourier Series

    Example

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    81/215

    Step 2.   Now a0 =   1π

       2π0

    f (x) dx

    a0  =  1

    π

       2π

    0

    (π − x)2

    4  dx

    =   14π

    (π − x)3

    (−3)

    0

    = −   112π

    (−π3 − π3)

    =  π2

    6

    N. B. Vyas   Fourier Series

    Example

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    82/215

    Step 3.   an =  1

    π

       2π

    0

    f (x) cosnxdx

    N. B. Vyas Fourier Series

    Example

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    83/215

    Step 3.   an =  1

    π

       2π

    0

    f (x) cosnxdx

    an =  1

    π   2π

    0

    (π − x)2

    4  cosnxdx

    N. B. Vyas Fourier Series

    Example

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    84/215

    Step 3.   an =  1

    π

       2π

    0

    f (x) cosnxdx

    an =  1

    π   2π

    0

    (π − x)2

    4

      cosnxdx

    =  1

    n2

    N. B. Vyas Fourier Series

    Example

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    85/215

    Step 4.   bn =  1

    π

       2π

    0

    f (x) sin nx dx

    N. B. Vyas Fourier Series

    Example

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    86/215

    Step 4.   bn =  1

    π

       2π

    0

    f (x) sin nx dx

    bn =

      1

    π   2π0

    (π − x)2

    4   sin nx dx

    N. B. Vyas Fourier Series

    Example

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    87/215

    Step 4.   bn =  1

    π

       2π

    0

    f (x) sin nx dx

    bn =

      1

    π   2π0

    (π − x)2

    4   sin nx dx= 0

    N. B. Vyas Fourier Series

    Example

    Step 5 Substituting values of a a and b in (1) we get the

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    88/215

    Step 5.  Substituting values of  a0, an  and  bn  in (1), we get the

    required Fourier series of  f (x) in the interval [0, 2π]

    N. B. Vyas Fourier Series

    Example

    Step 5 Substituting values of a0 a and b in (1) we get the

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    89/215

    Step 5.  Substituting values of  a0, an  and  bn  in (1), we get the

    required Fourier series of  f (x) in the interval [0, 2π]π − x

    2

    2=

      π2

    12 +

    ∞n=1

    1

    n2 cos nx

    N B Vyas Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    90/215

    Example

    Step 5 Substituting values of a0 a and b in (1) we get the

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    91/215

    Step 5.  Substituting values of  a0, an  and  bn  in (1), we get the

    required Fourier series of  f (x) in the interval [0, 2π]π − x

    2

    2=

      π2

    12 +

    ∞n=1

    1

    n2 cos nx

    =

      π2

    12 +

      1

    12  cos x +

      1

    22  cos 2x +

      1

    32  cos 3x + . . .Putting  x =  π, we get

    N B Vyas Fourier Series

    Example

    Step 5 Substituting values of a0 an and bn in (1) we get the

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    92/215

    Step 5.  Substituting values of  a0, an  and  bn  in (1), we get the

    required Fourier series of  f (x) in the interval [0, 2π]π − x

    2

    2=

      π2

    12 +

    ∞n=1

    1

    n2 cos nx

    =

      π2

    12 +

      1

    12  cos x +

      1

    22  cos 2x +

      1

    32  cos 3x + . . .Putting  x =  π, we get

    0 =  π2

    12 −

      1

    12 +

      1

    22 −

      1

    32 +

      1

    42 − . . .

    N B Vyas  Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    93/215

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    94/215

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    95/215

    Example

    S l St 1 Th F i i f f ( ) i i b

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    96/215

    Sol.  Step 1.  The Fourier series of  f (x) is given by

    N B Vyas  Fourier Series

    Example

    S l St 1 Th F i s i s f f ( ) is gi b

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    97/215

    Sol.  Step 1.  The Fourier series of  f (x) is given by

    f (x) =  a0

    2  +

    ∞n=1

    (an cos nx + bn sin nx) . . .  (1)

    N B Vyas  Fourier Series

    Example

    Sol Step 1 The Fourier series of f (x) is given by

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    98/215

    Sol.  Step 1.  The Fourier series of  f (x) is given by

    f (x) =  a0

    2  +

    ∞n=1

    (an cos nx + bn sin nx) . . .  (1)

    where a0 =  1

    π   2π

    0

    f (x) dx

    N B Vyas  Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    99/215

    Example

    Sol Step 1 The Fourier series of f (x) is given by

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    100/215

    Sol.  Step 1.  The Fourier series of  f (x) is given by

    f (x) =  a0

    2  +

    ∞n=1

    (an cos nx + bn sin nx) . . .  (1)

    where a0 =  1

    π   2π

    0

    f (x) dx

    an =  1

    π

       2π

    0

    f (x) cos nx dx

    bn =  1

    π   2π

    0

    f (x) sinnxdx

    N. B. Vyas   Fourier Series

    Example

    Sol Step 1 The Fourier series of f (x) is given by

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    101/215

    Sol.  Step 1.  The Fourier series of  f (x) is given by

    f (x) =  a0

    2  +

    ∞n=1

    (an cos nx + bn sin nx) . . .  (1)

    where a0 =  1

    π   2π

    0

    f (x) dx

    an =  1

    π

       2π

    0

    f (x) cos nx dx

    bn =  1

    π   2π

    0

    f (x) sinnxdx

    N. B. Vyas   Fourier Series

    Example

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    102/215

    Step 2.   Now a0 =  1π

       2π

    0

    f (x) dx

    N. B. Vyas   Fourier Series

    Example

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    103/215

    Step 2.   Now a0 =  1π

       2π

    0

    f (x) dx

    a0  =  1

    π    2π

    0

    x dx

    N. B. Vyas   Fourier Series

    Example

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    104/215

    Step 2.   Now a0 =  1π

       2π

    0

    f (x) dx

    a0  =  1

    π    2π

    0

    x dx

    =  1

    x2

    2

    0

    N. B. Vyas   Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    105/215

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    106/215

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    107/215

    Example

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    108/215

    Step 3.   an =   1π

       2π

    0

    f (x) cosnxdx

    an =  1

    π    2π

    0

    xcosnxdx

    x

    sin nx

    n

    −−

    cos nx

    n

    2π0

    N. B. Vyas   Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    109/215

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    110/215

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    111/215

    Example

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    112/215

    Step 4.   bn =  1

    π

       2π

    0

    f (x) sin nx dx

    bn =  1

    π    2π

    0

    xsinnxdx

    = −2

    n

    N. B. Vyas   Fourier Series

    Example

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    113/215

    Step 5.  Substituting values of  a0, an  and  bn  in (1), we get therequired Fourier series of  f (x) in the interval [0, 2π]

    N. B. Vyas   Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    114/215

    Example

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    115/215

    Step 5.  Substituting values of  a0, an  and  bn  in (1), we get therequired Fourier series of  f (x) in the interval [0, 2π]

    f (x) = 2π

    2  + 0 +

    n=1−2

    n  sin nx

    = π −∞n=1

    sin nx

    n

    N. B. Vyas   Fourier Series

    Example

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    116/215

    Step 5.  Substituting values of  a0, an  and  bn  in (1), we get therequired Fourier series of  f (x) in the interval [0, 2π]

    f (x) = 2π

    2  + 0 +

    n=1−2

    n  sin nx

    = π −∞n=1

    sin nx

    n

    N. B. Vyas   Fourier Series

    Example

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    117/215

    Ex. Determine the Fourier series expansion of thefunction  f (x) = xsin x  in the interval 0 ≤ x ≤ 2π.

    N. B. Vyas   Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    118/215

    Example

    Sol.  Step 1.  The Fourier series of  f (x) is given by

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    119/215

    N. B. Vyas   Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    120/215

    Example

    Sol.  Step 1.  The Fourier series of  f (x) is given by∞

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    121/215

    f (x) =   a0

    2  +

    ∞n=1

    (an cos nx + bn sin nx) . . .  (1)

    where a0 =  1

    π    2π

    0

    f (x) dx

    N. B. Vyas   Fourier Series

    Example

    Sol.  Step 1.  The Fourier series of  f (x) is given by∞

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    122/215

    f (x) =   a0

    2  +

    n=1

    (an cos nx + bn sin nx) . . .  (1)

    where a0 =  1

    π    2π

    0

    f (x) dx

    an =  1

    π

       2π

    0

    f (x) cos nx dx

    N. B. Vyas   Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    123/215

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    124/215

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    125/215

    Example

    Step 2.   Now a0 =  1  

      2π

    0

    f (x) dx

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    126/215

    π0

    a0  =  1

    π

       2π

    0

    xsinxdx

    N. B. Vyas   Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    127/215

    Example

    Step 2.   Now a0 =  1  

      2π

    0

    f (x) dx

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    128/215

    π0

    a0  =  1

    π

       2π

    0

    xsinxdx

    =  1

    π [−xcosx + sin x]2π

    0

    =  1

    π(−2 π cos 2π + sin 2π − 0 + sin 0)

    N. B. Vyas   Fourier Series

    Example

    Step 2.   Now a0 =  1

    π   2π

    0

    f (x) dx

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    129/215

    π0

    a0  =  1

    π

       2π

    0

    xsinxdx

    =  1

    π

     [−xcosx + sin x]2π0

    =  1

    π(−2 π cos 2π + sin 2π − 0 + sin 0)

    a0  = −2π

    π  = −2

    N. B. Vyas   Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    130/215

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    131/215

    Example

    Step 3.   an =  1

    π    2π

    0

    f (x) cosnxdx

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    132/215

    an =

      1

    π

       2π

    0

    xsinxcosnxdx

    =  1

    2π   2π

    0

    x (2 sinxcosnx) dx

    N. B. Vyas   Fourier Series

    Example

    Step 3.   an =  1

    π    2π

    0

    f (x) cosnxdx

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    133/215

    an =

      1

    π

      2π

    0

    xsinxcosnxdx

    =  1

    2π   2π

    0

    x (2 sinxcosnx) dx

    =  1

       2π

    0

    x (sin (n + 1)x  − sin (n − 1)x) dx

    N. B. Vyas   Fourier Series

    Example

    Step 3.   an =  1

    π    2π

    0

    f (x) cosnxdx

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    134/215

    an =

      1

    π

      2π

    0

    xsinxcosnxdx

    =  1

    2π   2π

    0

    x (2 sinxcosnx) dx

    =  1

       2π

    0

    x (sin (n + 1)x  − sin (n − 1)x) dx

    =  1

    2π   2π

    0

    xsin (n + 1)x dx −  1

    2π   2π

    0

    xsin (n − 1)x dx

    N. B. Vyas   Fourier Series

    Example

    an=

      1

    2π   2π0

    x sin(

    n+ 1)

    x dx −  1

    2π   2π0

    x sin(

    n −1)

    x dx

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    135/215

     = 2π0 (  + 1) 2π

    0 ( 1)

    N. B. Vyas   Fourier Series

    Example

    an=

      1

    2π   2π0

    x sin(

    n+ 1)

    x dx −  1

    2π   2π0

    x sin(

    n −1)

    x dx

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    136/215

     = 2π0 (  + 1) 2π

    0 ( 1)

    If  n = 1

    N. B. Vyas   Fourier Series

    Example

    an=

      1

    2π   2π0

    x sin(

    n+ 1)

    x dx −  1

    2π   2π0

    x sin(

    n −1)

    x dx

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    137/215

      2π0 (  + 1) 2π

    0 ( 1)

    If  n = 1

    ∴ a1 =  1

       2π

    0

    x sin 2x dx

    N. B. Vyas   Fourier Series

    Example

    an =  1

    2π   2π0

    x sin (n + 1)x dx −  1

    2π   2π0

    x sin (n − 1)x dx

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    138/215

    If  n = 1

    ∴ a1 =  1

       2π

    0

    x sin 2x dx

    =   12π

    −x

    cos 2x

    2

     +  sin 2x

    4

    2π0

    N. B. Vyas   Fourier Series

    Example

    an =  1

    2π   2π0

    x sin (n + 1)x dx −  1

    2π   2π0

    x sin (n − 1)x dx

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    139/215

    If  n = 1

    ∴ a1 =  1

       2π

    0

    x sin 2x dx

    =   12π

    −x

    cos 2x

    2

     +  sin 2x

    4

    2π0

    = −1

    2

    N. B. Vyas   Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    140/215

    Example

    an =  1

    2π    2π

    0

    x sin (n + 1)x dx −  1

    2π    2π

    0

    x sin (n − 1)x dx

    If  n = 1

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    141/215

    N. B. Vyas   Fourier Series

    Example

    an =  1

    2π    2π

    0

    x sin (n + 1)x dx −  1

    2π    2π

    0

    x sin (n − 1)x dx

    If  n = 1

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    142/215

    ∴ an =  1

    x

    cos (n + 1)x

    n + 1

    sin (n + 1)x

    (n + 1)2

    2π0

    N. B. Vyas   Fourier Series

    Example

    an =  1

       2π

    0

    x sin (n + 1)x dx −  1

       2π

    0

    x sin (n − 1)x dx

    If  n = 12

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    143/215

    ∴ an =  1

    x

    cos (n + 1)x

    n + 1

    sin (n + 1)x

    (n + 1)2

    2π0

     1

    x−

    cos (n − 1)x

    n − 1−−

    sin (n − 1)x

    (n − 1)22π

    0

    N. B. Vyas   Fourier Series

    Example

    an =  1

       2π

    0

    x sin (n + 1)x dx −  1

       2π

    0

    x sin (n − 1)x dx

    If  n = 12

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    144/215

    ∴ an =  1

    x

    cos (n + 1)x

    n + 1

    sin (n + 1)x

    (n + 1)2

    2π0

     1

    x−

    cos (n − 1)x

    n − 1−−

    sin (n − 1)x

    (n − 1)22π

    0

    =  1

      2π

    n + 1 + 0 +

      2π

    n − 1 − 0

    N. B. Vyas   Fourier Series

    Example

    an =  1

       2π

    0

    x sin (n + 1)x dx −  1

       2π

    0

    x sin (n − 1)x dx

    If  n = 12π

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    145/215

    ∴ an =  1

    x

    cos (n + 1)x

    n + 1

    sin (n + 1)x

    (n + 1)2

    2π0

     1

    x−

    cos (n − 1)x

    n − 1−−

    sin (n − 1)x

    (n − 1)22π

    0

    =  1

      2π

    n + 1 + 0 +

      2π

    n − 1 − 0

    =

      2

    n2 − 1

    N. B. Vyas   Fourier Series

    Example

    Step 4.   bn =

      1

    π   2π0 f (x) sin nx dx

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    146/215

    N. B. Vyas   Fourier Series

    Example

    Step 4.   bn =

      1

    π   2π0 f (x) sin nx dx

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    147/215

    =

      1

    π

       2π

    0

    xsinxsinnxdx

    N. B. Vyas   Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    148/215

    Example

    Step 4.   bn =

      1

    π   2π0 f (x) sin nx dx

    2

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    149/215

    =

      1

    π

       2π

    0

    xsinxsinnxdx

    =

      1

    2π   2π0

    x (2sinnxsinx) dx

    =  1

       2π

    0

    x (−cos (n + 1)x  + cos (n − 1)x) dx

    N. B. Vyas   Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    150/215

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    151/215

    Example

    bn =

      1

    2π   2π0 x (−cos (n + 1)x  + cos (n − 1)x) dx

    If 1

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    152/215

    If  n = 1

    ∴ b1  =  1

    2π    2π

    0

    (−x cos 2x) dx +  1

    2π    2π

    0

    x dx

    N. B. Vyas   Fourier Series

    Example

    bn =

      1

    2π   2π0 x (−cos (n + 1)x  + cos (n − 1)x) dx

    If 1

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    153/215

    If  n = 1

    ∴ b1  =  1

    2π    2π

    0

    (−x cos 2x) dx +  1

    2π    2π

    0

    x dx

    =  12π

    x

    sin 2x

    2

     cos 2x

    4  +

     x2

    2

    0

    N. B. Vyas   Fourier Series

    Example

    bn =

      1

    2π   2π0 x (−cos (n + 1)x  + cos (n − 1)x) dx

    If 1

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    154/215

    If  n = 1

    ∴ b1  =  1

    2π    2π

    0

    (−x cos 2x) dx +  1

    2π    2π

    0

    x dx

    =  12π

    x

    sin 2x

    2

     cos 2x

    4  +

     x2

    2

    0

    b1 = π

    N. B. Vyas   Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    155/215

    Example

    bn =

      1

    2π   2π0 x (−cos (n + 1)x  + cos (n − 1)x) dx

    If n = 1

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    156/215

    If  n = 1

    N. B. Vyas   Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    157/215

    Example

    bn =

      1

    2π   2π0 x (−cos (n + 1)x  + cos (n − 1)x) dx

    If n = 1

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    158/215

    If  n = 1

    ∴ bn =  1

    2π x−sin (n + 1)x

    n + 1 − cos (n + 1)x

    (n + 1)2 2π

    0

    +  1

    x

    sin (n − 1)x

    n − 1

     +

    cos (n − 1)x

    (n − 1)2

    0

    N. B. Vyas   Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    159/215

    Example

    Step 5.  Substituting values of  a0, a1, an(n > 1), b1  andb (n > 1) in (1) we get the required Fourier series of f (x) in

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    160/215

    bn(n > 1) in (1), we get the required Fourier series of  f (x) inthe interval [0, 2π]

    N. B. Vyas   Fourier Series

    Example

    Step 5.  Substituting values of  a0, a1, an(n > 1), b1  andb (n > 1) in (1) we get the required Fourier series of f (x) in

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    161/215

    bn(n > 1) in (1), we get the required Fourier series of  f (x) inthe interval [0, 2π]

    f (x) =

     −2

    2   +

    ∞n=1

    (an cos nx + bn sin nx)

    N. B. Vyas   Fourier Series

    Example

    Step 5.  Substituting values of  a0, a1, an(n > 1), b1  andb (n > 1) in (1) we get the required Fourier series of f (x) in

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    162/215

    bn(n > 1) in (1), we get the required Fourier series of  f (x) inthe interval [0, 2π]

    f (x) =

     −2

    2   +

    ∞n=1

    (an cos nx + bn sin nx)

    N. B. Vyas   Fourier Series

    Example

    Ex. Find the Fourier series for the periodic function

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    163/215

    Ex. Find the Fourier series for the periodic function

    f (x)= −π;−π < x

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    164/215

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    165/215

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    166/215

    Example

    Sol.  Step 1.  The Fourier series of  f (x) is given by

    f (x) =   a02

      +

    ∞n=1

    (an cos nx + bn sin nx) . . .  (1)

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    167/215

    where a0 =  1

    π

       π

    −π

    f (x) dx

    N. B. Vyas   Fourier Series

    Example

    Sol.  Step 1.  The Fourier series of  f (x) is given by

    f (x) =   a02

      +

    ∞n=1

    (an cos nx + bn sin nx) . . .  (1)

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    168/215

    where a0 =  1

    π

       π

    −π

    f (x) dx

    an =   1π

       π−π

    f (x) cosnxdx

    N. B. Vyas   Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    169/215

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    170/215

    Example

    Step 2.   Now a0 =  1

    π   π−π

    f (x) dx

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    171/215

    N. B. Vyas   Fourier Series

    Example

    Step 2.   Now a0 =  1

    π   π−π

    f (x) dx

    =  1 

      0

    f (x) dx +

       π

    f (x) dx

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    172/215

    =

    π

    −π

    f (x) dx +

    0

    f (x) dx

    N. B. Vyas   Fourier Series

    Example

    Step 2.   Now a0 =  1

    π   π−π

    f (x) dx

    =  1 

      0

    f (x) dx +

       π

    f (x) dx

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    173/215

    =

    π

    −π

    f (x) dx +

    0

    f (x) dx

    =

      1

    π   0

    −π(−π) dx +   π0 x dx

    N. B. Vyas   Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    174/215

    Example

    Step 2.   Now a0 =  1

    π   π−π

    f (x) dx

    =  1 

      0

    f (x) dx +

       π

    f (x) dx

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    175/215

    −π

    f (x) dx +

    0

    f (x) dx

    =

      1

    π   0

    −π(−π) dx +   π0 x dx

    = −

    π

    2

    N. B. Vyas   Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    176/215

    Example

    Step 3.   an =  1

    π   0

    −π

    f (x) cosnxdx +    π

    0

    f (x) cos nx dx

    =  1 

      0

    (−π) cosnxdx +

       π

    xcosnxdx

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    177/215

    π

    −π

    ( )

    0

    N. B. Vyas   Fourier Series

    Example

    Step 3.   an =  1

    π   0

    −π

    f (x) cosnxdx +    π

    0

    f (x) cos nx dx

    =  1 

      0

    (−π) cosnxdx +

       π

    xcosnxdx

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    178/215

    π

    −π

    ( )

    0

    =

      1

    π−π

    sin nxn

    0−π +

    N. B. Vyas   Fourier Series

    Example

    Step 3.   an =  1

    π   0

    −π

    f (x) cosnxdx +    π

    0

    f (x) cos nx dx

    =  1

    π

       0

    (−π) cosnxdx +

       π

    xcosnxdx

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    179/215

    π

    −π

    0

    =

      1

    π−π

    sin nxn

    0−π +

    xsin nx

    n− (1)

    cos nx

    n2π

    0

    N. B. Vyas   Fourier Series

    Example

    Step 3.   an =  1

    π   0

    −π

    f (x) cosnxdx +    π

    0

    f (x) cos nx dx

    =  1

    π

       0

    (−π) cosnxdx +

       π

    xcosnxdx

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    180/215

    π

    −π

    0

    =

      1

    π−π

    sin nxn

    0−π +

    xsin nx

    n− (1)

    cos nx

    n2π

    0

    =

     (−1)n − 1

    πn2

    N. B. Vyas   Fourier Series

    Example

    Step 4.   bn =  1

    π 

      0

    −π

    f (x) sinnxdx +    π

    0

    f (x) sin nx dx

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    181/215

    N. B. Vyas   Fourier Series

    Example

    Step 4.   bn =  1

    π 

      0

    −π

    f (x) sinnxdx +    π

    0

    f (x) sin nx dx=

      1

    π

       0

    (−π) sinnxdx +

       π

    0

    xsinnxdx

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    182/215

    π

    −π

    0

    N. B. Vyas   Fourier Series

    Example

    Step 4.   bn =  1

    π 

      0

    −π

    f (x) sinnxdx +    π

    0

    f (x) sin nx dx=

      1

    π

       0

    (−π) sinnxdx +

       π

    0

    xsinnxdx

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    183/215

    π

    −π

    0

    =

      1

    π−π

    −cosnxn

    0−π +

    N. B. Vyas   Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    184/215

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    185/215

    Example

    Step 5.  Substituting values of  a0, an  and  bn  in (1), we get therequired Fourier series of  f (x) in the interval (−π, π)

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    186/215

    N. B. Vyas   Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    187/215

    Example

    Step 5.  Substituting values of  a0, an  and  bn  in (1), we get therequired Fourier series of  f (x) in the interval (−π, π)

    f (x) = −π

    +∞

    (a cos nx + b sin nx)

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    188/215

    f (x) =4

      +n=1

    (an cos nx + bn sin nx)

    =  −π4

      +∞n=1

    (−1)

    n

    − 1πn2

     cos nx +

    ∞n=1

    1 − 2(−1)

    n

    n

     sin nx

    N. B. Vyas   Fourier Series

    Example

    Step 5.  Substituting values of  a0, an  and  bn  in (1), we get therequired Fourier series of  f (x) in the interval (−π, π)

    f (x) = −π

    +∞

    (an cos nx + bn sin nx)

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    189/215

    f (x) 4

      +n=1

    (an cos nx + bn sin nx)

    =  −π4

      +∞n=1

    (−1)

    n

    − 1πn2

     cos nx +

    ∞n=1

    1 − 2(−1)

    n

    n

     sin nx

    N. B. Vyas   Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    190/215

    Example

    Ex. Find the Fourier series for the periodic function

    f (x)= 2;−π < x < 0

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    191/215

    f (x)= 2; π < x

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    192/215

    =   k; 0 < x < π

    N. B. Vyas   Fourier Series

    Example

    Ex. Find the Fourier series for the periodic functionf (x)= −k;−π < x

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    193/215

    =   k; 0 < x < π

    Hence deduce that 1 − 13 + 15 − 17 + . . . =  π4

    N. B. Vyas   Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    194/215

    Example

    Sol.  Step 1.  The Fourier series of  f (x) is given by

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    195/215

    N. B. Vyas   Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    196/215

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    197/215

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    198/215

    Example

    Sol.  Step 1.  The Fourier series of  f (x) is given by

    f (x) =  a0

    2   +

    ∞n=1

    (an cos nx + bn sin nx) . . .  (1)

    where a0 =  1   2π

    f (x) dx

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    199/215

    0

    f ( )

    an =   1π

       π0

    f (x) cosnxdx

    bn =  1

    π

       2π

    0

    f (x) sinnxdx

    N. B. Vyas   Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    200/215

    Example

    Step 2.   Now a0

     =

      1

    π   2π0

    f (

    x)

    dx

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    201/215

    N. B. Vyas   Fourier Series

    Example

    Step 2.   Now a0 =  1

    π   2π0

    f (x) dx

    =  1

    π

       π

    0

    x dx +

       2π

    π

    (2π − x) dx

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    202/215

    N. B. Vyas   Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    203/215

    Example

    Step 2.   Now a0 =  1

    π   2π0

    f (x) dx

    =  1

    π

       π

    0

    x dx +

       2π

    π

    (2π − x) dx

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    204/215

    =  1

    πx2

    2π0

    +

    2πx − x2

    22π

    π

    = π

    N. B. Vyas   Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    205/215

    Example

    Step 3.   an =  1π

       π

    0

    f (x) cos nx dx +   2π

    π

    f (x) cosnxdx

    =  1

    π    π

    0

    xcosnxdx +    2π

    π

    (2π − x) cosnxdx

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    206/215

    N. B. Vyas   Fourier Series

    Example

    Step 3.   an =  1π

       π

    0

    f (x) cos nx dx +   2π

    π

    f (x) cosnxdx

    =  1

    π    π

    0

    xcosnxdx +    2π

    π

    (2π − x) cosnxdx=

      1

    π

    x

    sin nx

    n

    − (1)

    cos nx

    n2

    π0

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    207/215

    N. B. Vyas   Fourier Series

    Example

    Step 3.   an =  1π

       π

    0

    f (x) cos nx dx +   2π

    π

    f (x) cosnxdx

    =  1

    π    π

    0

    xcosnxdx +    2π

    π

    (2π − x) cosnxdx=

      1

    π

    x

    sin nx

    n

    − (1)

    cos nx

    n2

    π0

    +1

    (2 )sin nx

    ( 1)cos nx

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    208/215

    +π (2π − x) n − (−1)− n2 π

    N. B. Vyas   Fourier Series

    Example

    Step 3.   an =  1π

       π

    0

    f (x) cos nx dx +   2π

    π

    f (x) cosnxdx

    =  1

    π    π

    0

    xcosnxdx +    2π

    π

    (2π − x) cosnxdx=

      1

    π

    x

    sin nx

    n

    − (1)

    cos nx

    n2

    π0

    +1

    (2 )sin nx

    ( 1)cos nx

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    209/215

    +π (2π − x) n − (−1)− n2 π

    =  1

    π

    0 +

     cos nπ

    n2

    0 +

      1

    n2

    +1

    π 0 − cos 2nπ

    n2 − 0 − cos nπ

    n2 =

     2 [(−1)n − 1]

    πn2

    N. B. Vyas   Fourier Series

    Example

    Step 4.   bn =  1

    π    2π

    0

    f (x) sin nx dx

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    210/215

    N. B. Vyas   Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    211/215

    Example

    Step 4.   bn =  1

    π    2π

    0

    f (x) sin nx dx

    =  1π

       π

    0

    xsinnxdx +

       2π

    π

    (2π − x) sinnxdx

    =  1

    x −cos nx

    − (1) −sin nx

    π

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    212/215

    =π x n (1) n2 0

    N. B. Vyas   Fourier Series

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    213/215

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    214/215

    Example

    Ex. Find the Fourier series of f (x)= −1;−π < x < −π2

    = 0 ;−π2   < x <  π

    2

  • 8/20/2019 Dr. Nirav Vyas fourierseries1.pdf

    215/215

    2 2

    = 1 ; π

    2  < x < π

    N. B. Vyas   Fourier Series