De Tai Phan Tich

20
TRƯỜNG ĐẠI HỌC SƯ PHẠM THÀNH PHHCHÍ MINH KHOA HÓA HC CHUYÊN NGÀNH HÓA VÔ CƠ BÀI TIU LUN PHÂN TÍCH 2 XÁC ĐỊNH CANXI, MAGIE VÀ ĐỘ CNG CỦA NƯỚC BNG PHƯƠNG PHÁP CHUẨN ĐỘ COMPLEXON GVHD: Ths. Nguyn ThTuyết Nhung Nhóm thc hin: 1. Bùi ThThùy An 37106001 2. Nguyễn Công Dương 37106012 3. Lê Hng Bo Ngc 37106056

Transcript of De Tai Phan Tich

Page 1: De Tai Phan Tich

TRƯỜNG ĐẠI HỌC SƯ PHẠM THÀNH PHỐ HỒ CHÍ MINH

KHOA HÓA HỌC

CHUYÊN NGÀNH HÓA VÔ CƠ

BÀI TIỂU LUẬN

PHÂN TÍCH 2

XÁC ĐỊNH CANXI, MAGIE

VÀ ĐỘ CỨNG CỦA NƯỚC BẰNG

PHƯƠNG PHÁP CHUẨN ĐỘ COMPLEXON

GVHD: Ths. Nguyễn Thị Tuyết Nhung

Nhóm thực hiện:

1. Bùi Thị Thùy An 37106001

2. Nguyễn Công Dương 37106012

3. Lê Hồng Bảo Ngọc 37106056

Page 2: De Tai Phan Tich

1

LỜI MỞ ĐẦU

Hoá học phân tích đang là ngành quan trọng trong lĩnh vực hoá học. Các

ứng dụng của hóa học phân tích được áp dụng rộng rãi trong khoa học, nghiên cứu,

đời sống, sản xuất…Và một trong những ứng dụng quan trọng nhất là tách các kim

loại dựa vào đặc tính tạo phức của chúng với một số thuốc thử hữu cơ. Chính các

thuốc thử hữu cơ đã giúp cho phương pháp phân tích nâng cao được độ nhạy, độ

chính xác và tốc độ phân tích. Xã hội ngày nay càng phát triển và đi kèm với nó là

vấn đề đang rất được quan tâm – đó là tình trạng ô nhiễm nguồn nước.

Nước ngầm là nguồn cung cấp nước sinh hoạt chủ yếu ở nhiều quốc gia và

vùng dân cư trên thế giới. Do vậy, ô nhiễm nước ngầm có ảnh hưởng rất lớn đến

chất lượng môi trường sống của con người. Các tác nhân tự nhiên gây ô nhiễm và

suy thoái nước ngầm như nhiễm mặn, nhiễm phèn, hàm lượng sắt, mangan, nhôm,

đồng, magie, flo…và canxi là một trong những nguyên tố thường hiện diện trong

nước thiên nhiên khi nước chảy qua những vùng có nhiều đá vôi, thạch cao… nước

thường có độ cứng và độ kiềm khá cao. Thông thường hàm lượng canxi, magie có

trong nước từ 0 đến vài trăm mg/l. Chính sự có mặt của canxi, magie hình thành nên

canxicacbonat, theo thời gian tích tụ có thể tạo nên một màng vẩy cứng bám vào

mặt trong các ống dẫn, bảo vệ kim loại chống lại sự ăn mòn. Tuy nhiên lớp màng

này lại gây nguy hại cho những thiết bị sử dụng ở nhiệt độ cao như bình đun, ống

dẫn, nồi hơi… và các dụng cụ nhà bếp. Khi nấu ăn làm rau, thịt khó chín gây lãng

phí nhiên liệu, ảnh hưởng đến chất lượng đời sống của con người.

Có nhiều phương pháp xác định hàm lượng canxi, magie trong nước,

chúng em chọn phương pháp chuẩn độ conplexon sẽ cho kết quả tốt, đơn giản,

nhanh, và phù hợp với điều kiện phòng thí nghiệm. Nhưng các nguyên tố kim loại

tác dụng với axit etylen diamin tetra axetic (EDTA) sẽ gây ảnh hưởng đến việc xác

định nồng độ của canxi trong nước.

Page 3: De Tai Phan Tich

2

MỤC LỤC

CHƯƠNG 1: TỔNG QUAN ....................................................................................... 4

1.1 Phức chất: .......................................................................................................... 4

1.1.1 Định nghĩa: .................................................................................................. 4

1.1.2 Cấu tạo của phức chất: ................................................................................ 4

1.1.2.1 Chất tạo phức: ....................................................................................... 4

1.1.2.2 Phối tử: .................................................................................................. 4

1.1.2.3 Số phối trí: ............................................................................................. 4

1.1.2.4 Hóa trị: .................................................................................................. 4

1.1.4 Các yếu tố ảnh hưởng đến độ bền của phức: ............................................... 5

1.2 Giới thiệu về thuốc thử: ..................................................................................... 5

1.2.1 Định nghĩa: .................................................................................................. 5

1.2.2 Ứng dụng: .................................................................................................... 5

1.2.3 Thuốc thử..................................................................................................... 6

1.2.3.1 Thuốc thử EDTA .................................................................................. 6

1.2.3.2 Tính chất ............................................................................................... 6

1.3 Giới thiệu về ion kim loại: ................................................................................. 6

1.3.1 Canxi ........................................................................................................... 6

1.3.1.1 Giới thiệu về Canxi ............................................................................... 6

1.3.1.2. Tính chất vật lý .................................................................................... 7

1.3.1.3. Tính chất hóa học ................................................................................. 7

1.3.2 Magie ........................................................................................................... 7

1.3.1.1 Giới thiệu về Magie .............................................................................. 7

1.3.1.2. Tính chất vật lý .................................................................................... 8

1.3.1.3. Tính chất hóa học ................................................................................. 8

1.3.3. Tác hại của Canxi và Magie .......................................................................... 8

CHƯƠNG 2 THỰC NGHIỆM ................................................................................. 10

2.1 Xác định Ca2+

, Mg2+

bằng phương pháp chuẩn độ complexon (EDTA) ....... 10

2.1.1 Giới thiệu ................................................................................................... 10

Page 4: De Tai Phan Tich

3

2.1.2 Thí nghiệm ................................................................................................ 12

2.1.2.1 Dụng cụ và hóa chất ............................................................................ 12

2.1.2.2 Cách tiến hành ..................................................................................... 13

2.1.2.3 Kết quả và thảo luận ........................................................................... 13

2.2 Xác định Ca2+

, Mg2+

bằng phương pháp ICP-AES ........................................ 14

2.2.1 Giới thiệu ................................................................................................... 14

2.2.2 Thí nghiệm: ............................................................................................... 14

2.2.2.1 Dụng và hóa chất ................................................................................ 14

2.2.2.2 Cách tiến hành: ................................................................................... 15

2.2.2.3 Kết quả và thảo luận ........................................................................... 15

2.3 So sánh và nhận xét từ hai phương pháp chuẩn độ complexon và phương

pháp ICP-AES........................................................................................................ 17

TÀI LIỆU THAM KHẢO ......................................................................................... 19

PHỤ LỤC BẢNG

Bảng 1. Nồng độ Ca2+

và Mg2+

trong mẫu nước bằng phương pháp EDTA. ......... 13

Bảng 2. Nồng độ Ca2+

và Mg2+

trong mẫu nước bằng phương pháp ICP-AES. ..... 16

Bảng 3. Độ cứng của hai phương pháp EDTA và phương pháp ICP-AES ............. 18

PHỤ LỤC BIỂU ĐỒ

Biểu đồ 1. Nồng độ Canxi và Magie bằng phương pháp ICP-AES với a)

Moorhead tap , b) Fargo tap, c) Detroit Lakes well, and d) DI. .............. 16

Biểu đồ 2. So sánh kết quả nồng độ Ca2+

của phương pháp EDTA và ICP-AES .... 17

Biểu đồ 3. So sánh kết quả nồng độ Mg2+

của phương pháp EDTA và ICP-

AES .......................................................................................................... 17

Biểu đồ 4. So sánh độ cứng giữa các nguồn nước từ hai phương pháp EDTA

và ICP-AES ............................................................................................. 18

************

Page 5: De Tai Phan Tich

4

CHƯƠNG 1: TỔNG QUAN

1.1 Phức chất:

1.1.1 Định nghĩa:

Theo A.Werner: “Phức chất là hợp chất phân tử no bền trong dung dịch nước,

không phân hủy hoặc chỉ phân hủy rất ít ra các hợp phần tạo thành hợp chất đó.

Theo A.Grinbe: “Phức chất là những hợp chất phân tử xác định, khi kết hợp

các hợp phần của chúng lại thì tạo thành các ion phức tạp tích điện dương hay âm,

có khả năng tồn tại ở dạng tinh thể cũng như ở dung dịch. Trong trường hợp riêng,

điện tích của ion phức tạp đó có thể bằng không”.

Theo K.B.Iaximirxki: “ Phức chất là những hợp chất tạo được các nhóm riêng

biệt từ các nguyên tử, ion hoặc phn tử với những đặc trưng: a) có mặt phối trí, b)

không phân lu hoàn toàn trong dung dịch, c) có thành phần phức tạp”.

1.1.2 Cấu tạo của phức chất:

1.1.2.1 Chất tạo phức:

Mỗi phức chất một nguyên tử hay ion chiếm vị trí trung tâm được gọi l

nguyên tử hoặc ion trung tâm có tên gọi chung là chất tạo phức.

1.1.2.2 Phối tử:

Là những ion hay phân tử phân bố trực tiếp xung quanh ngưyên tử trung tâm

tạo thành cầu nội và cầu ngọai phối trí.

1.1.2.3 Số phối trí:

Số các ion hay phân tử liên kết trực tiếp với nguyên tử (ion) trung tâm ở

trong cầu nội (không phân biệt hóa trị chính hay phụ) là số phối trí của nguyên tử

(ion) trung tâm.

1.1.2.4 Hóa trị:

Hóa trị chính và phụ là một trong những luận điểm cơ bản của thuyết phối trí

A.Vecnơ

Hóa trị chính tương ứng với hóa trị bình phương của nguyên tố mà tạo thành

các hợp chất bậc nhất. được biểu diễn bằng một vạch liền.

Page 6: De Tai Phan Tich

5

Hóa trị phụ là hóa trị dư, thêm khi tạo hợp chất bậc nhất, hóa trị của nguyên tử

của các nguyên tố không được bão hòa hoàn toàn mà còn có thể thể hiện hóa trị phụ.

Nhờ hóa trị phụ các phân tử có thể tương tác với nhau tạo thành hợp chất bậc cao.

Hóa trị phụ được biểu diễn bằng gạch chấm.

1.1. C c ếu t ảnh h ng đến đ n của phức:

- Đánh giá các hằng số bền

- Độ tin cậy của các hằng số bền được xác định bởi các yếu tố sau:

- Tính hợp lý của phương pháp thực nghiệm.

- Độ chính xác của thực nghiệm.

- Việc tính được đầy đủ tất cả các cân bằng thực tế điễn ra trong hệ.

- Phương pháp tính tóan.

- Độ tin cậy của các dữ kiện phụ trợ đã dùng.

- Ảnh hưởng các yếu tố bên ngòai lên hằng số bền

- Ảnh hưởng của áp suất.

- Ảnh hưởng của nhiệt độ.

- Ảnh hưởng của hằng số bền điện môi của dung dịch.

- Ảnh hưởng của lực ion và môi trường ion.

- Ảnh hưởng của ion trung tâm và các ligan lên hằng số bền của phức.

1.2 Giới thiệu v thu c thử:

1.2.1 Định nghĩa:

Thuốc thử hữu cơ là một hợp chất chứa cacbon (trừ CO2, CO, CaCO3) bất kỳ

hoặc trực tiếp, hoặc gián tiếp được sử dụng trong hóa phân tích được gọi là chất

phản ứng phân tích hữu cơ hay thuốc thử hữu cơ.

1.2.2 Ứng dụng:

Thuốc thử hữu cơ đƣợc ứng dụng rộng rãi trong phân tích trắc quang, các

phương pháp chuẩn độ…Hiện nay các nhà hóa học còn nghiên cứu về thuốc thử

hữu cơ trong các lĩnh vực sau:

- Tổng hợp những thuốc thử hữu cơ mới.

Page 7: De Tai Phan Tich

6

- Tìm các phương pháp phân tích mới theo hướng đơn giản, nhạy và chọn lọc.

- Nghiên cứu tác động của các nhóm chức.

- Nghiên cứu cấu trúc của thuốc thử.

- Nghiên cứu động học của phản ứng

1.2.3 Thu c thử

1.2.3.1 Thuốc thử EDTA

Tên hóa học:

Natri [[N, N'-ethandiylbis[N-(carboxymethyl) glycinato]] (4-)] ferrat (1-);

Natri [(ethylendinitrilo) tetraacetato] ferrat (1-);

Natri sắt (III) ethylendiamintetraacetat

Công thức phân tử: C10H12FeN2NaO8.3H2O

Công thức cấu tạo:

Khối lượng phân tử: Dạng trihydrat: 421,09

1.2.3.2 Tính chất

Có dạng bột màu vàng nhạt, tương đối bền và không bị biến đổi trong quá

trình bảo quản, Tan trong nước. Có pH từ 3,5 – 5,5

1.3 Giới thiệu v ion kim loại:

1.3.1 Canxi

1.3.1.1 Giới thiệu về Canxi

Theo lượng phân bố trong vỏ Trái Đất, Ca chiếm vị trí thứ năm trong các

nguyên tố (sau oxi, silic, nhôm và sắt).

Kí hiệu: Ca

Số thứ tự: 20

Nguyên tử khối: 40,078đvc

Cấu hình electron: [Ar] 4s2

Page 8: De Tai Phan Tich

7

Bán kính nguyên tử: 1,8

Cấu trúc tinh thể: Caα có mạng lập phương tam diện.

Caβ có mạng lưới lục phương.

Canxi thuộc chu kỳ 4, phân nhóm IIA trong bảng hệ thống tuần hoàn.

Số oxi hóa đặc trưng là +2. Tuy vậy trong một số trường hợp có thể có số oxi

hóa +1, như trong CaCl, hợp chất này được tạo nên từ hỗn hợp CaCl2 và Ca nung

nóng ở 1000oC.

Canxi có độ dẫn điện cao vì vùng s và vùng p trong kim loại kiềm thổ đã che

phủ nhau tạo thành 1 vùng chứa có đủ electron làm cho kim loại dẫn điện tốt.

Canxi gồm 12 đồng vị bền từ 38Ca đến 49Ca. Ca thiên nhiên gồm 6 đồng vị bền

với số khối là 40, 42, 43, 44, 46 và 48.

1.3.1.2. Tính chất vật lý

Canxi là một kim loại màu xám bạc, mềm. tnc = 842oC; ts = 1,495

oC (trong

chân không, thăng hoa ở 845oC).

1.3.1.3. Tính chất hóa học

Canxi có hoạt tính hóa học cao ở nhiệt độ thường, dễ bị oxi hóa trong không

khí. Tác dụng được với tất cả các nguyên tố phi kim, tác dụng mạnh với nước, khử

mạnh các oxit.

Canxi được điều chế bằng phương pháp điện phân canxi clorua nóng chảy.

dùng nhôm khử canxi oxit ở nhiệt độ cao và trong chân không cao. Nó cháy với

ngọn lửa màu vàng-đỏ và tạo thành một lớp nitrua che phủ có màu trắng khi để

ngoài không khí.

1.3.2 Magie

1.3.1.1 Giới thiệu về Magie

Magiê, tiếng Việt còn được đọc là Ma-nhê (Latinh: Magnesium) là tên một

nguyên tố hóa học trong bảng tuần hoàn nguyên tố có ký hiệu Mg và số nguyên tử

bằng 12.

Page 9: De Tai Phan Tich

8

Kí hiệu: Mg

Số thứ tự: 12

Nguyên tử khối: 24,3050đvc

Cấu hình electron: [Ne] 3s2

Magie thuộc chu kỳ 3, phân nhóm IIA trong bảng hệ thống tuần hoàn. Số oxi

hóa đặc trưng là +2. Magie có độ dẫn điện cao vì vùng s và vùng p trong kim loại

kiềm thổ đã che phủ nhau tạo thành 1 vùng chứa có đủ electron làm cho kim loại

dẫn điện tốt.

1.3.1.2. Tính chất vật lý

Magiê là kim loại tương đối cứng, màu trắng bạc, nhẹ (chỉ nặng khoảng 2/3

nhôm nếu cùng thể tích) bị xỉn nhẹ đi khi để ngoài không khí.

1.3.1.3. Tính chất hóa học

Magie có hoạt tính hóa học cao ở nhiệt độ thường, dễ bị oxi hóa trong không

khí. Tác dụng được với tất cả các nguyên tố phi kim, tác dụng mạnh với nước, khử

mạnh các oxit.

1.3.3. Tác hại của Canxi và Magie

Đối với môi trường nước: Hàm lượng ion canxi trong nước cao gây ra hiện

tượng nước cứng. Độ cứng của nước là đại lượng biểu thị hàm lượng các ion canxi

và magiê có trong nước. Trong kỹ thuật xử lý nước sử dụng ba loại khái niệm độ

cứng:

• Độ cứng toàn phần biểu thị tổng hàm lượng các ion canxi và magiê có trong

nước.

• Độ cứng tạm thời biểu thị tổng hàm lượng các ion Ca2+,

Mg2+

trong các muối

cacbonat và hydrocacbonat canxi, hydrocacbonat magiê có trong nước.

• Độ cứng vĩnh cửu biểu thị tổng hàm lượng các ion Ca2+,

Mg2+

trong các muối

axit mạnh của canxi và magie.

Page 10: De Tai Phan Tich

9

Dùng nước có độ cứng cao trong sinh hoạt sẽ gây lãng phí xà phòng do canxi

và magiê phản ứng với các axit béo tạo thành các hợp chất khó tan. Trong sản xuất,

nước cứng có thể tạo lớp cáu cặn trong các lò hơi hoặc gây kết tủa ảnh hưởng đến

chất lượng sản phẩm.

Có nhiều đơn vị đo độ cứng khác nhau:

Độ Đức (odH): 1odH = 10 mg CaO/l nước.

Độ Pháp (of ): 1of = 10 mg CaCO3/0,7l nước.

Độ Anh (oe ): 1oe = 10 mg CaCO3/0,7l nước.

Đông Âu ( mgđl/l): 1 mgđl/l = 2,8odH.

Tuỳ theo giá trị độ cứng, nước được phân loại thành:

* Độ cứng < 50 mg CaCO3/l : nước mềm.

* 50 – 150 mg CaCO3/l : nước trung bình.

* 150 – 300 mg CaCO3/l : nước cứng.

* > 300 mg CaCO3/l : nước rất cứng.

* Tác hại của nước cứng:

Độ cứng vĩnh viễn của nước ít ảnh hưởng đến sinh vật trừ phi nó quá cao,

ngược lại, độ cứng tạm thời lại có ảnh hưởng rất lớn. Nguyên nhân là vì thành phần

chính tạo ra độ cứng tạm thời là các muối bicarbonat Ca và Mg: Ca(HCO3)2 và

Mg(HCO3)2, chúng là các muối hòa tan hoàn toàn nhưng không ổn định, không bền.

Chúng dễ dàng bị phân hủy thành CaCO3, MgCO3 là các muối kết tủa:

Ca(HCO3)2 → CaCO3 + H2O + CO2

Mg(HCO3)2 → MgCO3 + H2O + CO2

Khi phản ứng phân hủy xảy ra trong cơ thể sinh vật, các muối này kết tủa

trong cơ thể sinh vật sẽ gây hại. Ở con người, chúng là nguyên nhân gây ra sỏi thận

Page 11: De Tai Phan Tich

10

và một trong các nguyên nhân gây tắc động mạch do đóng cặn vôi ở thành trong của

động mạch.

Lưu ý là các muối CaCO3 và MgCO3 là các muối kết tủa và chúng không thấm

qua niêm mạc hệ tiêu hóa của chúng ta được, chỉ các muối hòa ta mới thấm được

thôi. Vì vậy nước cứng chỉ có tác hại do các muối bicacbonat.

Đối với con người và động vật: Thiếu canxi ở súc vật non làm chậm sinh

trưởng, thiếu trầm trọng thì gây còi xương; ở súc vật trưởng thành, gây xốp xương.

Thiếu canxi cũng ảnh hưởng đến sản lượng và chất lượng trứng, sữa. Sự đồng

hoá canxi phụ thuộc vào lượng vitamin D và sự cân bằng giữa canxi và photpho.

Lượng canxi không hấp thụ hết có thể tích tụ gây vôi hóa thận, sỏi mật, táo

bón, tăng canxi trong máu.

CHƯƠNG 2 THỰC NGHIỆM

2.1 X c định Ca2+

, Mg2+

bằng ph ơng ph p chuẩn đ complexon (EDTA)

2.1.1 Giới thiệu

Phép chuẩn độ complexon dựa trên sự tạo phức bền và tan trong nước của

complexon với các ion kim loại. Trong đó tiêu biểu nhất là Trilon B, nó chính là

muối hai lần thế của axit etylen điamin tetraaxetic.

Viết tắt là Na2H2Y

Chỉ thị của phương pháp là Eriocrom đen T (viết tắt là ET-OO) hay Murexit.

Vì phức của chỉ thị với kim loại kém bền hơn phức của Trilon B với kim loại nên

khi cho dung dịch trilon B xuống dung dịch chứa phức kim loại với chỉ thị (MeInd),

thì phức này bị phá huỷ và ion kim loại sẽ tạo phức với Trilon B.

Toàn bộ quá trình chuẩn độ được mô tả bằng sơ đồ sau:

Page 12: De Tai Phan Tich

11

- Cho chỉ thị (Eriocrom đen T) vào dung dịch chứa ion kim loại thì ion kim loại

phản ứng với chỉ thị:

Me2+

+ HInd2-

MeInd- + H

+

Xanh Đỏ nho

Sau đó chuẩn dung dịch chứa ion kim loại bằng Trilon B thì ion kim loại tự do

sẽ phản ứng với Trilon B.

Me2+

+ H2Y2-

MeY2-

+ 2H+

Sau khi hết ion kim loại tự do thì:

H2Y2-

+ MeInd- MeY

2- + HInd

2- + H

+

Đỏ nho Xanh da trời

Khi dung dịch chuyển từ đỏ nho sang xanh da trời thì dừng chuẩn độ với

phương pháp này và cần lưu ý mấy điểm sau:

- Vì Trilon B phản ứng với các ion kim loại có hoá trị khác nhau đều giải

phóng ra 2H+:

- Mọi phản ứng chuẩn độ đều sinh ra H+ nên ta phải thêm hỗn hợp đệm amoni

vào để ổn định pH của dung dịch, hỗn hợp đệm amoni có pH = 8 -10, như vậy màu

của phức bền. Còn xác định Canxi thì dùng dung dịch NaOH để kết tủa toàn bộ

Mg2+

, sau đó chuẩn độ Ca2+

.

- Phép chuẩn độ thường hay dùng để xác định độ cứng của nước vì trong nước

có rất nhiều Ca2+,

Mg2+

.

- Tính toán theo phương pháp chuẩn độ trực tiếp:

Cơ chế tạo phức giữa Me2+

và Trilon B được biểu diễn bằng sơ đồ sau:

Page 13: De Tai Phan Tich

12

Như vậy ion kim loại liên kết với Trilon B nhờ hai liên kết chính với hai nhóm

axêtát và hai liên kết phối trí với 2 nguyên tử N nên phức này đủ bền không màu và

tan trong nước.

Ưu điểm của ph ơng ph p complexon

Phương pháp chuẩn độ complexon cho kết quả tốt để kiểm tra và ứng dụng

thông thường. Phương pháp chuẩn độ complexon đơn giản, nhanh và tiện lợi hơn

phương pháp permanganate. Vì vậy, chúng em chọn phương pháp chuẩn độ

complexon để xác định canxi, magie trong nước cho đề tài nghiên cứu.

Nhược điểm phương pháp này có độ chính xác không cao.

2.1.2 Thí nghiệm

2.1.2.1 Dụng cụ và hóa chất

Dung dịch đệm pH=10 : Để tạo ra một dung dịch có pH=10 cần 142 ml 28 %

khối lượng dung dịch nước NH3 và 17,5 g NH4Cl được thêm vào bình định mức

250 ml. Sau đó cho nước vào đầy bình định mức (250 ml).

Dung dịch EDTA : Na2H2EDTA.2H2O được sấy khô trong 1 giờ và làm mát

trong bình hút ẩm . Khoảng 0,6 g Na2H2EDTA khô được cân và được đặt trong một

bình 500 ml Erlenmeyer với khoảng 400 ml nước cất . Các dung dịch đã được làm

nóng cho đến khi tất cả các rắn đã giải thể. Một khi dung dịch đã nguội thì chuyển

vào bình định mức 500 ml và pha loãng tới vạch định mức.

Mẫu Chuẩn bị:

Page 14: De Tai Phan Tich

13

Xác định Ca2+

và Mg2+

ion: Bốn mẫu 50,00 ml nước uống được pipet thành

bốn 250 ml bình tam giác (erlen). 3 ml pH 10 bộ đệm đã được thêm vào mỗi mẫu

cũng như 6 giọt chất chỉ thị Eriochrome đen T

Xác định các ion Ca2+

: Bốn mẫu 50,00 ml nước uống được pipet vào riêng

biệt bình 250 ml bình tam giác (erlen) . 30 giọt 50 % khối lượng NaOH được thêm

vào mỗi bình . Khuấy đều trong 2 phút. Sau khi các dung dịch đã được, trộn khoảng

0,1 g rắn hydroxynapthol màu xanh vào mỗi bình .

2.1.2.2 Cách tiến hành

Dung dịch EDTA cho vào một buret 50 ml . Lấy các mẫu đã chuẩn bị ở trên

mang đi chuẩn độ cho đến khi có sự thay đổi màu sắc từ rượu vang đỏ sang màu

xanh để đo Ca2+

và các ion Mg2+

, hoặc từ màu hồng sang màu xanh để đo các ion

Ca2+

. Ghi lại thể tích. Làm tương tự cho các lọ mẫu còn lại.

2.1.2.3 Kết quả và thảo luận

Nồng độ của các ion Ca2+

và Mg2+

được tính toán bằng cách sử dụng khối

lượng EDTA tăng và nồng độ mol của dung dịch EDTA. Trong bảng 1 các giá trị

nồng độ trung bình trong phần triệu (ppm) được liệt kê với độ lệch chuẩn.

Bảng 1. Nồng đ Ca2+

và Mg2+

trong mẫu n ớc bằng ph ơng ph p EDTA.

Nguồn n ớc n Nồng đ Ca2+

(ppm) Nồng đ Mg2+

(ppm)

Moorhead Tap 4 23 ± 1,0 14,4 ± 0,8

Fargo Tap 4 46,3 ± 0,6 13,9 ± 0,2

Detroit Lakes Tap 4 17,6 ± 0,4 24,9 ± 0,2

Lab DI Tap 4 0 ± 0 0 ± 0

Page 15: De Tai Phan Tich

14

2.2 X c định Ca2+

, Mg2+

bằng ph ơng ph p ICP-AES

2.2.1 Giới thiệu

ICP-AES là phương pháp phân tích phổ phát xạ nguyên tử bằng cách dùng

nguồn năng lượng plasma phù hợp để kích thích sự phát xạ của các nguyên tử, sau

đó thu, ghi và đánh giá các tín hiệu cuồng độ phát xạ của chúng.

Ưu điểm và nhược điểm của phương pháp ICP-AES:

Ưu điểm:

Phương pháp này có độ nhạy rất cao. Vì thế nó là phương pháp để kiểm tra,

đánh giá độ tinh khiết của niều hóa chất và nguyên liệu tinh khiết cao, phân tích

lượng vết các kim loại nặng độc hại trong đối tượng thực phẩm, nước giải khát, môi

trường. Trong khi đó với những đối tượng này thì phương pháp hóa học không thể

nào đạt được.

Phương pháp này giúp chúng ta có thể phân tích đồng thời nhiều nguyên tố

trong một mẫu, mà không cần tách riêng chúng ra khỏi nhau. Mặt khác, lại không

tốn nhiều thời gian.

Phương pháp phân tích theo phổ phát xạ nguyên tử là một phép đo chính xác

tương đối cao, sai số của phép đo dưới 10%.

Nhược điểm:

Phương pháp này chỉ cho chúng ta biết được thành phần nguyên tố của mẫu

phân tích, mà không chỉ ra được trạng thái liên kết của nó trong mẫu.

Độ chính xác của phép phân tích phụ thuộc vào nồng độ chính xác của thành

phần của dãy mẫu vì kết quả định lượng đều phải dựa theo các đường chuẩn của các

dãy mẫu đầu đã được chế tạo sẵn từ trước.

2.2.2 Thí nghiệm:

2.2.2.1 Dụng và hóa chất

Hóa chất cần chuẩn bị:

Page 16: De Tai Phan Tich

15

Dung dịch HNO3 1%

Dung dịch Ca2+

Dung dịch Mg2+

2.2.2.2 Cách tiến hành:

Chuẩn bị 5 bình định mức 50 ml được đánh số từ 1 đến 4 và S. Hút chính xác

10ml mẫu vào 5 bình trên. Sau đó hút lần lượt 2 ml, 4 ml, 6 ml và 8 ml dung dịch

Ca2+

vào bình từ 1 đến 4. Làm tượng tự với Mg2+

. Sau đó thêm dung dịch HNO3

1% đến vạch định mức. Đem 5 bình trên đi đo.

2.2.2.3 Kết quả và thảo luận

Từ phương pháp ICP-AES ta được những đường biểu đồ thể hiện nồng độ

của 2 ion

Page 17: De Tai Phan Tich

16

Biểu đồ 1. Nồng độ Canxi và Magie bằng phương pháp ICP-AES với a) Moorhead

tap , b) Fargo tap, c) Detroit Lakes well, and d) DI.

Trong bảng 2 các giá trị nồng độ trung bình trong phần triệu (ppm) được liệt

kê với độ lệch chuẩn bằng phương pháp ICP-AES.

Bảng 2. Nồng đ Ca2+

và Mg2+

trong mẫu n ớc bằng ph ơng ph p ICP-AES.

Nguồn n ớc n Nồng đ Ca2+

(ppm) Nồng đ Mg2+

(ppm)

Moorhead Tap 4 24,247 ±0,005 15,6 ±0,3

Fargo Tap 4 44,72 ±0,03 14,64 ±0,04

Detroit Lakes Tap 4 18,06 ±0,05 31,189 ±0,002

Lab DI Tap 4 -0,084 ±0,002 -0,090 ±0,002

Page 18: De Tai Phan Tich

17

2.3 So sánh và nhận xét từ hai ph ơng ph p chuẩn đ complexon và ph ơng

pháp ICP-AES

Khi các giá trị trung bình và độ lệch chuẩn cho mỗi mẫu nước được tính. Ta so

sánh các giá trị từ dữ kiện thực nghiệm ở trên. Hình 2 và 3 so sánh các giá trị được

xác định bởi mỗi phương pháp cho từng mẫu nước với các thanh độ lệch chuẩn để

hiển thị các dãy.

Biểu đồ 2. So sánh kết quả nồng đ Ca2+

của ph ơng pháp EDTA và ICP-AES

Biểu đồ 3. So sánh kết quả nồng đ Mg2+

của ph ơng ph p EDTA và ICP-AES

Nồng độ ion Mg2+

Mẫu

ớc

Mẫ

u n

ướ

c

Page 19: De Tai Phan Tich

18

Kết quả từ thí nghiệm cho ta thấy bằng hai phương pháp EDTA và phương

pháp ICP-AES cho hai kết quả gần như nhau. Kết quả cũng nằm trong phạm vi sai

số cho phép, trừ trường hợp nồng độ magiê trong mẫu Detroit Lakes. Những thí

nghiệm tương tự cho ra kết quả như nhau từ hai phương pháp. Cũng có các mẫu

nước đã được làm mềm nước giống như các mẫu nước giếng từ hồ Detroit nên được

bỏ qua từ các thí nghiệm, vì nó có thể có ảnh hưởng đến tổng nồng độ ion chuẩn độ

EDTA.

Bảng 3. Đ cứng của hai ph ơng pháp EDTA và ph ơng pháp ICP-AES

Nguồn n ớc Đ cứng (mg/l)

PP EDTA

Đ cứng (mg/l)

PP ICP-AES Loại

Moorhead Tap 37,4±1,8 39,847±0,305 Nước mềm

Fargo Tap 60,2±0,8 59,36±0,07 Nước trung bình

Detroit Lakes Tap 42,5±0,6 49,249±0,07 Nước mềm

Lab DI Tap 0±0,0 -1.74±0,004 Nước mềm

Từ dữ liệu trên ta được biểu đồ sau

Biểu đồ 4. So sánh đ cứng giữa các nguồn n ớc từ hai ph ơng pháp EDTA và

ICP-AES

Nhìn vào đồ thị ta thấy được nguồn nước Fargo Tap có độ cứng cao nhất

thuộc loại nước trung bình, sau đó đến nguồn nước Moorhead Tap và Detroit Lakes

Tap và sau cùng là Lab DI Tap các loại nước này thuộc loại nước mềm.

-10

0

10

20

30

40

50

60

70

Moorhead Tap Fargo Tap Detroit Lakes Tap Lab DI Tap

EDTA

ICP-AES

Nguồn N ớc

Đ cứng (mg/l)

Page 20: De Tai Phan Tich

19

TÀI LIỆU THAM KHẢO

[1] Annika Larson (2012), “Statistical analysis of EDTA titration vs. ICP-AES in

the determination of water hardness”, Concordia College Journal of Analytical

Chemistry 3, Vol. 3. No. 8, pp. 40-46.

[2] Joseph N. Afiukwa, Celestine A. Afiukwa, Wilberforce Oti (2012),

“Determination Of Calcium, Magnesium And Total Hardness Concentrations In

Drinking Water Supply In Ebonyi State”, Continental J. Water, Air and Soil

Pollution 3, Vol. 3, No. 1, pp. 12-16.

[3] R.A. Rogio (2013), Quantitative Determination Of Total Hardness In

Drinking Water By Complexometric Edta Titration, Master's thesis Chemical

Analysis, University of Engineering The Philippines, Philippines.