Dr. Nirav Vyas numerical method 2.pdf

download Dr. Nirav Vyas numerical method 2.pdf

of 37

Transcript of Dr. Nirav Vyas numerical method 2.pdf

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    1/103

    Numerical Methods - Finite Differences

    Dr. N. B. Vyas

    Department of Mathematics,Atmiya Institute of Tech. and Science,

    Rajkot (Guj.)[email protected]

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    2/103

    Finite Differences

    Forward difference

    Suppose that a function  y = f (x) is tabulated for the equallyspaced arguments  x0, x0 + h, x0 + 2h,...,x0 + nh  giving thefunctional values  y0, y1, y2,...,yn.

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    3/103

    Finite Differences

    Forward difference

    Suppose that a function  y = f (x) is tabulated for the equallyspaced arguments  x0, x0 + h, x0 + 2h,...,x0 + nh  giving thefunctional values  y0, y1, y2,...,yn.

    The constant difference between two consecutive values of  x  is

    called the  interval of differences  and is denoted by  h.

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    4/103

    Finite Differences

    Forward difference

    Suppose that a function  y = f (x) is tabulated for the equallyspaced arguments  x0, x0 + h, x0 + 2h,...,x0 + nh  giving thefunctional values  y0, y1, y2,...,yn.

    The constant difference between two consecutive values of  x  is

    called the  interval of differences  and is denoted by  h.The operator ∆ defined by

    ∆y0 = y1 − y0

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    5/103

    Finite Differences

    Forward difference

    Suppose that a function  y = f (x) is tabulated for the equallyspaced arguments  x0, x0 + h, x0 + 2h,...,x0 + nh  giving thefunctional values  y0, y1, y2,...,yn.

    The constant difference between two consecutive values of  x  is

    called the  interval of differences  and is denoted by  h.The operator ∆ defined by

    ∆y0 = y1 − y0∆y1 = y2 − y1

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    6/103

    Finite Differences

    Forward difference

    Suppose that a function  y = f (x) is tabulated for the equallyspaced arguments  x0, x0 + h, x0 + 2h,...,x0 + nh  giving thefunctional values  y0, y1, y2,...,yn.

    The constant difference between two consecutive values of  x  is

    called the  interval of differences  and is denoted by  h.The operator ∆ defined by

    ∆y0 = y1 − y0∆y1 = y2 − y1.......

    .......

    ∆yn−1 = yn − yn−1

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    F D

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    7/103

    Finite Differences

    Forward difference

    Suppose that a function  y = f (x) is tabulated for the equallyspaced arguments  x0, x0 + h, x0 + 2h,...,x0 + nh  giving thefunctional values  y0, y1, y2,...,yn.

    The constant difference between two consecutive values of  x  is

    called the  interval of differences  and is denoted by  h.The operator ∆ defined by

    ∆y0 = y1 − y0∆y1 = y2 − y1.......

    .......

    ∆yn−1 = yn − yn−1

    is called  Forward difference   operator.

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    F D

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    8/103

    Finite Differences

    The  first forward difference  is ∆yn  = yn+1 − yn

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    F D

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    9/103

    Finite Differences

    The  first forward difference  is ∆yn  = yn+1 − yn

    The  second forward difference  are defined as the difference of the first differences.

    ∆2y0   = ∆(∆y0) = ∆(y1 − y0) = ∆y1 − ∆y0= y2 − y1 − (y1 − y0) = y2 − 2y1 + y0

    ∆2y1   = ∆y2 − ∆y1∆2yi   = ∆yi+1 − ∆yi

    In general nth forward difference of  f   is defined by

    ∆nyi  = ∆n−1yi+1 − ∆

    n−1yi

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    F D

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    10/103

    Finite Differences

    Forward Difference Table:

    x y   ∆y   ∆2y   ∆3y   ∆4y   ∆5y

    x0   y0∆y0

    x1   y1   ∆2y0

    ∆y1   ∆3

    y0x2   y2   ∆2y1   ∆

    4y0∆y2   ∆

    3y1   ∆5y0

    x3   y3   ∆2y2   ∆

    4y1∆y3   ∆

    3y2

    x4   y4   ∆2y3∆y4

    x5   y5

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    11/103

    Finite Differences

    The operator ∆ satisfies the following properties:

    1   ∆[f (x) ± g(x)] = ∆f (x) ± ∆g(x)

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    12/103

    Finite Differences

    The operator ∆ satisfies the following properties:

    1   ∆[f (x) ± g(x)] = ∆f (x) ± ∆g(x)

    2   ∆[cf (x)] = c∆f (x)

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    13/103

    Finite Differences

    The operator ∆ satisfies the following properties:

    1   ∆[f (x) ± g(x)] = ∆f (x) ± ∆g(x)

    2   ∆[cf (x)] = c∆f (x)

    3   ∆m∆nf (x) = ∆m+nf (x),  m, n  are positive integers

    4   Since ∆nyn  is a constant, ∆n+1yn  = 0 , ∆

    n+2yn  = 0,   . . .i.e. (n + 1)th and higher differences are zero.

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    14/103

    Finite Differences

    Backward differenceSuppose that a function  y = f (x) is tabulated for the equallyspaced arguments  x0, x0 + h, x0 + 2h,...,x0 + nh  giving thefunctional values  y0, y1, y2,...,yn.

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    15/103

    Finite Differences

    Backward differenceSuppose that a function  y = f (x) is tabulated for the equallyspaced arguments  x0, x0 + h, x0 + 2h,...,x0 + nh  giving thefunctional values  y0, y1, y2,...,yn.

    The operator  ∇ defined by

    ∇y1 = y1 − y0

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    16/103

    Finite Differences

    Backward differenceSuppose that a function  y = f (x) is tabulated for the equallyspaced arguments  x0, x0 + h, x0 + 2h,...,x0 + nh  giving thefunctional values  y0, y1, y2,...,yn.

    The operator  ∇ defined by

    ∇y1 = y1 − y0∇y2 = y2 − y1

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    17/103

    Finite Differences

    Backward differenceSuppose that a function  y = f (x) is tabulated for the equallyspaced arguments  x0, x0 + h, x0 + 2h,...,x0 + nh  giving thefunctional values  y0, y1, y2,...,yn.

    The operator  ∇ defined by

    ∇y1 = y1 − y0∇y2 = y2 − y1.......

    .......

    ∇yn  = yn − yn−1

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    18/103

    Finite Differences

    Backward differenceSuppose that a function  y = f (x) is tabulated for the equallyspaced arguments  x0, x0 + h, x0 + 2h,...,x0 + nh  giving thefunctional values  y0, y1, y2,...,yn.

    The operator  ∇ defined by

    ∇y1 = y1 − y0∇y2 = y2 − y1.......

    .......

    ∇yn  = yn − yn−1

    is called   Backward difference   operator.

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    19/103

    Finite Differences

    The  first backward difference  is  ∇yn  = yn − yn−1

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    20/103

    Finite Differences

    The  first backward difference  is  ∇yn  = yn − yn−1The  second backward difference  are obtain by the differenceof the first differences.

    ∇2y2   = ∇(∇y2) = ∇(y2 − y1) = ∇y2 −∇y1= y2 − y1 − (y1 − y0) = y2 − 2y1 + y0

    ∇2y3   = ∇y3 −∇y2∇2yn   = ∇yn −∇yn−1

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    21/103

    Finite Differences

    The  first backward difference  is  ∇yn  = yn − yn−1The  second backward difference  are obtain by the differenceof the first differences.

    ∇2y2   = ∇(∇y2) = ∇(y2 − y1) = ∇y2 −∇y1= y2 − y1 − (y1 − y0) = y2 − 2y1 + y0

    ∇2y3   = ∇y3 −∇y2∇2yn   = ∇yn −∇yn−1

    In general nth backward difference of  f   is defined by

    ∇nyi  = ∇n−1yi −∇

    n−1yi−1

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    22/103

    Backward Difference Table:

    x y   ∇y   ∇2y   ∇3y   ∇4y   ∇5yx0   y0

    ∇y1x1   y1   ∇

    2y2∇y

    2  ∇3y

    3x2   y2   ∇2y3   ∇

    4y4∇y3   ∇

    3y4   ∇5y5

    x3   y3   ∇2y4   ∇

    4y5∇y4   ∇

    3y5

    x4   y4   ∇2

    y5∇y5

    x5   y5

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    23/103

    Central difference

    The operator  δ  defined by

    δy 12 = y1 − y0

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    24/103

    Central difference

    The operator  δ  defined by

    δy 12 = y1 − y0δy 3

    2

    = y2 − y1

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    25/103

    Central difference

    The operator  δ  defined by

    δy 12 = y1 − y0δy 3

    2

    = y2 − y1

    .......

    .......

    δyn−

    1

    2

    = yn − yn−1

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    26/103

    Central difference

    The operator  δ  defined by

    δy 12 = y1 − y0δy 3

    2

    = y2 − y1

    .......

    .......

    δyn−

    1

    2

    = yn − yn−1

    is called   Central difference   operator.Similarly, higher order central differences are defined as

    δ 2y1 = δy 32

    − δy 12

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    27/103

    Central difference

    The operator  δ  defined by

    δy 12 = y1 − y0δy 3

    2

    = y2 − y1

    .......

    .......

    δyn−

    1

    2

    = yn − yn−1

    is called   Central difference   operator.Similarly, higher order central differences are defined as

    δ 2y1 = δy 32

    − δy 12

    δ 2y2 = δy 52

    − δy 32

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    28/103

    Central difference

    The operator  δ  defined by

    δy 12 = y1 − y0δy 3

    2

    = y2 − y1

    .......

    .......

    δyn−

    1

    2

    = yn − yn−1

    is called   Central difference   operator.Similarly, higher order central differences are defined as

    δ 2y1 = δy 32

    − δy 12

    δ 2y2 = δy 52

    − δy 32

    .......

    δ 3y 32

    = δ 2y2 − δ 2y1

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    29/103

    Central difference

    The operator  δ  defined by

    δy 12 = y1 − y0δy 3

    2

    = y2 − y1

    .......

    .......

    δyn−

    1

    2

    = yn − yn−1

    is called   Central difference   operator.Similarly, higher order central differences are defined as

    δ 2y1 = δy 32

    − δy 12

    δ 2y2 = δy 52

    − δy 32

    .......

    δ 3y 32

    = δ 2y2 − δ 2y1

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    30/103

    Central Difference Table:

    x y   δy δ 2

    y δ 3

    y   δ 4

    y δ 5

    yx0   y0

    δy 12

    x1   y1   δ 2y1

    δy 32

    δ 3y 32

    x2   y2   δ 2y2   δ 4y2δy 5

    2

    δ 3y 52

    δ 5y 52

    x3   y3   δ 2y3   δ 

    4y3δy 7

    2

    δ 3y 72

    x4   y4   δ 2y4δy 9

    2

    x5   y5

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    31/103

    NOTE:From all three difference tables, we can see that only thenotations changes not the differences.

    y1 − y0 = ∆y0 = ∇y1 = δy 12

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    32/103

    NOTE:From all three difference tables, we can see that only thenotations changes not the differences.

    y1 − y0 = ∆y0 = ∇y1 = δy 12

    Alternative notations for the function  y = f (x).

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    33/103

    NOTE:From all three difference tables, we can see that only thenotations changes not the differences.

    y1 − y0 = ∆y0 = ∇y1 = δy 12

    Alternative notations for the function  y = f (x).For two consecutive values of  x  differing by  h.

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    34/103

    NOTE:From all three difference tables, we can see that only thenotations changes not the differences.

    y1 − y0 = ∆y0 = ∇y1 = δy 12

    Alternative notations for the function  y = f (x).For two consecutive values of  x  differing by  h.

    ∆yx  = yx+h − yx  = f (x + h) − f (x)

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    35/103

    NOTE:From all three difference tables, we can see that only thenotations changes not the differences.

    y1 − y0 = ∆y0 = ∇y1 = δy 12

    Alternative notations for the function  y = f (x).For two consecutive values of  x  differing by  h.

    ∆yx  = yx+h − yx  = f (x + h) − f (x)

    ∇yx  = yx − yx−h  = f (x) − f (x − h)

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    36/103

    NOTE:From all three difference tables, we can see that only thenotations changes not the differences.

    y1 − y0 = ∆y0 = ∇y1 = δy 12

    Alternative notations for the function  y = f (x).For two consecutive values of  x  differing by  h.

    ∆yx  = yx+h − yx  = f (x + h) − f (x)

    ∇yx  = yx − yx−h  = f (x) − f (x − h)

    δyx = yx+h2− yx−h

    2= f (x +   h2 ) − f (xh2 )

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    37/103

    Evaluate the following. The interval of difference being  h.

    1   ∆nex

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    38/103

    Evaluate the following. The interval of difference being  h.

    1   ∆nex

    2   ∆logf (x)

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    39/103

    Evaluate the following. The interval of difference being  h.

    1   ∆nex

    2   ∆logf 

    (x

    )3   ∆(tan−1x)

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    40/103

    Evaluate the following. The interval of difference being  h.

    1   ∆nex

    2   ∆logf 

    (x

    )3   ∆(tan−1x)

    4   ∆2cos2x

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    41/103

    Other Difference Operator

    1. Shift Operator   E :

    E  does the operation of increasing the argument  x  by h  so thatEf (x) = f (x + h);

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    42/103

    Other Difference Operator

    1. Shift Operator   E :

    E  does the operation of increasing the argument  x  by h  so thatEf (x) = f (x + h);

    E 2f (x) = E (Ef (x)) = Ef (x + h) = f (x + 2h);

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    43/103

    Other Difference Operator

    1. Shift Operator   E :

    E  does the operation of increasing the argument  x  by h  so thatEf (x) = f (x + h);

    E 2f (x) = E (Ef (x)) = Ef (x + h) = f (x + 2h);

    E 3f (x) = f (x + 3h);

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    44/103

    Other Difference Operator

    1. Shift Operator   E :

    E  does the operation of increasing the argument  x  by h  so thatEf (x) = f (x + h);

    E 2f (x) = E (Ef (x)) = Ef (x + h) = f (x + 2h);

    E 3f (x) = f (x + 3h);

    E n

    f (x) = f (x + nh);

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

    O h Diff O

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    45/103

    Other Difference Operator

    1. Shift Operator   E :

    E  does the operation of increasing the argument  x  by h  so thatEf (x) = f (x + h);

    E 2f (x) = E (Ef (x)) = Ef (x + h) = f (x + 2h);

    E 3f (x) = f (x + 3h);

    E n

    f (x) = f (x + nh);The inverse operator  E −1 is defined as

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

    Oth Diff O t

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    46/103

    Other Difference Operator

    1. Shift Operator   E :

    E  does the operation of increasing the argument  x  by h  so thatEf (x) = f (x + h);

    E 2f (x) = E (Ef (x)) = Ef (x + h) = f (x + 2h);

    E 3f (x) = f (x + 3h);

    E n

    f (x) = f (x + nh);The inverse operator  E −1 is defined as

    E −1f (x) = f (x − h);

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

    Oth Diff O t

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    47/103

    Other Difference Operator

    1. Shift Operator   E :

    E  does the operation of increasing the argument  x  by h  so thatEf (x) = f (x + h);

    E 2f (x) = E (Ef (x)) = Ef (x + h) = f (x + 2h);

    E 3f (x) = f (x + 3h);

    E n

    f (x) = f (x + nh);The inverse operator  E −1 is defined as

    E −1f (x) = f (x − h);

    E −nf (x) = f (x − nh);

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

    Oth Diff O t

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    48/103

    Other Difference Operator

    1. Shift Operator   E :

    E  does the operation of increasing the argument  x  by h  so thatEf (x) = f (x + h);

    E 2f (x) = E (Ef (x)) = Ef (x + h) = f (x + 2h);

    E 3f (x) = f (x + 3h);

    E n

    f (x) = f (x + nh);The inverse operator  E −1 is defined as

    E −1f (x) = f (x − h);

    E −nf (x) = f (x − nh);

    If  yx   is the function  f (x), then

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

    Other Difference Operator

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    49/103

    Other Difference Operator

    1. Shift Operator   E :

    E  does the operation of increasing the argument  x  by h  so thatEf (x) = f (x + h);

    E 2f (x) = E (Ef (x)) = Ef (x + h) = f (x + 2h);

    E 3f (x) = f (x + 3h);

    E n

    f (x) = f (x + nh);The inverse operator  E −1 is defined as

    E −1f (x) = f (x − h);

    E −nf (x) = f (x − nh);

    If  yx   is the function  f (x), thenEyx  = yx+h;

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

    Other Difference Operator

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    50/103

    Other Difference Operator

    1. Shift Operator   E :

    E  does the operation of increasing the argument  x  by h  so thatEf (x) = f (x + h);

    E 2f (x) = E (Ef (x)) = Ef (x + h) = f (x + 2h);

    E 3f (x) = f (x + 3h);

    E n

    f (x) = f (x + nh);The inverse operator  E −1 is defined as

    E −1f (x) = f (x − h);

    E −nf (x) = f (x − nh);

    If  yx   is the function  f (x), thenEyx  = yx+h;

    E −1yx  = yx−h;

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

    Other Difference Operator

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    51/103

    Other Difference Operator

    1. Shift Operator   E :

    E  does the operation of increasing the argument  x  by h  so thatEf (x) = f (x + h);

    E 2f (x) = E (Ef (x)) = Ef (x + h) = f (x + 2h);

    E 3f (x) = f (x + 3h);

    E n

    f (x) = f (x + nh);The inverse operator  E −1 is defined as

    E −1f (x) = f (x − h);

    E −nf (x) = f (x − nh);

    If  yx   is the function  f (x), thenEyx  = yx+h;

    E −1yx  = yx−h;

    E nyx  = yx+nh;

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

    Other Difference Operator

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    52/103

    Other Difference Operator

    1. Shift Operator   E :

    E  does the operation of increasing the argument  x  by h  so thatEf (x) = f (x + h);

    E 2f (x) = E (Ef (x)) = Ef (x + h) = f (x + 2h);

    E 3f (x) = f (x + 3h);

    E n

    f (x) = f (x + nh);The inverse operator  E −1 is defined as

    E −1f (x) = f (x − h);

    E −nf (x) = f (x − nh);

    If  yx   is the function  f (x), thenEyx  = yx+h;

    E −1yx  = yx−h;

    E nyx  = yx+nh;

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    53/103

    2. Averaging Operator   µ:

    It is defined as

    µf (x) = 1

    2

    x +

     h

    2

     + f 

    x −

     h

    2

    ;

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    54/103

    2. Averaging Operator   µ:

    It is defined as

    µf (x) = 1

    2

    x +

     h

    2

     + f 

    x −

     h

    2

    ;

    i.e.   µyx =

     1

    2

    yx+h2 + yx−h2

    ;

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    55/103

    2. Averaging Operator   µ:

    It is defined as

    µf (x) = 1

    2

    x +

     h

    2

     + f 

    x −

     h

    2

    ;

    i.e.   µyx =

     1

    2

    yx+h2 + yx−h2

    ;

    3. Differential Operator   D:

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    56/103

    2. Averaging Operator   µ:

    It is defined as

    µf (x) = 1

    2

    x +

     h

    2

     + f 

    x −

     h

    2

    ;

    i.e.   µyx =

     1

    2

    yx+h2 + yx−h2

    ;

    3. Differential Operator   D:

    It is defined as

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    57/103

    2. Averaging Operator   µ:

    It is defined as

    µf (x) = 1

    2

    x +

     h

    2

     + f 

    x −

     h

    2

    ;

    i.e.   µyx =

     1

    2

    yx+h2 + yx−h2

    ;

    3. Differential Operator   D:

    It is defined as

    Df (

    x) =

      d

    dxf 

    (x

    ) = f 

    (x

    );

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    58/103

    Relation between the operators

    1   ∆ = E − 1

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    59/103

    Relation between the operators

    1   ∆ = E − 1

    2   ∇ = 1 − E −1

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    60/103

    Relation between the operators

    1   ∆ = E − 1

    2   ∇ = 1 − E −1

    3   δ  = E 1

    2  − E −1

    2

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    61/103

    Relation between the operators

    1   ∆ = E − 1

    2   ∇ = 1 − E −1

    3   δ  = E 1

    2  − E −1

    2

    4   µ =

     1

    2{E 

    1

    2

     + E −

    1

    2

    }

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    62/103

    Relation between the operators

    1   ∆ = E − 1

    2   ∇ = 1 − E −1

    3   δ  = E 1

    2  − E −1

    2

    4   µ =

     1

    2{E 

    1

    2

     + E −

    1

    2

    }

    5   ∆ = E ∇ = ∇E  = δE 1

    2

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    63/103

    Relation between the operators

    1   ∆ = E − 1

    2   ∇ = 1 − E −1

    3   δ  = E 1

    2  − E −1

    2

    4   µ =

     1

    2{E 

    1

    2

     + E −

    1

    2

    }

    5   ∆ = E ∇ = ∇E  = δE 1

    2

    6   E  = ehD

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    64/103

    Relation between the operators

    1   ∆ = E − 1

    2   ∇ = 1 − E −1

    3   δ  = E 1

    2  − E −1

    2

    4   µ =

     1

    2{E 

    1

    2

     + E −

    1

    2

    }

    5   ∆ = E ∇ = ∇E  = δE 1

    2

    6   E  = ehD

    7  (1 + ∆)(1 −∇) = 1

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    65/103

    Relation between the operators

    1   ∆ = E − 1

    2   ∇ = 1 − E −1

    3   δ  = E 1

    2  − E −1

    2

    4   µ =

     1

    2{E 

    1

    2

     + E −

    1

    2

    }

    5   ∆ = E ∇ = ∇E  = δE 1

    2

    6   E  = ehD

    7  (1 + ∆)(1 −∇) = 1

    8   ∆ −∇ = ∆∇ = δ 2

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    66/103

    9   1 + µ2

    δ 

    2

    =

    1 +

     1

    2 δ 2

    2

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    67/103

    9   1 + µ

    2

    δ 

    2

    =

    1 +

     1

    2 δ 

    22

    10   µ2 = 1 + 1

    4δ 2

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    68/103

    9   1 + µ

    2

    δ 

    2

    =

    1 +

     1

    2 δ 

    22

    10   µ2 = 1 + 1

    4δ 2

    11   E 1

    2   = µ + 1

    2δ 

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    69/103

    9   1 + µ2δ 2

    =

    1 +

     1

    2δ 2

    2

    10   µ2 = 1 + 1

    4δ 2

    11   E 1

    2   = µ + 1

    2δ 

    12   E −1

    2   = µ − 1

    2δ 

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    70/103

    9   1 + µ2δ 2

    =

    1 +

     1

    2δ 2

    2

    10   µ2 = 1 + 1

    4δ 2

    11   E 1

    2   = µ + 1

    2δ 

    12   E −1

    2   = µ − 12

    δ 

    13   ∆ = 1

    2δ 2 + δ 

     1 +

     δ 2

    4

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    71/103

    9   1 + µ2δ 2 = 1 + 12

    δ 22

    10   µ2 = 1 + 1

    4δ 2

    11   E 1

    2   = µ + 1

    2δ 

    12   E −1

    2   = µ − 12

    δ 

    13   ∆ = 1

    2δ 2 + δ 

     1 +

     δ 2

    4

    14   µδ  = 12

    ∆E −1 + 12

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Finite Differences

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    72/103

    9   1 + µ2δ 2 = 1 + 12

    δ 22

    10   µ2 = 1 + 1

    4δ 2

    11   E 1

    2   = µ + 1

    2δ 

    12   E −1

    2   = µ − 12

    δ 

    13   ∆ = 1

    2δ 2 + δ 

     1 +

     δ 2

    4

    14   µδ  = 12

    ∆E −1 + 12

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Gregory - Newton Forward Interpolation Formula

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    73/103

    To estimate the value of a function near the   beginning  a table,the forward difference interpolation formula in used.

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Gregory - Newton Forward Interpolation Formula

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    74/103

    To estimate the value of a function near the   beginning  a table,the forward difference interpolation formula in used.

    Let  yx  = f (x) be a function which takes the valuesyx0, yx0+h, yx0+2h, . . .  corresponding to the valuesx0, x0 + h, x0 + 2h , . . . of  x.

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Gregory - Newton Forward Interpolation Formula

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    75/103

    To estimate the value of a function near the   beginning  a table,the forward difference interpolation formula in used.

    Let  yx  = f (x) be a function which takes the valuesyx0, yx0+h, yx0+2h, . . .  corresponding to the valuesx0, x0 + h, x0 + 2h , . . . of  x.

    Suppose we want to evaluate  yx  when  x =  x0 + ph, where  p  isany real number.

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Gregory - Newton Forward Interpolation Formula

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    76/103

    To estimate the value of a function near the   beginning  a table,the forward difference interpolation formula in used.

    Let  yx  = f (x) be a function which takes the valuesyx0, yx0+h, yx0+2h, . . .  corresponding to the valuesx0, x0 + h, x0 + 2h , . . . of  x.

    Suppose we want to evaluate  yx  when  x =  x0 + ph, where  p  isany real number.

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Gregory - Newton Forward Interpolation Formula

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    77/103

    Let it be  y p. For any real number  n, we have defined operator  E such that  E nf (x) = f (x + nh).

    ∴ yx   = yx0+ ph  = f  (x0 + ph) = E  pyx0  = (1 + ∆)

     py0

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Gregory - Newton Forward Interpolation Formula

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    78/103

    Let it be  y p. For any real number  n, we have defined operator  E such that  E nf (x) = f (x + nh).

    ∴ yx   = yx0+ ph  = f  (x0 + ph) = E  pyx0  = (1 + ∆)

     py0

    =

    1 + p∆ +  p( p − 1)2!   ∆2 +  p( p − 1)( p − 2)3!   ∆

    3 + ...

    y0

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Gregory - Newton Forward Interpolation Formula

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    79/103

    Let it be  y p. For any real number  n, we have defined operator  E such that  E nf (x) = f (x + nh).

    ∴ yx   = yx0+ ph  = f  (x0 + ph) = E  pyx0  = (1 + ∆)

     py0

    =

    1 + p∆ +  p( p − 1)2!   ∆2 +  p( p − 1)( p − 2)3!   ∆

    3 + ...

    y0

    yx = y0 + p∆y0 + p( p − 1)

    2!  ∆2y0 +

     p( p − 1)( p − 2)

    3!  ∆3y0 + ...

    is called  Newton’s forward interpolation   formula.

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    80/103

    Ex.  For the data construct the forward difference formula. Hence,find  f (0.5).

    x -2 -1 0 1 2 3f(x) 15 5 1 3 11 25

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    81/103

    Ex.  The population of the town in decennial census was as givenbelow estimate the population for the year 1895.

    Year: 1891 1901 1911 1921 1931Population(in thousand): 46 66 81 93 101

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    82/103

    Ex.  Estimate the value of production for the year 1984 usingNewton’s forward method for the following data:

    Year: 1976 1978 1980 1982Production: 20 27 38 50

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Gregory - Newton Backward Interpolation Formula

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    83/103

    To estimate the value of a function near the  end  of a table, thebackward difference interpolation formula in used.

    Dr. N. B. Vyas Numerical Methods - Finite Differences

    Gregory - Newton Backward Interpolation Formula

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    84/103

    To estimate the value of a function near the  end  of a table, thebackward difference interpolation formula in used.

    Let  yx  = f (x) be a function which takes the valuesyx0, yx0+h, yx0+2h, . . .  corresponding to the values

    x0, x0 + h, x0 + 2h , . . . of  x.

    Dr. N. B. Vyas Numerical Methods - Finite Differences

    Gregory - Newton Backward Interpolation Formula

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    85/103

    To estimate the value of a function near the  end  of a table, thebackward difference interpolation formula in used.

    Let  yx  = f (x) be a function which takes the valuesyx0, yx0+h, yx0+2h, . . .  corresponding to the values

    x0, x0 + h, x0 + 2h , . . . of  x.

    Suppose we want to evaluate  yx  when  x =  xn + ph, where  p  isany real number.

    Dr. N. B. Vyas Numerical Methods - Finite Differences

    Gregory - Newton Backward Interpolation Formula

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    86/103

    Let it be  y p. For any real number  n, we have defined operator  E such that  E nf (x) = f (x + nh).

    ∴ yx   = yxn+ ph  = f  (xn + ph) = E  pyxn  = (1 −∇)

    − pyn

    Dr. N. B. Vyas Numerical Methods - Finite Differences

    Gregory - Newton Backward Interpolation Formula

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    87/103

    Let it be  y p. For any real number  n, we have defined operator  E such that  E nf (x) = f (x + nh).

    ∴ yx   = yxn+ ph  = f  (xn + ph) = E  pyxn  = (1 −∇)

    − pyn

    =

    1 + p∇ +

     p( p + 1)

    2!   ∇2

    +

     p( p + 1)( p + 2)

    3!   ∇3

    + ...

    yn

    Dr. N. B. Vyas Numerical Methods - Finite Differences

    Gregory - Newton Backward Interpolation Formula

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    88/103

    Let it be  y p. For any real number  n, we have defined operator  E such that  E nf (x) = f (x + nh).

    ∴ yx   = yxn+ ph  = f  (xn + ph) = E  pyxn  = (1 −∇)

    − pyn

    =

    1 + p∇ +

     p( p + 1)

    2!   ∇2

    +

     p( p + 1)( p + 2)

    3!   ∇3

    + ...

    yn

    yx  = yn + p∇yn + p( p + 1)

    2!  ∇2yn +

     p( p + 1)( p + 2)

    3!  ∇3yn + ...

    is called  Newton’s backward interpolation   formula

    Dr. N. B. Vyas Numerical Methods - Finite Differences

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    89/103

    Ex.  Using Newtons backward difference interpolation, interpolate atx = 1 from the following data.

    x 0.1 0.2 0.3 0.4 0.5 0.6f(x) 1.699 1.073 0.375 0.443 1.429 2.631

    Dr N B Vyas Numerical Methods - Finite Differences

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    90/103

    Ex.  The table gives the distance in nautical miles of the visiblehorizon for the given heights in feet above the earth’s surface.Find the value of y when x=390 ft.

    Height(x): 100 150 200 250 300 350 400Distance(y): 10.63 13.03 15.04 16.81 18.42 19.90 21.47

    Dr N B Vyas Numerical Methods - Finite Differences

    Stirling’s Interpolation Formula

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    91/103

    To estimate the value of a function near the middle a table, thecentral difference interpolation formula in used.

    Let  yx  = f (x) be a functional relation between  x  and  y.

    If  x  takes the values  x0 − 2h, x0 − h, x0, x0 + h, x0 + 2h , . . .  andthe corresponding values of  y  are  y−2, y−1, y0, y1, y2 . . .  then wecan form a central difference table as follows:

    Dr N B Vyas Numerical Methods - Finite Differences

    Stirling’s Interpolation Formula

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    92/103

    x y   1st

    difference2nd

    difference3rd

    difference

    x0 − 2h y−2∆y−2(= δy−3/2)

    x0 − h y−1   ∆2y−2(= δ 

    2y−1)

    ∆y−1(= δy−1/2) ∆3y−2(= δ 3y−1/2)x0   y0   ∆

    2y−1(= δ 2y0)

    ∆y0(= δy1/2) ∆3y−1(= δ 

    3y1/2)

    x0 + h y1   ∆2y0(= δ 

    2y1)∆y1(= δy3/2)

    x0 + 2h y2

    Dr N B Vyas  Numerical Methods - Finite Differences

    Stirling’s Interpolation Formula

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    93/103

    The Stirling’s formula in forward difference notation is

    Dr N B Vyas  Numerical Methods - Finite Differences

    Stirling’s Interpolation Formula

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    94/103

    The Stirling’s formula in forward difference notation is

    y p  = y0 + p

    ∆y0 + ∆y−1

    2

     +

     p2

    2!∆2y−1

    Dr N B Vyas  Numerical Methods - Finite Differences

    Stirling’s Interpolation Formula

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    95/103

    The Stirling’s formula in forward difference notation is

    y p  = y0 + p

    ∆y0 + ∆y−1

    2

     +

     p2

    2!∆2y−1

    + p( p2 − 12)

    3!

    ∆3y−1 + ∆3y−2

    2

     +  p

    2( p2 − 12)4!

      ∆4y−2 + . . .

    Dr N B Vyas  Numerical Methods - Finite Differences

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    96/103

    Ex.

    Using Stirling’s formula find  y35

    x: 10 20 30 40 50y: 600 512 439 346 243

    Dr N B Vyas  Numerical Methods - Finite Differences

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    97/103

    Ex.  The function y is given in the table below:

    Find y for x=0.0341

    x: 0.01 0.02 0.03 0.04 0.05y: 98.4342 48.4392 31.7775 23.4492 18.4542

    Dr N B Vyas  Numerical Methods - Finite Differences

    Central Difference

    Gauss’s Forward interpolation formula:

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    98/103

    Dr N B Vyas  Numerical Methods - Finite Differences

    Central Difference

    Gauss’s Forward interpolation formula:

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    99/103

    P n(x) = y0 + p∆y0 + p( p − 1)

    2!  ∆2y−1 + (

     p + 1) p( p − 1)3!

      ∆3y−1+

    ( p + 1) p( p − 1)( p − 2)

    4!  ∆4y−2 + ...

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Central Difference

    Gauss’s Forward interpolation formula:

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    100/103

    P n(x) = y0 + p∆y0 + p( p − 1)

    2!  ∆2y−1 + (

     p + 1) p( p − 1)3!

      ∆3y−1+

    ( p + 1) p( p − 1)( p − 2)

    4!  ∆4y−2 + ...

    Gauss’s Backward interpolation formula:

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Central Difference

    Gauss’s Forward interpolation formula:

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    101/103

    P n(x) = y0 + p∆y0 +  p( p − 1)2!

      ∆2y−1 + ( p + 1) p( p − 1)3!

      ∆3y−1+

    ( p + 1) p( p − 1)( p − 2)

    4!  ∆4y−2 + ...

    Gauss’s Backward interpolation formula:

    P n(x) = y0 + p∆y−1 + p( p + 1)

    2!  ∆2y−1 +

     ( p + 1) p( p − 1)

    3!  ∆3y−2+

    ( p + 2)( p + 1) p( p − 1)

    4!  ∆4y−2 + ...

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    102/103

    Ex.  Estimate the value of y(2.5) using Gauss’s forward formula giventhat:

    x: 1 2 3 4

    y: 1 4 9 16

    Dr. N. B. Vyas   Numerical Methods - Finite Differences

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 2.pdf

    103/103

    Ex.  Interpolate by means of Gauss’s backward formula thepopulation for the year 1936 given the following table:

    Year : 1901 1911 1921 1931 1941 1951

    Population(in 1000s): 12 15 20 27 39 52

    Dr. N. B. Vyas   Numerical Methods - Finite Differences