Deep Submicron CMOS and the New Era of Creativity in ...users.wpi.edu › ~mcneill › papers ›...

84
McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007 Deep Submicron CMOS and the New Era of Creativity in Analog Design John A. McNeill Worcester Polytechnic Institute (WPI), Worcester, MA [email protected]

Transcript of Deep Submicron CMOS and the New Era of Creativity in ...users.wpi.edu › ~mcneill › papers ›...

  • McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Deep Submicron CMOS and theNew Era of Creativity

    in Analog Design

    John A. McNeillWorcester Polytechnic Institute (WPI),

    Worcester, MA [email protected]

  • 2McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Overview• Analog / Mixed Signal IC Design

    –Role of Creativity• DSM CMOS Effects on Analog Design

    –Short L, Thin tox–Matching Issues

    • Self-Calibrating ADC–Overview–Design Details–Results

    • Conclusion

  • 3McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Overview• Analog / Mixed Signal IC Design

    –Role of Creativity• DSM CMOS Effects on Analog Design

    –Short L, Thin tox–Matching Issues

    • Self-Calibrating ADC–Overview–Design Details–Results

    • Conclusion

  • 4McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Career ClassificationCREATIVE USEFUL

    GOOD PAY

    ENGINEER

    PROFESSOR TEACHERNURSE

    ARTISTPOET

    DOCTORADVERTISING

    LAWYERSTOCKBROKER

  • 5McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Why be creative?• Need

    –Easy problems solved already–Tough problems need creative solution

    • Dealing with environment of change–Coping, thriving

    • Human nature–Fun!

  • 6McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Creativity Resources

  • 7McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Creativity Framework

    Explorer

    Artist

    Judge

    Warrior

  • 8McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Creativity Framework

    Explorer

    Artist

    Judge

    Warrior

    Seek out new informationSurvey the landscapeGet off the beaten pathPoke around in unrelated areasGather lots of ideasShift your mindsetDon't overlook the obviousLook for unusual patterns

  • 9McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Creativity Framework

    Explorer

    Artist

    Judge

    Warrior

    Create something originalMultiply optionsUse your imaginationAsk what-if questionsPlay with ideasLook for hidden analogiesBreak the rulesLook at things backwardChange contextsPlay the fool

  • 10McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Creativity Framework

    Explorer

    Artist

    Judge

    Warrior

    Evaluate optionsAsk what's wrongWeigh the riskEmbrace failureQuestion assumptionsLook for hidden biasBalance reason and hunchesMake a decision!

  • 11McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Creativity Framework

    Explorer

    Artist

    Judge

    Warrior

    Put decision into practiceCommit to a realistic planGet helpFind your real motivationSee difficulty as challengeAvoid excusesPersist through criticismSell benefits not featuresMake it happenLearn from every outcome

  • 12McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Example: Time (Stages of project)

    Explorer

    Artist

    Judge

    Warrior

    Background Research

    Brainstorm Options

    Choose Solution

    Implement Design

  • 13McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Why a Creativity Model?

    Education• Standardized-test-numbed students• Paralysis in face of open-ended problem

    Designer• Awareness of strengths, weaknesses• Recognize preferences

    Not Right or Wrong!• One way of looking at process• Orchard analogy

  • 14McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Example: Modes of Thinking

    Explorer

    Artist

    Judge

    Warrior

    DivergentSoft

    Qualitative

    ConvergentHard

    Quantitative

  • 15McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Example: Preferred Problem Solution

    Explorer

    Artist

    Judge

    Warrior

    Add Complexity

    Eliminate Complexity

  • 16McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Overview• Analog / Mixed Signal IC Design

    –Role of Creativity• DSM CMOS Effects on Analog Design

    –Short L, Thin tox–Matching Issues

    • Self-Calibrating ADC–Overview–Design Details–Results

    • Conclusion

  • 17McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Good Old Days

    • Large strong inversion region• Square law, easy hand analysis

    Op 't Eynde and Sansen, "Design and Optimization of CMOS Wideband Amplifiers," CICC 1989

    W/L

    ID

  • 18McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    TSMC L=0.25µm process

    • Moderate inversion• Graphical / numerical analysis

    W[µm]

    ID [µA]100

    101

    102

    103

    104

    10-6 10-5 10-4 10-3 10-2

  • 19McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    DSM CMOS Thin tox: Gate Leakage

    µA GateCurrents!

    R. Van Langevelde et. al., "Gate current: Modeling, ∆L extraction and impact on RF performance, IEDM 2001

    Tunneling current through thin tox

  • 20McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    DSM CMOS: MOSFET Current Gain

    A.-J. Annema et. al., Analog Circuits in Ultra-Deep-Submicron CMOS, IEEE J. Solid-State Circuits, Jan. 2005, pp. 132-143

    ⇒ Bipolar-like current gain for longer L

  • 21McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    DSM CMOS: Gate Leakage

    R. Van Langevelde et. al., "Gate current: Modeling, ∆L extraction and impact on RF performance, IEDM 2001

    ⇒ Long L devices unsuitable

  • 22McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Overview• Analog / Mixed Signal IC Design

    –Role of Creativity• DSM CMOS Effects on Analog Design

    –Short L, Thin tox–Matching Issues

    • Self-Calibrating ADC–Overview–Design Details–Results

    • Conclusion

  • 23McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Matching

    • Classical: Matching improves with ⇒ Spend area to match⇒ Power penalty to drive COX W L

    !

    WL

    Pelgrom et.al., "Matching properties of MOS transistors," IEEE J. Solid-State Circuits, Oct. 1989, pp. 1433-1440

  • 24McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Technology Dependence

    • As VDD scales downwith Lmin …

    • Some improvement inmatching AVth …

    K. Bult, "Analog Design in Deep Sub-Micron CMOS ," ESSCIRC2000, Sept. 2000.

  • 25McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Technology Dependence

    • Dynamic Rangelimited by matching

    K. Bult, "Analog Design in Deep Sub-Micron CMOS ," ESSCIRC2000, Sept. 2000.

  • 26McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Speed / Accuracy / Power Tradeoff

    • Limited by matching, not noise ⇒ Some improvement with technology

    Kinget, " Device mismatch and tradeoffs in the design of analog circuits," JSSC, June, 2005

    Matching

    Noise floor

  • 27McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Matching / Gate Leakage Issues

    • Spend area:Gate leakage mismatch increases with⇒ Limit to attainable matching

    !

    WL

    A.-J. Annema et. Al., Analog Circuits in Ultra-Deep-Submicron CMOS, IEEE J. Solid-State Circuits, Jan. 2005, pp. 132-143

  • 28McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Matching / Gate Leakage Issues

    • Break limit: Spend area (same L):⇒ But extra power penalty

    A.-J. Annema et. Al., Analog Circuits in Ultra-Deep-Submicron CMOS, IEEE J. Solid-State Circuits, Jan. 2005, pp. 132-143

  • 29McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Or: Abandon Matching! Options:Fix with analog complexity: Autozero, …

    Fix with digital complexity …

    Enz and Temes, "Circuit Techniques for Reducing the Effects of Op-Amp Imperfections: Autozeroing, Correlated DoubleSampling, and Chopper Stabilization," Proceedings of the IEEE, November 1996, pp. 1584-1614

    or

  • 30McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Overview• Analog / Mixed Signal IC Design

    –Role of Creativity• DSM CMOS Effects on Analog Design

    –Short L, Thin tox–Matching Issues

    • Self-Calibrating ADC–Overview–Design Details–Results

    • Conclusion

  • 31McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Self-Calibrating ADC GoalsGeneral: Take advantage of CMOS scaling

    • Digital–Relax requirements on analog precision–All calibration / complexity in digital domain

    • Background–Calibration continuous in background

    • Deterministic–Short time constant for adaptation–No requirements on input signal behavior

    Specific Implementation:16b 1MS/s Cyclic ADC in 0.25µm CMOS

    J. McNeill, et. al., "'Split-ADC' Architecture for Deterministic Digital Background Calibration of a 16b 1MS/s ADC ," ISSCC2005

  • 32McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Cyclic ADC

    1) Sample input, compare to threshold → digital decision d

    2) Amplify input by factor G3) Subtract d.VREF → residue voltage vRES4) Repeat cycle with vRES as inputResult: sequence of decisions dk

    S/H

    +

    !

    DIGITAL

    G

    dk

    +/-VREF COMP

    RESIDUE AMPLIFIER

    vIN

    TIMING

    x

    vRES

    DAC

  • 33McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Cyclic ADC

    Input-Output Relationship:

    Residue amplifier: Residue plot:vRES(O)

    vRES(I)

    SLOPE = G

    d = -1 d = +1

    +

    ! G

    dk

    +/-VREF COMP

    vRES(I) vRES(O)

    DAC

    REFIRESORESVdvGv !"!= )()(

    Multiply input by cyclic gain G, subtract d.VREF

  • 34McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Example: 3-Cycle ADC• Follow residues; start …

    [ ]

    [ ][ ]REF

    RES

    REFREFINRES

    REF

    RES

    REFINRES

    REFINRES

    IN

    Vd

    v

    VdVdGvGGv

    Vd

    v

    VdGvGv

    VdGvv

    v

    3

    )2(

    21)3(

    2

    )1(

    1)2(

    1)1(

    !!!=

    "

    !!=

    "

    !=

    "

    4444 84444 76

    44 844 76

    [ ]REFINRESVdGdGdGvGv 3

    0

    2

    1

    1

    23

    )3( ++!=

    • Cycle 1 residue:

    • Cycle 2:

    • Cycle 3:

    • Rearrange:

  • 35McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    1: Cyclic ADC as Negative Feedback Loop

    •Residue voltages bounded if G isn't "too big"•Safety margin: Choose G < 2•Bonus: Redundancy

    Cyclic amplifier tryingto "blow up" vIN

    DAC trying to driveresidue to zero

    [ ]REFINRESVdGdGdGvGv 3

    0

    2

    1

    1

    23

    )3( ++!=

  • 36McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Redundancy• Key: Multiple valid decision paths to output code

    G < 2

    d = -1 d = +1

    d = -1 d = +1

    G = 2

    -1 or +1 OK

  • 37McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    2: Digital Correction• Divide both sides by G3 VREF and rearrange

    Output code x(radix G)

    REF

    RES

    REF

    IN

    V

    v

    Gd

    Gd

    Gd

    GV

    v )3(333221

    1111!++=

    Quantizationerror

    • Digital reconstruction from comparator decisions dk:Use estimated gain G(EST) to calculate output code x :

    • Only G needed to digitally correct ADC linearity• Calibration: G(EST) = G to within converter accuracy

    3

    )(

    2

    )(

    1

    )(

    )(

    31

    211

    dG

    dG

    dG

    x

    ESTESTEST

    EST !!

    "

    #

    $$

    %

    &+

    !!

    "

    #

    $$

    %

    &+

    !!

    "

    #

    $$

    %

    &=

  • 38McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Output Code

    !

    vIN

    VREF

    =1

    Gd1 +

    1

    G2d2 +

    1

    G3d3 + L

    Digital:• Use estimated gain G(EST) tocalculate output code x :

    • Calibration: How todetermine G(EST) = G towithin converter accuracy?

    3

    )(

    2

    )(

    1

    )(

    )(

    31

    211

    dG

    dG

    dG

    x

    ESTESTEST

    EST !!

    "

    #

    $$

    %

    &+

    !!

    "

    #

    $$

    %

    &+

    !!

    "

    #

    $$

    %

    &=

    Analog:• G = 2 to within

    converteraccuracy

    • Calibration:trim, match

  • 39McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Previous Calibration Techniques

    • No previous technique has all desired features1. Galton, "Digital cancellation of D/A converter noise in pipelined ADCs," TCAS-II, March 20002. Murmann ..., "A 12b 75MS/s Pipelined ADC using open-loop residue amplification," ISSCC20033. Liu .., "A 15b 20MS/s CMOS Pipelined ADC with Digital Background Calibration," ISSCC20044. Nair ..., "A 96dB SFDR 50MS/s Digitally Enhanced CMOS Pipelined A/D Converter," ISSCC20045. Ryu ..., "A 14b-Linear Capacitor Self-Trimming Pipelined ADC," ISSCC20046. Erdogan ..., "A 12-b Digital-Background-Calibrated Algorithmic ADC with -90-dB THD," ISSC19997. Chiu ..., "Least mean square adaptive digital background calibration of pipelined ADCs," TCAS-I, Jan. 20048. Lee, "A 12-b 600 ks/s digitally self-calibrated pipelined algorithmic ADC," JSSC, Apr. 19949. Karanicolas … , "A 15-b 1-MS/s digitally self-calibrated pipeline ADC," JSSC, Dec. 1993

    [1]

    Deterministic?

    (All) Digital?

    Background?

    [2] [3] [4] [5] [6] [7] [8] [9]

  • 40McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Previous Digital Background Calibration

    N

    CONVERSIONSREQUIRED FORCALIBRATION

    12 14 16

    BITSRESOLUTION

    104

    105

    106

    107

    108

    109

    22N

    [1] Galton2000[2] Murmann2003[3] Liu2004[4] Nair2004[5] Ryu2004

    21

    4 3

    5

  • 41McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Statistical Techniques ProblemHow long to calibrate with 22N samples?

    msMsps

    20075

    2122

    !"

    hourMsps

    11

    2162

    !"

    12 bits, 75 MS/s [2]

    ⇒ Deterministic approach needed

    16 bits, 1 MS/s

    The problem: How to do a …– deterministic calibration procedure– in background– without a known input?

  • 42McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Split ADC Architecture

    • Average of A, B results is ADC output code• Calibration signal developed from difference

    ADC "A"

    !

    xA

    !

    vIN

    !

    xB

    ERRORESTIMATION

    +

    +

    +

    -

    !

    x =xA + xB

    2

    !

    "x = xB # xA

    ADC OUTPUT CODE

    DIFFERENCE

    ADC "B"

  • 43McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Intuitive View of Split ADC

    • Different paths to (ideally) same answer• Estimate errors from "disagreements"• Only way for A, B to always agree

    is for both to be correctly calibrated

    ADC "A"

    !

    xA

    !

    vIN

    !

    xB

    ERRORESTIMATION

    +

    +

    +-

    !

    x

    !

    "x = xB # xA

    ADC "B"

    !

    x

    !

    t

    RESIDUEMODES

  • 44McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Robert Frost: “New Hampshire”

    “... a figure of the waythe strong of mindand strong of armshould fit together,

    One thick where one is thinand vice versa. ”

    V T

    N H

  • 45McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Robert Frost: “New Hampshire”

    “... a figure of the waythe strong of mindand strong of armshould fit together,

    One thick where one is thinand vice versa. ”

    V T

    N H

    • Key idea: two “partners”trying to do the same thing

    in different ways

  • 46McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Overview• Analog / Mixed Signal IC Design

    –Role of Creativity• DSM CMOS Effects on Analog Design

    –Short L, Thin tox–Matching Issues

    • Self-Calibrating ADC–Overview–Design Details–Results

    • Conclusion

  • 47McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Evaluation Block Diagram

    • Test chip mostly analog• Digital on FPGA (code "synthesis-ready" for product)

    TEST CHIP

    CYCLIC

    ANALOG

    CYCLIC

    DIGITAL INPUT

    SIGNAL

    COND

    DATA

    FORMATTING

    DSP

    INTERFACE

    OTHER FPGA

    FUNCTIONS

    CYCLIC

    TIMING

    CNVST EXT

    TIMING

    "PRODUCT"

    FPGA

    EVALUATION BOARD REF

    TO

    RAM /

    DSP

    VIN

  • 48McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    ADC Block Diagram

    “A” L.U.T.

    !

    dkA

    !

    vIN

    !

    1

    ˆ G A

    "

    # $

    %

    & '

    k

    !

    k1

    G

    "

    # $

    %

    & ' k

    !

    xA

    !

    SDKA

    ERROREST.

    !

    "x

    !

    ˆ " A

    !

    µ

    !

    ˆ G A

    !

    +

    !

    "

    !

    x

    Σ

    Σ

    Σ

    !

    ˆ " B

    !

    µ

    !

    SDKB

    !

    xB

    Σ

    Σ

    Σ!

    ˆ G B

    !

    1

    ˆ G B

    "

    # $

    %

    & '

    k

    !

    dkB

    !

    +

    !

    +

    OFF-CHIP DIGITAL PROCESSOR (FPGA)

    PATH A

    PATH B

    S/H

    !

    GA

    COMPS!

    +

    !

    "

    COMPS

    S/H

    !

    GB

    DAC

    !

    +

    !

    "

    CYCLIC RESIDUEAMPLIFIERS

    “B” L.U.T.

    ERRORCOEFF

    L.U.T.

    DAC

  • 49McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    ADC Digital Correction

    “A” L.U.T.

    !

    dkA

    !

    vIN

    !

    1

    ˆ G A

    "

    # $

    %

    & '

    k

    !

    k1

    G

    "

    # $

    %

    & ' k

    !

    xA

    !

    SDKA

    ERROREST.

    !

    "x

    !

    ˆ " A

    !

    µ

    !

    ˆ G A

    !

    +

    !

    "

    !

    x

    Σ

    Σ

    Σ

    !

    ˆ " B

    !

    µ

    !

    SDKB

    !

    xB

    Σ

    Σ

    Σ!

    ˆ G B

    !

    1

    ˆ G B

    "

    # $

    %

    & '

    k

    !

    dkB

    !

    +

    !

    +

    OFF-CHIP DIGITAL PROCESSOR (FPGA)

    PATH A

    PATH B

    S/H

    !

    GA

    COMPS!

    +

    !

    "

    COMPS

    S/H

    !

    GB

    DAC

    !

    +

    !

    "

    CYCLIC RESIDUEAMPLIFIERS

    “B” L.U.T.

    ERRORCOEFF

    L.U.T.

    DAC

  • 50McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    ADC Digital Correction

    • Decision weight L.U.T.–Periodically recalculated in background–Separate L.U.T.s for A, B output codes

    ADC Digital Correction

    !

    dkA

    !

    1

    ˆ G A

    "

    # $

    %

    & '

    k

    !

    xAΣ

    COMPARATORDECISIONS[ -1, 0 , +1 ] DECISION WEIGHT

    L.U.T.

    ACCUMULATEOUTPUT CODE

  • 51McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Error Estimation

    “A” L.U.T.

    !

    dkA

    !

    vIN

    !

    1

    ˆ G A

    "

    # $

    %

    & '

    k

    !

    k1

    G

    "

    # $

    %

    & ' k

    !

    xA

    !

    SDKA

    ERROREST.

    !

    "x

    !

    ˆ " A

    !

    µ

    !

    ˆ G A

    !

    +

    !

    "

    !

    x

    Σ

    Σ

    Σ

    !

    ˆ " B

    !

    µ

    !

    SDKB

    !

    xB

    Σ

    Σ

    Σ!

    ˆ G B

    !

    1

    ˆ G B

    "

    # $

    %

    & '

    k

    !

    dkB

    !

    +

    !

    +

    OFF-CHIP DIGITAL PROCESSOR (FPGA)

    PATH A

    PATH B

    S/H

    !

    GA

    COMPS!

    +

    !

    "

    COMPS

    S/H

    !

    GB

    DAC

    !

    +

    !

    "

    CYCLIC RESIDUEAMPLIFIERS

    “B” L.U.T.

    ERRORCOEFF

    L.U.T.

    DAC

  • 52McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Error Estimation

    [ ][ ]

    BBB

    AAA

    SDKxx

    SDKxx

    !

    !

    +=

    +=[ ] [ ]

    AABBSDKSDKx !! "=#

    DifferenceA, B Outputs

    IDEAL ERROR

    • Ideal x cancelled from estimation signal path• No need for long decorrelation times

    –Deterministic: solve for εA, εB froma few Δ x observations

    • SDK error coefficients can be determinedfrom comparator decisions

  • 53McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Error Estimation

    ⇒ Need different dkA, dkB for “visibility” to errors!

    dkA

    !

    k1

    G

    "

    # $

    %

    & ' k !

    SDKAΣ

    ERRORCOEFF

    L.U.T.

    [ ] [ ]AABB

    SDKSDKx !! "=#Difference:εA, εB

    Fractional errors inGA, GB estimates

    SDKA, SDKBError

    coefficients

  • 54McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Multiple Residue Mode Amplifier

    “A” L.U.T.

    !

    dkA

    !

    vIN

    !

    1

    ˆ G A

    "

    # $

    %

    & '

    k

    !

    k1

    G

    "

    # $

    %

    & ' k

    !

    xA

    !

    SDKA

    ERROREST.

    !

    "x

    !

    ˆ " A

    !

    µ

    !

    ˆ G A

    !

    +

    !

    "

    !

    x

    Σ

    Σ

    Σ

    !

    ˆ " B

    !

    µ

    !

    SDKB

    !

    xB

    Σ

    Σ

    Σ!

    ˆ G B

    !

    1

    ˆ G B

    "

    # $

    %

    & '

    k

    !

    dkB

    !

    +

    !

    +

    OFF-CHIP DIGITAL PROCESSOR (FPGA)

    PATH A

    PATH B

    S/H

    !

    GA

    COMPS!

    +

    !

    "

    COMPS

    S/H

    !

    GB

    DAC

    !

    +

    !

    "

    CYCLIC RESIDUEAMPLIFIERS

    “B” L.U.T.

    ERRORCOEFF

    L.U.T.

    DAC

  • 55McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Multiple Residue Mode Amplifier

    • 2b PATH sets residue mode entirely in digital domain

    !

    d

    PATH

    S/H

    !

    G

    SEL

    !

    +

    !

    "

    !

    +VTH

    !

    0

    !

    "VTH

    !

    +VREF

    !

    0

    !

    "VREF

    00 “CYCLIC”

    DAC

    -1 +1

    01 “HIGH” 10 “LOW” 11 “WIDE”

    !

    vIN

    CYCLEDECISION-1 / 0 / +1

    -1 +10 -1 +10 -1 +10

    PATH:

    DECISION d:

  • 56McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    S/H, 1.5b DAC, G=1.92 Cyclic Amplifier

    • 2b PATH sets residue mode entirely in digital domain

    !

    d

    PATH

    S/H

    !

    G

    SEL

    !

    +

    !

    "

    !

    +VTH

    !

    0

    !

    "VTH

    !

    +VREF

    !

    0

    !

    "VREF

    00 “CYCLIC”

    DAC

    -1 +1

    01 “HIGH” 10 “LOW” 11 “WIDE”

    !

    vIN

    CYCLEDECISION-1 / 0 / +1

    -1 +10 -1 +10 -1 +10

    PATH:

    DECISION d:

  • 57McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Cyclic Amplifier: 3-Capacitor?

    DACcap

    Signal cap

    Feedback cap

    • Advantages– Easier to do signal-independent reference current– Decouple reference, cyclic gain paths (CM!)

    • Disadvantages– Extra capacitor area– Extra noise gain (killer!)– Output only valid on one

    phase (1/2 cycle)• Less time for comparator

    P. Ferguson, “Practical Aspects of Delta-Sigma Data Converter Design,” MEAD Microelectronics

  • 58McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Cyclic Amplifier: 2-Capacitor

    • Advantages– Less cap area– Lower noise gain– Output valid

    both phases• Easier on

    comparator

    • Disadvantages– Signal-dependent reference current– Reference, cyclic gain paths constrained (CM!)

    VREFM VREFP VCM

    SDBVOUT

    SDBP SDBZ SDBM SDTVCM

    SDTA

    SCF

    CD

    CF

    VOUT

    A

    DT

    VIN

    VCM

    DB

    SFBVIN

    SFBVOUT

    STPA

    VCM

    SFBVIN

  • 59McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Cyclic Amplifier: 2-Capacitor• 2-Cap chosen:

    –Lower total capacitancefor a given noise performance

    • Different feedback β in DAC, sample modes–Changes effect of amplifier noise

    VCM

    CD

    CF

    "DAC mode" β ~ 1/2

    CF

    VCM

    CD

    "Sample mode" β ~ 1

    VCM

    CD

    CF

  • 60McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    S/H, 1.5b DAC, G=1.92 Cyclic Amplifier

    • kT/C noise limited ⇒ large C

    13.5pF15pF

    13.5pF15pF

    VINP

    VOP

    VINM

    VOM

    VCM

    VCM

    VCM VCMVOP

    VOM

    VREFMVREFP

  • 61McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Op-Amp

    • kT/C noise limited ⇒ large C

    13.5pF15pF

    13.5pF15pF

    VINP

    VOP

    VINM

    VOM

    VCM

    VCM

    VCM VCMVOP

    VOM

    VREFMVREFP

  • 62McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Op-Amp Requirements

    Required by kT/C noise limit20-30pFCL80% of total IC power goal (100mW)33mAIDD16 bit settling, 30 ns, 1st half cycle150 MHzfTMaintain over full signal range100 dBAOLTrade SNR, linearity+/- 1.8VVOUTTrade with fT, settling time500 V/usSR

    CommentsSpecParam

  • 63McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Op-Amp

    SNR → ±2Vpp swing → Output not cascoded16b linear → ~100dB AOL → 2-stage⇒ First stage → Gain boosted cascode

    VIPVOP

    VIMVOM

    VB3VB4

    VB2

    VB1VB5 VB5

    Bult & Geelen, "A fast-settling CMOS op amp for SC circuits with 90-dB DC gain," JSSC, Dec 1990Pan et. al., "A 3.3-V 12-b 50-MS/s A/D converter in 0.6-µm CMOS with over 80-dB SFDR," JSSC, Dec. 2000

  • 64McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Op-Amp: Design for 90dB SNR

    • Noise contributors:

    Sample cap kT/C

    Op-amp gm

    • Plot SNR, total current

    as function of CF, IBIAS

    VREFM VREFP VCM

    SDBVOUT

    SDBP SDBZ SDBM SDTVCM

    SDTA

    SCF

    CD

    CF

    VOUT

    A

    DT

    VIN

    VCM

    DB

    SFBVIN

    SFBVOUT

    STPA

    VCM

    SFBVIN

    IBIAS

    gm

  • 65McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Op-Amp: IBIAS CF Optimization

    SNR [dB]

    TOTALOP-AMPCURRENT[mA]

    SAMPLE CAPACITANCE CF [F]

    DIFFPAIRIBIAS[A]

  • 66McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Op-Amp: IBIAS CF Optimization

    SNR → 90dB → Bias current, sample cap tradeoff

    CF limited

    gm limited

  • 67McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Overview• Analog / Mixed Signal IC Design

    –Role of Creativity• DSM CMOS Effects on Analog Design

    –Short L, Thin tox–Matching Issues

    • Self-Calibrating ADC–Overview–Design Details–Results

    • Conclusion

    McNEILL: CREATIVITY IN DSM CMOS … APRIL 28, 2006

  • 68McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Die Photo

    ADC "A" ADC "B"

    SWITCHEDCAPNETWORK

    OP-AMP

    COMPARATORS

  • 69McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Measured INL

  • 70McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Temperature Performance

  • 71McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Calibration Convergence

  • 72McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Comparison with Previous Work

    • Long decorrelation times not necessary

    N

    CONVERSIONSREQUIRED FORCALIBRATION

    12 14 16

    BITSRESOLUTION

    22N

    THISWORK

    [1] Galton2000[2] Murmann2003[3] Liu2004[4] Nair2004[5] Ryu2004

    21

    4 3

    5

    104

    105

    106

    107

    108

    109

  • 73McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    "Split ADC" architecture

    • Average: Output code• Difference: Drive to zero to correct errors• Deterministic: Rapid self-calibration

    – Suitable for high resolution ADCs

    • 16b 1MSps Cyclic ADC– Self-calibration in ~ 10,000 conversions

    Complexity moved into digital domain

  • 74McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Overview• Analog / Mixed Signal IC Design

    –Role of Creativity• DSM CMOS Effects on Analog Design

    –Short L, Thin tox–Matching Issues

    • Self-Calibrating ADC–Overview–Design Details–Results

    • Conclusion

  • 75McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    DSM CMOS Conclusions

    • Performance challenges–Change in role of analog techniques

    • Opportunities–Digital complexity enabled

    • Need for designer creativity–Choose best from both worlds

  • 76McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Acknowledgments• Analog Devices

    –Precision Nyquist Converters group–Bob Adams–Bob Brewer–Larry DeVito–Paul Ferguson–Colin Lyden–Katsu Nakamura–Richard Schreier–Larry Singer

    • Stanford University–Boris Murmann

  • 77McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

  • 78McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    ReferencesSelf-Calibrating ADCs

    J. McNeill, M. Coln, and B. Larivee, "'Split-ADC'Architecture for Deterministic Digital BackgroundCalibration of a 16b 1MS/s ADC ," ISSCC2005

    B. Murmann and B. Boser, "A 12-bit 75-MS/s PipelinedADC Using Open-Loop Residue Amplification," IEEEJ.Solid-State Circuits, Dec. 2003.

    Creativity

    R. Von Oech, "A Whack on the Side of the Head" New York: Warner, 1998. ISBN 0446674559

    R. Von Oech, "A Kick in the Seat of the Pants"New York: HarperCollins, 1986. ISBN 0060960248

    CMOS Design

    Op 't Eynde and Sansen, "Design and Optimization ofCMOS Wideband Amplifiers," Proc. CICC, 1989.

    R. van Langevelde, A. J. Scholten, R. Duffy, F. N.Cubaynes, M. J. Knitel, and D. B. M. Klaassen, "Gatecurrent: Modeling, ∆L extraction and impact on RFperformance, Proc. IEDM, 2001.

    A.-J. Annema, B. Nauta, R. van Langevelde, and H.Tuinhout, Analog Circuits in Ultra-Deep-SubmicronCMOS, IEEE J. Solid-State Circuits, Jan. 2005.

    C. Enz and G. Temes, "Circuit Techniques for Reducingthe Effects of Op-Amp Imperfections: Autozeroing,Correlated Double Sampling, and ChopperStabilization," Proceedings of the IEEE, Nov. 1996.

    Matching

    M. Pelgrom, A. Duinmaijer, and A. Welbers, "Matchingproperties of MOS transistors," IEEE J. Solid-StateCircuits, Oct. 1989.

    P. R. Kinget, " Device mismatch and tradeoffs in thedesign of analog circuits," JSSC, June, 2005.

    K. Bult, "Analog Design in Deep Sub-Micron CMOS ,"ESSCIRC2000, Sept. 2000.

  • 79McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Problem: Need for Linear Gain

    Lower VDD ⇒ no cascodes ⇒ High gain op-amp, linear gain difficult

  • 80McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Nonlinear residue amplifier

    • Pipeline ADCB. Murmann and B. Boser, "A 12-bit 75-MS/s Pipelined ADC Using Open-Loop Residue Amplification," IEEE JSSC Dec. 2003

  • 81McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Nonlinear residue amplifier

    • Digitally correct amplifier nonlinearityB. Murmann and B. Boser, "A 12-bit 75-MS/s Pipelined ADC Using Open-Loop Residue Amplification," IEEE JSSC Dec. 2003

  • 82McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Technology Change

    SHORTER L, THINNER tox CMOS

    DIE

    AR

    EA E

    FFIC

    IEN

    CY

    ANALOG

    DIGITA

    L

    CHOICE

  • 83McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Graphical analysis comeback?!?

    Tube V-I characteristic

  • 84McNEILL: CREATIVITY IN DSM CMOS … APRIL 3, 2007

    Inversion Level

    • Transconductance efficiency gm/IDFoty et. al., "Starting Over: gm/Id-Based MOSFET Modeling as a Basis for Modernized Analog Design Methodologies, Nanotech2002