dm_ch06

download dm_ch06

of 71

Transcript of dm_ch06

  • 8/7/2019 dm_ch06

    1/71

    Monolithic RFIC Design

    T.H.Huang

    Reference books:

    1. Thomas H. Lee, The Design of CMOS Radio-Frequency

    Integrated Circuits, 2nd ed., Cambridge university press, 2004;

    2. B. Razavi, RF Microelectronics, Prentice Hall PTR, 1998.

    3. Frank Ellinger, Radio Frequency Integrated Circuits and Technology,

    Springer-Verlag, 2006.

    Part II. RF Circuit Design

  • 8/7/2019 dm_ch06

    2/71

    Chapter 06

    Low-Noise Amplifier Design

    1. Introduction : different system applications

    2. General Considerations : Noise, Noise match

    Impedance (Power) match

    3. Performance Evaluation Parameters : Gain,

    Linearity,

    Noise Figure,

    Stability Factor

    4. Introduction to LNA Topologies

  • 8/7/2019 dm_ch06

    3/71

    RF Applications:

    1. Cellular : (1G) : AMPS

    (2G) : GSM, PCS, IS-54/IS-136 (NADC), IS-95(CDMA)

    (2.5G) : GPRS / EDGE (2.5G)

    (3G) : W-CDMA

    (4G): http://zh.wikipedia.org/wiki/4G

    2. Non-Cellular : WLAN, Bluetooth, WPAN, UWB, WBN

    GPRS : General Packet Radio Service

    EDGE : Enhanced Data Rates for GSM Evolution

    http://zh.wikipedia.org/wiki/4Ghttp://zh.wikipedia.org/wiki/4G
  • 8/7/2019 dm_ch06

    4/71

    Some Characteristics of AMPS: (Analog-type)

    Parameter Value

    Advanced Mobile Phone Service (AMPS)

    Mobile-to-Base Frequency

    Base-to-Mobile Frequency

    Channel Spacing

    Multiple access method

    Duplex MethodUsers per channel

    Modulation Methodology

    824-849 MHz

    869-894 MHz

    30 kHz

    FDMA

    FDD1

    FM

    FDD:using different

    frequencies for

    transmitting &

    receiving.

  • 8/7/2019 dm_ch06

    5/71

    Some Characteristics of GSM-900: (Digital-type)

    Parameter Value

    Global System for Mobile Communications (GSM-900)

    Mobile-to-Base Frequency

    Base-to-Mobile Frequency

    Channel Spacing

    Multiple access method

    Duplex MethodUsers per channel

    Modulation Methodology

    Channel bit rate

    880-915 MHz

    925-960 MHz

    200 kHz

    TDMA/FDM

    FDD8

    GMSK; BT=0.3

    270.833 kb/s

    B:

    filters bandwidth.

    T:

    bit period (time).

  • 8/7/2019 dm_ch06

    6/71

    Some Characteristics of GSM-1800:

    Parameter Value

    Global System for Mobile Communications (GSM-1800)

    Mobile-to-Base Frequency

    Base-to-Mobile Frequency

    Channel Spacing

    Multiple access method

    Duplex MethodUsers per channel

    Modulation Methodology

    Channel bit rate

    1710-1785 MHz

    1805-1880 MHz

    200 kHz

    TDMA/FDM

    FDD8

    GMSK; BT=0.3

    270.833 kb/s

    Only freq.

    as comparedwith GSM-900.

  • 8/7/2019 dm_ch06

    7/71

    Some Characteristics of PCS-1900: (in USA)

    Parameter Value

    Personal Communication System (PCS-1900)

    Mobile-to-base Frequency

    Base-to-Mobile Frequency

    Channel Spacing

    Multiple access method

    Duplex MethodUsers per channel

    Modulation Methodology

    Channel bit rate

    1850-1910 MHz

    1930-1990 MHz

    200 kHz

    TDMA/FDM

    FDD8

    GMSK; BT=0.3

    270.833 kb/s

  • 8/7/2019 dm_ch06

    8/71

    Some Characteristics of IS-54/-136:

    Parameter Value

    North American Digital Cellular (NADC; IS-54/-136)

    Mobile-to-base Frequency

    Base-to-Mobile Frequency

    Channel Spacing / Numbers

    Multiple access method

    Duplex MethodUsers per channel

    Modulation Methodology

    Channel bit rate

    824-849 / 1850-1910 MHz

    869-894 / 1930-1990 MHz

    30 kHz / 832 / 1999

    TDMA/FDM

    FDD3

    /4-DQPSK

    48.6 kb/s

  • 8/7/2019 dm_ch06

    9/71

    Some Characteristics of IS-95 CDMA: (by Qualcomm. Corp.)

    Parameter Value

    Code Division Multiple Access (CDMA)

    Mobile-to-base Frequency

    Base-to-Mobile Frequency

    Channel Spacing / Number

    Multiple access method

    Duplex Method

    Users per channel

    Modulation Methodology

    Channel bit rate (chip rate)

    *(see below)

    *(see below)

    1250 kHz / 20 / 48 / 48

    CDMA / FDM

    FDD

    15 - ?

    QPSK / OQPSK

    1.2288 Mb/s

  • 8/7/2019 dm_ch06

    10/71

    CDMA Operation Frequencies:

    800 MHz 1900 MHz Asia (*)

    __________________________________________

    Mobile-to-base

    Base-to-mobile

    824 849

    869 894

    1850 1910

    1930 1990

    1920 1980

    2110 2170

    * For example:

    Japan : DoCoMoKorea : Samsung

  • 8/7/2019 dm_ch06

    11/71

    Requirements of 3G (W-CDMA, CDMA-2000, UMTS):

    high-speed digital communication, not voice-centric;

    144 kb/s in-vehicle data rates (a moving car);

    Up to 384 kb/s for pedestrians (a walker);

    Other issues like what in 2G CDMA.

    The next generation 4G:

    Using W-OFDM modulation methodology;

    Higher data rates then W-CDMA.

    http://zh.wikipedia.org/wiki/4G

    http://zh.wikipedia.org/wiki/4Ghttp://zh.wikipedia.org/wiki/4G
  • 8/7/2019 dm_ch06

    12/71

    Summary of IEEE 802.11b/a/g:

    Parameter

    Wireless Local Area Network (WLAN)

    Operation Frequency

    Channel Spacing

    Multiple access method

    Duplex Method

    Modulation Methodology

    bit rate (or symbol rate)

    802.11 b 802.11 g 802.11 a

    2400-2483.5MHz5150-5350 MHz

    5725-5825 MHz

    FHSS: 1MHz

    DSSS: 25MHz OFDM: 20 MHz

    Channel Numbers 3 non-overlapping 12 non-overlapping

    CSMA / CA

    TDD

    FHSS: GFSK,

    BT=0.5

    OFDM: 64-QAM for 54 Mb/s

    1,2, 11 Mb/s 54 Mb/s12 Ms/s

    5.5-54 Mb/s

  • 8/7/2019 dm_ch06

    13/71

    Summary of Bluetooth:

    Parameter Value

    Bluetooth

    Frequency Range

    Channel Spacing / Number

    Multiple access method

    Duplex Method

    Users per channel

    Modulation Methodology

    Symbol rate

    2402 2480 MHz

    1 MHz / 79

    Frequency Hop

    TDD

    200 (7 active)

    GFSK

    1 MS/s

  • 8/7/2019 dm_ch06

    14/71

    Summary of IEEE 802.15.4 (ZigBee):

    Parameter Value

    Wireless Personal Area Network (WPAN) -- ZigBee

    Frequency range (USA)

    Channel Spacing

    Multiple access method

    Duplex Method

    Users per channel

    Modulation Methodology

    Peak bit rate

    2402 2480 MHz / 902-928 MHz

    5 MHz

    CSMA / CA / CD / TDMA

    FDD

    255

    OQPSK / GFSK / BT=0.5

    250 / 40 / 250 kb/s

    Frequency range (Europe) 2412-2472 MHz

    CSMA : Carrier Sense

    CA : Collision Avoidance

    CD : Collision Detection

  • 8/7/2019 dm_ch06

    15/71

    Ultra-Wide Band (UWB): from 3,168 MHz 10,560 MHz

    Definitions:

    ( )( )

    GHz2.5frequencyoperationasMHz500BW3.

    G1.5rangetuningandGHz;6frequencyoperation2.

    0.2);(or0.25ffff2BWfractional1.LH

    LH

    >>

    >>

    +

    =

    DS-CDMA :

    MB-OFDM :

  • 8/7/2019 dm_ch06

    16/71

    Low Noise Amplifier:

    Commonly, the first stage of a receiver for any system

    The requirement of low noise and high gain

    in the first stage:

    ( )( ) ( ) ( )

    too.dB),in(notlinearingainpowertheisG

    stage,th-mtheofdB)in(notlinearinfactornoisetheis

    equation)(Friis111

    11F

    :StagesCascaded-mofFigureNoise

    n

    1

    21

    3

    1

    21total

    m

    n

    m

    n

    m

    F

    where

    G

    F

    GG

    F

    G

    FF

    =

    ++

    +

    ++=

    Noise

  • 8/7/2019 dm_ch06

    17/71

    Cascaded Nonlinear Stages:

    ( ) ( ) ( ) 22

    2

    1

    1

    22

    2

    111

    3

    3

    122113

    2

    3

    3

    122113

    11

    3

    3

    3

    122113112

    3

    13

    2

    12112

    3

    3

    2

    211

    IIP3

    2

    3

    IIP3

    1

    2

    4

    3

    IIP3

    1

    aboutisIIP3case,-worstThe

    P.63)LecturedB,in(not)2(

    3

    4IIP3

    (t))x2(x(t)(t)y

    (t)y(t)y(t)y(t)y

    (t)x(t)xx(t)(t)yLet

    cascade.instagesnonlinearwoConsider t

    ++=++

    ++=

    ++++=

    +++=

    +++=

    Linearity

    (to next stage)

  • 8/7/2019 dm_ch06

    18/71

    Cascaded Nonlinear Stages: (cont.)

    ( ) ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( )

    gain.stageth-nthe

    ofdB)in(notgain(voltage)linearthe,:

    IIP3IIP3IIP3IIP3

    1

    IIP3IIP3IIP3IIP3

    1

    IIP3

    1

    :stagecascade-na,

    IIP3IIP3

    1

    IIP32

    3

    IIP3

    1

    IIP3

    1

    :isstagescascadedtwoaforIIP3case,-worst

    2111

    2

    21

    22

    21

    23

    22

    21

    22

    21

    21

    2

    21

    21

    23

    21

    21

    22

    21

    21

    2

    22

    21

    21

    22

    21

    1

    2221

    2

    areGGNote

    GGGGGG

    forSimilarly

    The

    n

    n

    ntotal

    ==

    ++++=

    ++++

    +++

  • 8/7/2019 dm_ch06

    19/71

    Brief Summary:

    LNA: trade-offs between Gain, Noise, and Linearity

    For noise consideration :

    The first stage must be high gain and less noise

    to achieve the overall low-noise performance;

    For linearity consideration :

    The latest stage must be with high IIP3 to

    achieve the overall better linearity performance.

  • 8/7/2019 dm_ch06

    20/71

  • 8/7/2019 dm_ch06

    21/71

  • 8/7/2019 dm_ch06

    22/71

    Power match:

    Conjugate match:

    Maximum power translation:

    .RR@P2

    1P0)(

    1

    2

    1

    22)(

    SLSmaxin,

    2

    222

    ===

    +=+

    +=

    +

    ==

    Lin

    L

    LS

    L

    SLS

    L

    LS

    S

    LS

    L

    L

    S

    L

    inLin

    RPR

    RR

    R

    PRR

    R

    RR

    V

    RR

    R

    R

    V

    R

    VRP

    slation)power tran(maximum

    *

    SSinS

    SSSin

    SSS

    RRZZ

    jXRZZ

    jXRZ

    +=+

    ==

    +=

    Rs

    RL

    +

    -

    Vs

    Vin

    ZinZs

    Typically, inputmatch = 50 for LNA,

    because of filter or

    antenna.

  • 8/7/2019 dm_ch06

    23/71

    Input match for CS amplifier

    > Rs : the signal source resistance;

    > Let R1 (equivalent bias R) 50 > Adding R1, Thermal noise

    Input signal power (V-swing) @ gate

    > In general, noise figure degrades.

    But recall the noise circle vs. gain

    circlebehavior maybe cause abetter noise figure overall.

    (impedance dependent noise match)

    Typically, the lower bound on the noise of this circuit:

    RRRwhereRg

    1

    42FFigure,Noise 1s

    m

    ==+

  • 8/7/2019 dm_ch06

    24/71

    1. Broadband real input impedance;

    2. Better than the amplifier (Fig.11.1)

    in noise figure, because of

    no signal degrade at gate terminal.

    (using self-bias, V-swing can be

    greater.)

    3. In UWB application*. (conceptive)

    Input match for CS amplifier using negative feedback:

  • 8/7/2019 dm_ch06

    25/71

  • 8/7/2019 dm_ch06

    26/71

    Summary of Different Types of Amplifiers:

    Types of Amplifiers Rin Rout (Voltage) Gain

    ______________________________________________

    CS

    CG

    CD

    High

    Low

    Medium

    High

    Medium

    Low

    High

    Low

    Low

  • 8/7/2019 dm_ch06

    27/71

    Feedback Configurations:

    Negative Feedback Features:

    1. Desensitize the gain : ex. temperature effect.

    2. Reduce nonlinear distortion : degeneration, gain constant.

    3. Reduce the effect of noise : extra mechanism to compensate noise.

    4. Control the input and output impedance : to correlate the I/O resistances.

    5. Extend the bandwidth of the amplifier.

  • 8/7/2019 dm_ch06

    28/71

    ns/VVS/N =

    [ : LNA]Noise reduction using negative feedback:

    (LNA, betterif noiseless)

    2n

    s

    21

    1n21

    21so

    AV

    V

    N

    S

    AA1AV

    AA1AAVV

    =

    +++=

  • 8/7/2019 dm_ch06

    29/71

    Summary of Four Basic Feedback Configurations:

    Rin Rout

    Voltage Amp.

    Trans-G Amp.

    Trans-R Amp.

    Current Amp.

    Input

    (Mixing)

    Output

    (Sensing)

    series shunt

    series series

    shunt shunt

    shunt series

    Increase / decrease factor : A+ 1

    Input Output

    iV

    iV

    iI

    iI

    oV

    oI

    oI

    oV

  • 8/7/2019 dm_ch06

    30/71

    A reason of resistive component arising from the gate capacitance:

    Question: Why the input impedance of a MOSFET has a

    resistance component from the AC viewpoint?

    (gate-to-drain cap.)

    [ ] [ ]

    [ ]

    resistoralikebehavepartrealapossesses

    )(YImj)YRe(

    )sin(cos11

    )sin(cos1

    1

    1

    1

    AA(s)shift,phaseandgainhaveA(s)

    EffectMiller)](1[

    1

    0

    00

    0

    +=

    +==

    +=

    +=

    =

    +

    =

    inin

    in

    in

    jin

    j

    in

    jACjZ

    Y

    jACjeACjZ

    then

    eif

    sAsCZ

  • 8/7/2019 dm_ch06

    31/71

    Input impedance due to the source degeneration:

    Z

    ( )[ ]

    [ ]Ze1Cj

    1

    Zj1Cj

    1Z

    )t(j0

    gs

    gsin

    +++=

    ++=

    1. Capacitive degeneration

    becomes a negative resistance

    2. Inductive degeneration

    becomes a positive resistance.

  • 8/7/2019 dm_ch06

    32/71

  • 8/7/2019 dm_ch06

    33/71

    Brief Summary:

    1. Impedance match can be done by source degeneration;

    2. This converted resistance brings no thermal noise,

    because it is not a real resistor! (very important!)

    3. No extra thermal noise is introduced;

    4. To utilize this method to do either power match or

    noise match, or even both.

    5. However, this is a narrow band matching.

    [to be continued]

  • 8/7/2019 dm_ch06

    34/71

    Intrinsic MOSFET Two-Port Noise Parameters:

    channel)-longforn,(assumptio395.0ii

    iic

    astcoefficienncorrelatioawith

    noise,drainwith thecorrelatedisnoisegatethe

    )(5

    4

    4

    2

    nd

    2

    ng

    *

    ndng

    22

    2

    2

    j

    there

    fittingfromgCg

    where

    fgkTi

    fgkTi

    do

    gs

    g

    gng

    dond

    =

    =

    =

    (*ref[1], Ch12.2)

    (drain current noise)

    (gate current noise)

  • 8/7/2019 dm_ch06

    35/71

    Four equivalent two-port noise parameters:

    correlatede

    iYwhereYB

    YG

    eduncorrelat

    fkT

    iG

    g

    g

    fkT

    e

    fg

    gkT

    g

    ie

    n

    cccc

    cc

    uu

    m

    don

    m

    do

    m

    ndn

    =

    ==

    ]Im[

    ]Re[4

    4R

    :parametersnoisefour.2

    4

    :noisecurrentdrainreferredinput.1

    2

    2

    2

    n

    22

    22

  • 8/7/2019 dm_ch06

    36/71

    Open-Circuit Drain Current Noise:

    nd

    mngcge

    n

    ngc

    gs

    n

    ngcn

    n

    m

    nd

    m

    ndopenn

    i

    giCj

    e

    iCj

    e

    ii

    eg

    i

    g

    ie

    +=+=+

    =

    ==

    ==

    1

    c

    ngu

    ngc

    2

    gs

    2

    2

    2gs

    22

    n1

    2

    22

    ,2

    gs

    2

    n1

    Y

    :admittancecorrelatedThe3.

    noise.currentdrainth thecurrent wigateeduncorrelatfullythei

    noise.currentdrainth thecurrent wigatecorrelatedfullythei

    terms,twoofconsistsitselfcurrentnoisegateinducedThe.2

    )C(j)C(j

    i

    )C(j

    i

    .capacitivepurelyis

    MOSFETaofadmittanceinputthat theAssumed.1

  • 8/7/2019 dm_ch06

    37/71

    1)channel,-long(for1

    )5

    1(5

    isc5

    5

    Y

    2

    22

    2

    2

    2

    2

    22

    *

    2

    2

    22

    *

    2

    2

    2

    *

    *

    *

    c

    ==

    =+=

    +=

    +=+=

    +=

    +=

    +=

    +=

    +=

    do

    m

    gsgs

    do

    mgs

    gs

    do

    mgs

    do

    gs

    mgs

    nd

    ng

    mgs

    nd

    ng

    ndng

    ndngc

    mgs

    ng

    ng

    ndnd

    ndngc

    mgs

    ng

    ng

    nd

    ndngc

    mgs

    ndnd

    ndngc

    mgs

    nd

    mngcgs

    g

    gwhere

    cCjCcg

    gjCj

    cjassumedCcg

    gCj

    g

    CcgCj

    i

    icgCj

    i

    i

    ii

    iigCj

    i

    i

    ii

    iigCj

    i

    i

    i

    iigCj

    ii

    iigCj

    i

    giCj

    ( )

  • 8/7/2019 dm_ch06

    38/71

    1. Since Yc (the correlation admittance) is pure imaginary,

    so that Gc = 0. (assumption in this modeling case)

    2. The induced gate noise :

    )1(44)(2222 cfgkTcfgkTiii gggnungcng +=+=

    (correlated) (uncorrelated)

    3. The uncorrelated portion of the gate noise current makes

    do

    gsguu

    g

    cC

    fkT

    cfgkT

    fkTiG

    5

    )1(

    4

    )1(4

    4

    22222 =

    =

    4. To achieve the minimum noise figure Bopt = -Bc = -Im[Yc]

  • 8/7/2019 dm_ch06

    39/71

    5. Bopt is negative, it means that the optimum source susceptance

    is essentially inductive in character.

    6. The real part of the optimum source admittance is:

    2

    2

    222 ,)1(

    5

    u

    n

    u

    n

    ugsc

    n

    uopt G

    e

    i

    R

    GwherecCG

    R

    GG ===+=

    7. The minimum noise figure is given by:

    .

    )1(5

    2

    1][212

    min

    gs

    mT

    T

    coptn

    C

    gwhere

    cGGRF

    =

    +++=

    * As T , Fmin

    *Ways to minimum

    the Fmin by

  • 8/7/2019 dm_ch06

    40/71

  • 8/7/2019 dm_ch06

    41/71

  • 8/7/2019 dm_ch06

    42/71

  • 8/7/2019 dm_ch06

    43/71

    1. Two replica devices under the same bias condition;

    2. Using current-controlled current source (CCCS) to introducethe noisy drain current into the gate circuits of those

    replica devices;

    3. Using voltage-controlled voltage sources (VCVS) to ensure

    the same bias conditions;

    4. Each replica possesses a provision for feeding back

    its own noisy drain current to its own gate node.

    5. Summation of the two noise (and fully uncorrelated)

    currents there results in a noisy voltage at the gate

    of M2 (or at M3 with the similar expression):

    .gchannel,long

    )(84

    2

    do

    2

    3

    2

    2

    m

    g

    mdo

    g

    gfor

    vg

    fkT

    g

    fkTv

    ==Combined

    M1s and M2s

    noises.

  • 8/7/2019 dm_ch06

    44/71

    6. The noisy gate voltage causes to flow a noisy gate current

    of mean-square value:

    >

  • 8/7/2019 dm_ch06

    45/71

    9. After subtraction, the difference current must be scaled

    appropriately to produce the correct noise current levelof

    > NF of single-end

    3. For equal NF :

    Power of differential ~ 2 x Power of single-end

    4. Common-mode noise rejection by differential configuration.

  • 8/7/2019 dm_ch06

    57/71

    Design Examples:

    A Simple Differential LNA:

  • 8/7/2019 dm_ch06

    58/71

    Design Examples: (cont.)

    Source degenerator

    (matching, linearity

    enhancement)

    Current re-use

    for the core and

    the buffer stage.

    Coupled cap.

    for buffer inputs.

    Inductive loadsof amplifier

    A start-up

    transistor

    A Complicated Differential LNA:

    Note: keep all transistors

    operated in saturation!!

    With a

    common-mode

    bias feedback loop.

  • 8/7/2019 dm_ch06

    59/71

    Linearity and Large-Signal Performance:

    LNA must maintain linear operation when

    as receiving a weak signal, and

    as in the presence of a strong interfering signal.

    (large dynamic range)

    Desensitization (orblocking) :

    signal (small) + interference (large)

    Cross-modulation:

    signal (small) + interference (large and modulated)

    (distortion due to the large voltage swing)

  • 8/7/2019 dm_ch06

    60/71

    Desensitization ( Blocking):

    >

  • 8/7/2019 dm_ch06

    61/71

    Cross Modulation:

    modulated!isamplitutethewhere

    cos)]cos22cos22

    1(2

    3[)(

    cos)cos1(cos)(

    )()()()(

    1

    22221311

    21

    2211

    33

    221

    +++++=

  • 8/7/2019 dm_ch06

    62/71

    Nonlinearity : (intermodulation phenomenon, two-tone test)

    )]cos(3)[cos(3]4

    [

    )]cos(2)[cos(2]2

    [

    )]cos()[cos(]4

    9Ac[

    ]c[v)i(V

    havewe),i(back tov

    )]cos()A[cos(v

    test)tone-(Twofrequencydifferentslightlybut

    amplitudeequalofsignalsinputsinusoidalwoConsider tvcvcvccv)i(VLet

    21

    33

    21

    22

    213

    31

    220DC

    21

    33

    2210DC

    ttAc

    ttAc

    ttAc

    Ac

    ngSubstituti

    tt

    ++

    ++

    +++

    ++

    +=

    ++++

    DC

    Fundamental

    Double-freq.

    Triple-freq.

    >

  • 8/7/2019 dm_ch06

    63/71

    ])cos(2)cos(2)2cos()2[cos(]4

    3

    [

    ])cos()[cos(]2

    [v)i(V

    havealsowe),i(back tov

    )]cos()A[cos(v

    test)tone-(Twofrequencydifferentslightlybut

    amplitudeequalofsignalsinputsinusoidalwoConsider t

    vcvcvccv)i(VLet

    21212121

    3

    3

    2121

    22

    DC

    21

    33

    2210DC

    ttttAc

    ttAc

    ngSubstituti

    tt

    ++++++

    ++++

    +=

    ++++

    Nonlinearity : (cont.)

    >

  • 8/7/2019 dm_ch06

    64/71

    Input-referred third-order interception point (IIP3):

    ss Rc

    c

    R

    AIIP

    squarevoltageA

    c

    cAAcAc

    Let

    1

    3

    2

    23

    3

    4

    4

    3

    3

    12

    2

    3

    12331

    ==

    =

    ==

  • 8/7/2019 dm_ch06

    65/71

    Pout plotted with Power measurement:

    3rd order

    Intercept

    Input power

    (dB)

    Output power

    (dB) P1dB

    Slope = 3

    Slope = 1

    10~15 dB

    IIP3

  • 8/7/2019 dm_ch06

    66/71

    Methods for Estimating IP3:

    Simulation with tools either by

    transient simulation FFT Pout vs. Pin plot

    harmonic balance simulation (frequency domain)

    Two-tone testing:

    with a spectrum to read out the power levels of

    inter-modulation terms.

    Three-point method: (by DC+0, V)

    see below.

  • 8/7/2019 dm_ch06

    67/71

    IIP3 vs. Gain:

    +

    =

    +=++=

    =

    ++=

    )0(2)()(

    )0(43

    32)(

    32)(

    )0(

    32cg(v)

    isg(v)uctancetranscondthe

    2

    2321

    2321

    1

    2321

    gVgVg

    g

    R

    VIIP

    VcVccVg

    VcVccVg

    cg

    vcvc

    Let

    s

  • 8/7/2019 dm_ch06

    68/71

    Bias dependent IP3:

    There is a sweet point of lowest IIP3 with different

    bias current for a transistor.

    In the narrowband LNA architecture, the input voltage is multiplied

    by the Q of the input circuit before appearing between gate and

    source. Hence,

    += )0(2)()()0(43 2

    2

    gVdgVgg

    RQVIIP

    ss

  • 8/7/2019 dm_ch06

    69/71

    Improvement of Linearity by a pair of parallel transistors:

    M1 M2RFIN RFIN

    RFOUT

  • 8/7/2019 dm_ch06

    70/71

    Spurious-free dynamic range (SFDR):

    Definition: the signal-to-noise ratio corresponding to the inputamplitude at which an undesired product (here, the third-order

    IM power) just equals the noise power.

    Input power

    (dB)

    Output power

    (dB)

    Slope = 3

    Slope = 1

    Output

    Noise level

    SFDR

  • 8/7/2019 dm_ch06

    71/71