Download - Chih‐Chien Tsai , Shu‐Chih Yang and Yu‐Chieng Liouconf.cwb.gov.tw/media/cwb_past_conferences/103/2014_ppt... · 2016. 8. 22. · Chih‐Chien Tsai1, Shu‐Chih Yang2,3and Yu‐Chieng

Transcript
  • ImprovingQuantitativePrecipitationNowcasting withaLocalEnsembleTransformKalman FilterRadarDataAssimilationSystem:TyphoonMorakot (2009)

    Chih‐ChienTsai1,Shu‐ChihYang2,3 andYu‐ChiengLiou21TaiwanTyphoonFloodandResearchInstitute,NationalAppliedResearchLaboratories,Taipei,Taiwan;

    2DepartmentofAtmosphericSciences,NationalCentralUniversity,Taoyuan,Taiwan;3RIKENAdvancedInstituteforComputationalScience,Kobe,Japan

    16Sep2014,Taipei,Taiwan

  • 2

    1. Introduction

    2. Experimentaldesign

    3. Results

    1) Benefitofradialvelocityassimilation

    2) Limitationofreflectivityassimilation

    3) Impactofmixedlocalization

    4. Summaryandongoingwork

    2

  • TyphoonMorakot (2009)

    3High‐resolutionQPNiscrucialtoearlywarningagainstrainfallhazards

    before after

    Maximum48‐hourrainfall:2361mm (recordofTaiwan) Hsiaolin landslidecausednearly500fatalities

    Hsiaolin landslide Collapsed hotel

  • Quantitativeprecipitationnowcasting (QPN)

    4

    1. Veryshort‐term:Forecastlength<6hours

    2. Highresolution:Gridspacing<5kmRadardataarerequired

    3. Method1:radarechoextrapolation Useextrapolationmodels(celltracking,variational echotracking) Usereflectivity(Zh)information QPNskillrapidlydissipatesafter1‐2hours

    4. Method2:radardataassimilation UseregionalNWPmodels Useradialvelocity(Vr) andreflectivity(Zh)information Newcellsarepredictableviamodeldynamicsandmicrophysics QPNskillcanbelengthenedintime

  • LocalensembletransformKalman filter(LETKF)

    5

    1. AdeterministicEnKF (Bishopetal.2001;Ott etal.2004;Huntetal.2007)

    2. Formulation: Ensemblemean:

    Ensembleperturbations:

    where

    3. Advantages: Flow‐dependentbackgrounderrorcovariancematrix Immunityfrom4DVar’stangentlinearandadjoint models Handleatmosphericnonlinearitieswithanonlinearmodelandoperator Easyparallelcomputing

    4. Covariancelocalizationtechniques: Variablelocalization(Kangetal.2011) Mixedlocalization(Tsaietal.2014)Multiplescalesoftyphoons

    1 /

    1 ⁄

  • Goalofthisstudy

    6

    WRF RadarVr&ZhLETKF

    NWPmodelAssimilationschemeObservation

    ImprovingQPNforTyphoonMorakot(multiplescales,strongterraineffect)

    Yangetal.(2012,2013) Tsaietal.(2014)

  • Case:theheaviestrainfallperiod(12Z8–00Z9Aug)

    7

    1-km horizontal wind (vectors) and qv(color) at 18Z 8 from NCEP FNL data

    6-hour overland rainfall since 18Z 8 from CWB observations

    Reachaminimummovingspeedof2.6m/s Convergencebetweenmoistsouthwestmonsoonandtyphooncirculation Strongterraineffectthatenhancesrainfall

  • Modelsetup

    8

    RCCGradar

    CWB besttrack

    WRF‐ARWV3.2.1Domains: Triple‐nested Two‐wayinteractive 28verticaletalevelsPhysics: Microphysics:PurdueLin Cumulus:Kain‐Fritsch LSM:Noah PBL:YSUPrognosticvariables: , , , , , , , ,

    , , ,

    0900 08180812

  • Assimilationexperiments

    9

    Assimilatethesuperobservations ofVr andZh fromS‐bandRCCGradar Givenobservationerrors:Vr→3m/s,Zh→5dBZ 2‐hourassimilationperiodwitha15‐mincycleinterval

  • 10

    Distributionoftheassimilatedobservations

    Observationsdecreasewithheight Withawarm‐rainoperator,Zh observationsabove

    5km(~meltinglayer)arenotassimilated

    ZhVr

  • 11

    Experiment AssimilatingVr(updatedvariables)AssimilatingZh

    (updatedvariables)Horizontallocalizationradius

    (updatedvariables)CTRL Yes(all) Yes(all) 12km(all)VR Yes(all) No 12km(all)VZqr Yes(all) Yes (onlyqr) 12km(all)V36 Yes(all) No 36km( , ),12km(others)NoDA NoradardataassimilationSingle Noradardataassimilation

    Assimilationstrategies

    VZqr appliesvariablelocalization toreflectivityassimilation V36appliesmixedlocalization toradialvelocityassimilation

  • 12

    Correctionoftheimpingingwesterlyflow

    A→SingleandNoDA inheritaweakerwesterlyflowfromNCEPFNLdataat12Z

    A→VRlargelycorrectstheimpingingwindspeed

    B→SpuriousconvectioncanoccurinSingle,whileNoDAsmooths outallinconsistentconvectionsintakingamean

    Vr of RCCG 0.5° PPI at 18Z 8

  • 13

    ConsequentQPNimprovement

    VR provides a more accuraterainfall nowcast than Singleand NoDA, especially at areaC’ (downstream area of A)

    3-hour overland rainfall since 18Z 8

    Experiment 1‐hour 3‐hour 6‐hourSingle 0.369 0.606 0.636NoDA 0.509 0.644 0.629VR 0.569 0.655 0.654

    Correlation coefficients of 1-, 3-and 6-hour overland rainfall since18Z 8 compared with OBS

  • 14

    Limitationofreflectivityassimilation

    Experiment 1‐hour 3‐hour 6‐hourNoDA 0.509 0.644 0.629CTRL 0.459 0.594 0.622VR 0.569 0.655 0.654VZqr 0.586 0.666 0.655

    Correlation coefficients of 1-, 3-and 6-hour overland rainfall since18Z 8 compared with OBS

    1. Needvariablelocalization: Onlyqr hasareliableerrorcovariancewithZh Implications:

    Samplingerror inensemblespacedominatespoorerphysicalrelationsbetweentheothervariablesandZh

    Highnonlinearity ofZh Modelerror andoperatorerror

    2. ShortermemorythanVr assimilation: VRoutperformsNoDA for6hours VZqr outperformsVRforonly3hours

  • 15

    Benefitofreflectivityassimilation

    Zh of RCCG 0.5° PPI at 1730 UTC 8

    3-hour overland rainfall since 18Z 8

    Rainband structureisretrievedwhereZhobservationsareassimilated(<5km)

    Maximumrainfallintensity(areaD’)isbetterforecasted

  • 16

    Motivationofmixedlocalization

    Background error correlation at 18Z 8from VR, between of the black pointand the 1-km fields of , , and

    The spatial scale of backgrounderror correlation is larger betweenVr and the horizontal wind

  • 17

    Furthercorrectionatsparsely‐observedareas

    3-hour overland rainfall since 18Z 8

    residual of RCCG 0.5° PPI at 18Z 8

    H → The impinging windspeed is further corrected(increased) where radarechoes are sparse

    C’ (downstream area of H)→ Rainfall nowcast is alsofurther corrected

  • Summaryandongoingwork

    18

    1. Summary: Vr assimilation can correct the impinging westerly flow and

    improve QPN for 6 hours in the case of Typhoon Morakot. Additional assimilation can be used to update only and

    helps retrieve rainband structure. However, the model has ashorter memory for the adjustment of than that of winds.

    Mixed localization considers the scale difference betweentyphoon circulation and embedded convections and leads tofurther QPN improvement at sparsely‐observed areas.

    2. Ongoingwork: Totestdifferentmodelsetupsandreanalysisdata Tocoupletheassimilationofothersynopticobservations Toincreasetheradarnumber(coverage) Totestthe operatorthatconsidersice Totestdifferentweatherevents Tooptimizecomputationalefficiencyforoperationalevaluation

    Thankyouverymuchforyourattention!

  • 19

    Backupslides(realcase)

    19

  • Radarobservationoperator

    20

    1. Spatialinterpolation: 8nearestgridpointsObservationpoint(inversedistanceweighting) Surfacecurvatureandatmosphericrefraction(4/3Earthradiusmodel) Terrainblockage

    2. Variableconversion:(SunandCrook1997) Radialvelocity:

    whereterminalvelocity Reflectivity:

    3. Marshall‐PalmerDSDandwarm‐rainmicrophysics

    5.40 ̅⁄ . .43.1 17.5 log

  • Preparingradardata

    21

    1. RCCGVr andZh: Maximumunambiguousrange:230km Volumescanperiod:7.5min 9PPIsweepsfrom0.5° to19.5° Azimuthandrangegatespacings:1° &250m

    2. Loweringspatialresolution: Purpose1:Savecomputationalcost Purpose2:Avoidtheerrordependencebetweenadjacentobservations Approach1:Datathinning Approach2:Superobbing

    3. OSSEs:Directlysimulatelower‐resolutionobservations(5° &5km)

    4. Realobservationexperiments:Superobservations (5° &5km)fromCWBQPESUMSauto‐QCdata (1° &1km)

    5. Observationerrors:3ms‐1 (Vr),5dBZ (Zh)

  • Statistics:1. Innovation:

    2. Meaninnovation:

    3. Root‐mean‐squareinnovation:

    4. Ensemblespread:

    Ifforecastandobservationerrorsareunbiasedandmutuallyuncorrelated:

    Idealensemblespread:

    22

    Observation‐spacestatistics

    1

    1

    1 11

  • Diagnosingthemodelbiasandensemblespread

    23

    ForVZqr from1600to1800UTC:(a)Vr and(b)Zh

    spread

    meaninnovation

    idealspread

    rms innovation

    Modelbias:Excessivewesterlywindandrain

    Ensemblespread:Vr isunderdispersed

  • 24

    NameSCC withCWBraingaugemeasurements

    1‐h rain 2‐hrain 3‐h rain 4‐hrain 5‐hrain 6‐h rain

    CTRL 0.459 0.422 0.594 0.644 0.632 0.622VR 0.569 0.644 0.655 0.685 0.673 0.654ZH 0.433 0.438 0.569 0.603 0.600 0.606VZqr 0.586 0.653 0.666 0.682 0.668 0.655V36 0.637 0.658 0.712 0.730 0.725 0.705

    V36Zqr 0.666 0.637 0.693 0.703 0.691 0.6672kmVR 0.588 0.651 0.687 0.709 0.742 0.770NoDA 0.509 0.638 0.644 0.637 0.639 0.629Single 0.369 0.543 0.606 0.618 0.618 0.636

    QPN

  • 25

    TerrainheightforVRand2kmVR

  • 26

    Backupslides(OSSE)

    26

  • Naturerun

    27

    24‐hour40‐memberensembleforecastsstartingat0000UTC8Aug,withIC/BCgeneratedfromFNLdata andperturbedbyWRF‐3DVAR

    Pickoutthememberthathasthemostrealistictrackand6‐hourrainfallcomparedwithCWBobservations

    From1800UTC8to0000UTC9

  • DesignofOSSEs

    28

    Toalleviatetheidentical‐twinproblem,CTRLandNoDA areinitializedlaterthanthenatureruntoobtainadifferentsynoptic‐scalecondition

    AssumeFNLdatainherentlycontainsynoptic‐scaleinformationfromassimilatingconventionalandsatelliteobservations

  • Ensemblespin‐up

    29

    Allvariablesexceptu representconvective‐scalebackgrounderrorstructureafterthe4‐hourspin‐up

    NoDAmeanerror

    NoDA spread

  • Exceptionofu

    30

    u (color)andhorizontalwind(vectors)at1‐kmaltitudeat1200UTC

    Initialensemble:Eastdeviationoftheeyeandtooweakwesterlywind

    NoDA seriouslyunderestimatesrainfall(shownlater)

  • Analysiscycles

    31

    Ensemblemeanerror(solid)Ensemblespread(dashed)

    Directlyrelatedtotheobservationvariables:u,v,w,qr Robustlyrelatedtotheobservationvariables:qc Dynamicallyadjusted:θ’,qv

    NoDAmeanerror

    NoDA spread

    CTRLmeanerror

    CTRLspread

  • Analysisandnowcast ofspiralrainbands

    32w at1‐kmaltitude(color)and

    maximumqr atalllevels(contoursat1gkg‐1)

    Spiralrainbandstructure oftheensemblemean:CTRL>NoDA

    Analysisoftherainbands:Accuracy A>B

    Nowcast oftherainbands:Hit:AccuracyA>B

    Miss: C Falsealarm:D

  • StatisticalperformanceofQPN

    33

    RMSE SCC ETS (15 mm) Bias (15 mm)

    CTRL

    NoDA

    CTRLoutperformsNoDA ateachofthe6hours

    Radardataassimilationcansubstantiallycorrectthemodelstatewithinthelimitedradarcoverage,butcannotaltertheevolutiontrenddrivenbysynoptic‐scaleconditions

    Hourlyrainfallfrom1800UTC8to0000UTC9

  • SpatialperformanceofQPN

    34

    Improvementofpeakrainfallintensity isapotentialbenefittoearlywarningsystems

    Improvementiswidespreadalthoughthefalserainband Dleadstoasouthwarddeviationoftheheaviestrainfallarea

    Rainfallaccumulationsince1800UTC

  • Sensitivitiestoindividualassimilationstrategies

    35

    NameAssimilationstrategies

    Assimilatedobservations

    Assimilationperiod

    Cycleinterval

    Horizontalcovariancelocalizationradius

    CTRL , 2hours 15min 12km(allvariables)VR * * *ZH * * *VZ0 , ,0‐dBZ * * *KM , (addKinmen) * * *P1 * 1hour * *P3 * 3hours * *I7.5 * * 7.5min *I30 * * 30min *UV24 * * * 24km( , ),12km(others)UV36 * * * 36km( , ),12km(others)NoDA Noradardataassimilation

    Thesymbol*denotesthesamesettingasCTRL

  • Analysisperformance

    36

    NameImprovementpercentagescomparedwithNoDA

    CTRL 36 29 21 4 7 11 45VR 30 13 7 7 1 6 8ZH 11 19 12 ‐5 1 7 39VZ0 35 31 26 6 7 13 51KM 49 42 31 9 11 19 57P1 27 17 17 6 2 8 41P3 40 32 23 7 9 12 47I7.5 40 30 27 0 1 11 52I30 29 19 14 5 4 7 32UV24 42 31 23 4 6 10 46UV36 43 27 22 3 3 9 41

    Red BetterthanCTRL

  • 37

    NameImprovementpercentagescomparedwithNoDA

    1‐h rain 2‐hrain 3‐h rain 4‐hrain 5‐hrain 6‐h rain

    CTRL 39 38 39 35 31 32VR 5 14 17 19 19 19ZH 32 29 27 23 19 18VZ0 44 37 35 32 29 29KM 49 45 43 45 44 40P1 26 29 33 32 28 26P3 41 35 37 34 32 32I7.5 43 40 39 34 29 30I30 29 30 35 32 28 28UV24 42 39 38 33 29 31UV36 40 40 38 33 30 30

    Red BetterthanCTRL

    QPNperformance

  • Summary:OSSEs

    38

    The3Dwindsandrainmixingratio arethemostimprovedprognosticvariablesbecauseoftheirdirectrelationstoradarobservations.

    QPNimprovementisavailablefortheentire6hours.BothDAandNoDAhavesimilarevolutiontrendsdrivenbysynoptic‐scaleconditions.

    Theimprovementof peakrainfallintensity isapotentialbenefittoearlywarningsystems.

    QPNrespondstoZh assimilationmorequicklythanVr assimilation.Assimilatingboth andincreasingtheobservationcoverage overupstreamconvectionsaresuggested.

    AmixedlocalizationmethodisproposedandfoundbeneficialforQPNinthismulti‐scalecase.