Chih‐Chien Tsai , Shu‐Chih Yang and Yu‐Chieng...
Embed Size (px)
Transcript of Chih‐Chien Tsai , Shu‐Chih Yang and Yu‐Chieng...
-
ImprovingQuantitativePrecipitationNowcasting withaLocalEnsembleTransformKalman FilterRadarDataAssimilationSystem:TyphoonMorakot (2009)
Chih‐ChienTsai1,Shu‐ChihYang2,3 andYu‐ChiengLiou21TaiwanTyphoonFloodandResearchInstitute,NationalAppliedResearchLaboratories,Taipei,Taiwan;
2DepartmentofAtmosphericSciences,NationalCentralUniversity,Taoyuan,Taiwan;3RIKENAdvancedInstituteforComputationalScience,Kobe,Japan
16Sep2014,Taipei,Taiwan
-
2
1. Introduction
2. Experimentaldesign
3. Results
1) Benefitofradialvelocityassimilation
2) Limitationofreflectivityassimilation
3) Impactofmixedlocalization
4. Summaryandongoingwork
2
-
TyphoonMorakot (2009)
3High‐resolutionQPNiscrucialtoearlywarningagainstrainfallhazards
before after
Maximum48‐hourrainfall:2361mm (recordofTaiwan) Hsiaolin landslidecausednearly500fatalities
Hsiaolin landslide Collapsed hotel
-
Quantitativeprecipitationnowcasting (QPN)
4
1. Veryshort‐term:Forecastlength<6hours
2. Highresolution:Gridspacing<5kmRadardataarerequired
3. Method1:radarechoextrapolation Useextrapolationmodels(celltracking,variational echotracking) Usereflectivity(Zh)information QPNskillrapidlydissipatesafter1‐2hours
4. Method2:radardataassimilation UseregionalNWPmodels Useradialvelocity(Vr) andreflectivity(Zh)information Newcellsarepredictableviamodeldynamicsandmicrophysics QPNskillcanbelengthenedintime
-
LocalensembletransformKalman filter(LETKF)
5
1. AdeterministicEnKF (Bishopetal.2001;Ott etal.2004;Huntetal.2007)
2. Formulation: Ensemblemean:
Ensembleperturbations:
where
3. Advantages: Flow‐dependentbackgrounderrorcovariancematrix Immunityfrom4DVar’stangentlinearandadjoint models Handleatmosphericnonlinearitieswithanonlinearmodelandoperator Easyparallelcomputing
4. Covariancelocalizationtechniques: Variablelocalization(Kangetal.2011) Mixedlocalization(Tsaietal.2014)Multiplescalesoftyphoons
1 /
1 ⁄
-
Goalofthisstudy
6
WRF RadarVr&ZhLETKF
NWPmodelAssimilationschemeObservation
ImprovingQPNforTyphoonMorakot(multiplescales,strongterraineffect)
Yangetal.(2012,2013) Tsaietal.(2014)
-
Case:theheaviestrainfallperiod(12Z8–00Z9Aug)
7
1-km horizontal wind (vectors) and qv(color) at 18Z 8 from NCEP FNL data
6-hour overland rainfall since 18Z 8 from CWB observations
Reachaminimummovingspeedof2.6m/s Convergencebetweenmoistsouthwestmonsoonandtyphooncirculation Strongterraineffectthatenhancesrainfall
-
Modelsetup
8
RCCGradar
CWB besttrack
WRF‐ARWV3.2.1Domains: Triple‐nested Two‐wayinteractive 28verticaletalevelsPhysics: Microphysics:PurdueLin Cumulus:Kain‐Fritsch LSM:Noah PBL:YSUPrognosticvariables: , , , , , , , ,
, , ,
0900 08180812
-
Assimilationexperiments
9
Assimilatethesuperobservations ofVr andZh fromS‐bandRCCGradar Givenobservationerrors:Vr→3m/s,Zh→5dBZ 2‐hourassimilationperiodwitha15‐mincycleinterval
-
10
Distributionoftheassimilatedobservations
Observationsdecreasewithheight Withawarm‐rainoperator,Zh observationsabove
5km(~meltinglayer)arenotassimilated
ZhVr
-
11
Experiment AssimilatingVr(updatedvariables)AssimilatingZh
(updatedvariables)Horizontallocalizationradius
(updatedvariables)CTRL Yes(all) Yes(all) 12km(all)VR Yes(all) No 12km(all)VZqr Yes(all) Yes (onlyqr) 12km(all)V36 Yes(all) No 36km( , ),12km(others)NoDA NoradardataassimilationSingle Noradardataassimilation
Assimilationstrategies
VZqr appliesvariablelocalization toreflectivityassimilation V36appliesmixedlocalization toradialvelocityassimilation
-
12
Correctionoftheimpingingwesterlyflow
A→SingleandNoDA inheritaweakerwesterlyflowfromNCEPFNLdataat12Z
A→VRlargelycorrectstheimpingingwindspeed
B→SpuriousconvectioncanoccurinSingle,whileNoDAsmooths outallinconsistentconvectionsintakingamean
Vr of RCCG 0.5° PPI at 18Z 8
-
13
ConsequentQPNimprovement
VR provides a more accuraterainfall nowcast than Singleand NoDA, especially at areaC’ (downstream area of A)
3-hour overland rainfall since 18Z 8
Experiment 1‐hour 3‐hour 6‐hourSingle 0.369 0.606 0.636NoDA 0.509 0.644 0.629VR 0.569 0.655 0.654
Correlation coefficients of 1-, 3-and 6-hour overland rainfall since18Z 8 compared with OBS
-
14
Limitationofreflectivityassimilation
Experiment 1‐hour 3‐hour 6‐hourNoDA 0.509 0.644 0.629CTRL 0.459 0.594 0.622VR 0.569 0.655 0.654VZqr 0.586 0.666 0.655
Correlation coefficients of 1-, 3-and 6-hour overland rainfall since18Z 8 compared with OBS
1. Needvariablelocalization: Onlyqr hasareliableerrorcovariancewithZh Implications:
Samplingerror inensemblespacedominatespoorerphysicalrelationsbetweentheothervariablesandZh
Highnonlinearity ofZh Modelerror andoperatorerror
2. ShortermemorythanVr assimilation: VRoutperformsNoDA for6hours VZqr outperformsVRforonly3hours
-
15
Benefitofreflectivityassimilation
Zh of RCCG 0.5° PPI at 1730 UTC 8
3-hour overland rainfall since 18Z 8
Rainband structureisretrievedwhereZhobservationsareassimilated(<5km)
Maximumrainfallintensity(areaD’)isbetterforecasted
-
16
Motivationofmixedlocalization
Background error correlation at 18Z 8from VR, between of the black pointand the 1-km fields of , , and
The spatial scale of backgrounderror correlation is larger betweenVr and the horizontal wind
-
17
Furthercorrectionatsparsely‐observedareas
3-hour overland rainfall since 18Z 8
residual of RCCG 0.5° PPI at 18Z 8
H → The impinging windspeed is further corrected(increased) where radarechoes are sparse
C’ (downstream area of H)→ Rainfall nowcast is alsofurther corrected
-
Summaryandongoingwork
18
1. Summary: Vr assimilation can correct the impinging westerly flow and
improve QPN for 6 hours in the case of Typhoon Morakot. Additional assimilation can be used to update only and
helps retrieve rainband structure. However, the model has ashorter memory for the adjustment of than that of winds.
Mixed localization considers the scale difference betweentyphoon circulation and embedded convections and leads tofurther QPN improvement at sparsely‐observed areas.
2. Ongoingwork: Totestdifferentmodelsetupsandreanalysisdata Tocoupletheassimilationofothersynopticobservations Toincreasetheradarnumber(coverage) Totestthe operatorthatconsidersice Totestdifferentweatherevents Tooptimizecomputationalefficiencyforoperationalevaluation
Thankyouverymuchforyourattention!
-
19
Backupslides(realcase)
19
-
Radarobservationoperator
20
1. Spatialinterpolation: 8nearestgridpointsObservationpoint(inversedistanceweighting) Surfacecurvatureandatmosphericrefraction(4/3Earthradiusmodel) Terrainblockage
2. Variableconversion:(SunandCrook1997) Radialvelocity:
whereterminalvelocity Reflectivity:
3. Marshall‐PalmerDSDandwarm‐rainmicrophysics
⁄
5.40 ̅⁄ . .43.1 17.5 log
-
Preparingradardata
21
1. RCCGVr andZh: Maximumunambiguousrange:230km Volumescanperiod:7.5min 9PPIsweepsfrom0.5° to19.5° Azimuthandrangegatespacings:1° &250m
2. Loweringspatialresolution: Purpose1:Savecomputationalcost Purpose2:Avoidtheerrordependencebetweenadjacentobservations Approach1:Datathinning Approach2:Superobbing
3. OSSEs:Directlysimulatelower‐resolutionobservations(5° &5km)
4. Realobservationexperiments:Superobservations (5° &5km)fromCWBQPESUMSauto‐QCdata (1° &1km)
5. Observationerrors:3ms‐1 (Vr),5dBZ (Zh)
-
Statistics:1. Innovation:
2. Meaninnovation:
3. Root‐mean‐squareinnovation:
4. Ensemblespread:
Ifforecastandobservationerrorsareunbiasedandmutuallyuncorrelated:
Idealensemblespread:
22
Observation‐spacestatistics
1
1
1 11
-
Diagnosingthemodelbiasandensemblespread
23
ForVZqr from1600to1800UTC:(a)Vr and(b)Zh
spread
meaninnovation
idealspread
rms innovation
Modelbias:Excessivewesterlywindandrain
Ensemblespread:Vr isunderdispersed
-
24
NameSCC withCWBraingaugemeasurements
1‐h rain 2‐hrain 3‐h rain 4‐hrain 5‐hrain 6‐h rain
CTRL 0.459 0.422 0.594 0.644 0.632 0.622VR 0.569 0.644 0.655 0.685 0.673 0.654ZH 0.433 0.438 0.569 0.603 0.600 0.606VZqr 0.586 0.653 0.666 0.682 0.668 0.655V36 0.637 0.658 0.712 0.730 0.725 0.705
V36Zqr 0.666 0.637 0.693 0.703 0.691 0.6672kmVR 0.588 0.651 0.687 0.709 0.742 0.770NoDA 0.509 0.638 0.644 0.637 0.639 0.629Single 0.369 0.543 0.606 0.618 0.618 0.636
QPN
-
25
TerrainheightforVRand2kmVR
-
26
Backupslides(OSSE)
26
-
Naturerun
27
24‐hour40‐memberensembleforecastsstartingat0000UTC8Aug,withIC/BCgeneratedfromFNLdata andperturbedbyWRF‐3DVAR
Pickoutthememberthathasthemostrealistictrackand6‐hourrainfallcomparedwithCWBobservations
From1800UTC8to0000UTC9
-
DesignofOSSEs
28
Toalleviatetheidentical‐twinproblem,CTRLandNoDA areinitializedlaterthanthenatureruntoobtainadifferentsynoptic‐scalecondition
AssumeFNLdatainherentlycontainsynoptic‐scaleinformationfromassimilatingconventionalandsatelliteobservations
-
Ensemblespin‐up
29
Allvariablesexceptu representconvective‐scalebackgrounderrorstructureafterthe4‐hourspin‐up
NoDAmeanerror
NoDA spread
-
Exceptionofu
30
u (color)andhorizontalwind(vectors)at1‐kmaltitudeat1200UTC
Initialensemble:Eastdeviationoftheeyeandtooweakwesterlywind
NoDA seriouslyunderestimatesrainfall(shownlater)
-
Analysiscycles
31
Ensemblemeanerror(solid)Ensemblespread(dashed)
Directlyrelatedtotheobservationvariables:u,v,w,qr Robustlyrelatedtotheobservationvariables:qc Dynamicallyadjusted:θ’,qv
NoDAmeanerror
NoDA spread
CTRLmeanerror
CTRLspread
-
Analysisandnowcast ofspiralrainbands
32w at1‐kmaltitude(color)and
maximumqr atalllevels(contoursat1gkg‐1)
Spiralrainbandstructure oftheensemblemean:CTRL>NoDA
Analysisoftherainbands:Accuracy A>B
Nowcast oftherainbands:Hit:AccuracyA>B
Miss: C Falsealarm:D
-
StatisticalperformanceofQPN
33
RMSE SCC ETS (15 mm) Bias (15 mm)
CTRL
NoDA
CTRLoutperformsNoDA ateachofthe6hours
Radardataassimilationcansubstantiallycorrectthemodelstatewithinthelimitedradarcoverage,butcannotaltertheevolutiontrenddrivenbysynoptic‐scaleconditions
Hourlyrainfallfrom1800UTC8to0000UTC9
-
SpatialperformanceofQPN
34
Improvementofpeakrainfallintensity isapotentialbenefittoearlywarningsystems
Improvementiswidespreadalthoughthefalserainband Dleadstoasouthwarddeviationoftheheaviestrainfallarea
Rainfallaccumulationsince1800UTC
-
Sensitivitiestoindividualassimilationstrategies
35
NameAssimilationstrategies
Assimilatedobservations
Assimilationperiod
Cycleinterval
Horizontalcovariancelocalizationradius
CTRL , 2hours 15min 12km(allvariables)VR * * *ZH * * *VZ0 , ,0‐dBZ * * *KM , (addKinmen) * * *P1 * 1hour * *P3 * 3hours * *I7.5 * * 7.5min *I30 * * 30min *UV24 * * * 24km( , ),12km(others)UV36 * * * 36km( , ),12km(others)NoDA Noradardataassimilation
Thesymbol*denotesthesamesettingasCTRL
-
Analysisperformance
36
NameImprovementpercentagescomparedwithNoDA
CTRL 36 29 21 4 7 11 45VR 30 13 7 7 1 6 8ZH 11 19 12 ‐5 1 7 39VZ0 35 31 26 6 7 13 51KM 49 42 31 9 11 19 57P1 27 17 17 6 2 8 41P3 40 32 23 7 9 12 47I7.5 40 30 27 0 1 11 52I30 29 19 14 5 4 7 32UV24 42 31 23 4 6 10 46UV36 43 27 22 3 3 9 41
Red BetterthanCTRL
-
37
NameImprovementpercentagescomparedwithNoDA
1‐h rain 2‐hrain 3‐h rain 4‐hrain 5‐hrain 6‐h rain
CTRL 39 38 39 35 31 32VR 5 14 17 19 19 19ZH 32 29 27 23 19 18VZ0 44 37 35 32 29 29KM 49 45 43 45 44 40P1 26 29 33 32 28 26P3 41 35 37 34 32 32I7.5 43 40 39 34 29 30I30 29 30 35 32 28 28UV24 42 39 38 33 29 31UV36 40 40 38 33 30 30
Red BetterthanCTRL
QPNperformance
-
Summary:OSSEs
38
The3Dwindsandrainmixingratio arethemostimprovedprognosticvariablesbecauseoftheirdirectrelationstoradarobservations.
QPNimprovementisavailablefortheentire6hours.BothDAandNoDAhavesimilarevolutiontrendsdrivenbysynoptic‐scaleconditions.
Theimprovementof peakrainfallintensity isapotentialbenefittoearlywarningsystems.
QPNrespondstoZh assimilationmorequicklythanVr assimilation.Assimilatingboth andincreasingtheobservationcoverage overupstreamconvectionsaresuggested.
AmixedlocalizationmethodisproposedandfoundbeneficialforQPNinthismulti‐scalecase.