Ch3_FunctionsRandomVariables_torresgarcia.pdf

38
8/16/2019 Ch3_FunctionsRandomVariables_torresgarcia.pdf http://slidepdf.com/reader/full/ch3functionsrandomvariablestorresgarciapdf 1/38

Transcript of Ch3_FunctionsRandomVariables_torresgarcia.pdf

Page 1: Ch3_FunctionsRandomVariables_torresgarcia.pdf

8/16/2019 Ch3_FunctionsRandomVariables_torresgarcia.pdf

http://slidepdf.com/reader/full/ch3functionsrandomvariablestorresgarciapdf 1/38

Page 2: Ch3_FunctionsRandomVariables_torresgarcia.pdf

8/16/2019 Ch3_FunctionsRandomVariables_torresgarcia.pdf

http://slidepdf.com/reader/full/ch3functionsrandomvariablestorresgarciapdf 2/38

 Reference: Most slides adapted from Montgomery et al. (2011)

RANDOM VARIABLES AND PROBABILITYDISTRIBUTIONS1. Random Numbers, Random Variables (RVs), Random Experiment (3-1 & 3-2)

2. Probability Laws (3-3)

3. Continuous RVs (3-4 & 3-5) CRVs Distributions: Normal, Lognormal, Gamma, Weibull, Beta

4. Probability Plots (3-6)

5. Discrete RVs (3-7 & 3-8) DRVs Distributions: Binomial and others

6. Poisson Process (3-9)

7. Normal Approximation to the Binomial and Poisson Distributions (3-10)

8. More than one RV and Independence (3-11)

9. Functions of RVs (3-12)

10. Statistics and the Central Limit Theorem (3-13)

Page 3: Ch3_FunctionsRandomVariables_torresgarcia.pdf

8/16/2019 Ch3_FunctionsRandomVariables_torresgarcia.pdf

http://slidepdf.com/reader/full/ch3functionsrandomvariablestorresgarciapdf 3/38

 Reference: Most slides adapted from Montgomery et al. (2011)

INTRODUCTION

Sometimes, we are interested in analyzing situationsthat are characterized by many random variablesthat are “tied” to one another

Examples: Physiology/Human Factors: a subject’s height and weight

Manufacturing: defect types

Epidemiology: disease risks (high blood pressure, high LDL cholesterol, smoking, etc.)

3

Page 4: Ch3_FunctionsRandomVariables_torresgarcia.pdf

8/16/2019 Ch3_FunctionsRandomVariables_torresgarcia.pdf

http://slidepdf.com/reader/full/ch3functionsrandomvariablestorresgarciapdf 4/38

 Reference: Most slides adapted from Montgomery et al. (2011)

3-11 More Than One Random Variable

and Independence

3-11.1 Joint Distributions

Page 5: Ch3_FunctionsRandomVariables_torresgarcia.pdf

8/16/2019 Ch3_FunctionsRandomVariables_torresgarcia.pdf

http://slidepdf.com/reader/full/ch3functionsrandomvariablestorresgarciapdf 5/38

 Reference: Most slides adapted from Montgomery et al. (2011)

JOINT PROBABILITY MASS FUNCTIONLet X1 be the number of times that a circuit board has been reworked.

Let X2 be the number of critical defects in the circuit board.

The joint probability mass function for X1 and X2

5

),(),( 221121   x X  x X  P  x x p  

X1

0 1 2

X2 0   1/10 4/10 1/10

1   2/10 2/10 0

 x y

 y x p

 y x p

1),(

1),(0Is p(x1 , x2) a valid joint probability mass function?

Page 6: Ch3_FunctionsRandomVariables_torresgarcia.pdf

8/16/2019 Ch3_FunctionsRandomVariables_torresgarcia.pdf

http://slidepdf.com/reader/full/ch3functionsrandomvariablestorresgarciapdf 6/38

 Reference: Most slides adapted from Montgomery et al. (2011)

MARGINAL DISTRIBUTIONS

We can derive separate distributions for both X1 and X2 from the jointdistribution, p(x1 , x2)

These separate distributions are called Marginal DistributionsMarginal distribution of X1 :

Marginal distribution of X2 :

6

),()(

),()(

212

211

1

2

 x x p x p

 x x p x p

 x

 x

10

10

10

1)2(

10

6

10

2

10

4)1(

... 10

3

10

2

10

10000

hence,

210

1

1

21211

2

1

0

111

2

 

 x p

 x p

 similarly

 ) ,x p(x ) ,x p(x ) p(x

 , , ) for k ,x p(x ) p(xk) p(x x

10

40

10

2

10

2)1(

... 10

6

10

1

10

4

10

)2,0(0100

0

hence...

10

2

122121

2

2

2

0

122

1

 

 x p

 similarly

 x x p ) ,x p(x ) ,x p(x

 ) p(x

 , ) for k ,x p(x ) p(xk) p(x x

X1

0 1 2

X2 0   1/10 4/10 1/10

1   2/10 2/10 0

 p(x1, x2):

Page 7: Ch3_FunctionsRandomVariables_torresgarcia.pdf

8/16/2019 Ch3_FunctionsRandomVariables_torresgarcia.pdf

http://slidepdf.com/reader/full/ch3functionsrandomvariablestorresgarciapdf 7/38 Reference: Most slides adapted from Montgomery et al. (2011)

SUMMARIZING MARGINAL DISTRIBUTIONS

7

2  x10

1

1  x10

6

0  x10

3) p(x

1

1

11

 

1  x10

4

0  x10

6) p(x

2

22

p(x1, x2): X1

0 1 2

X2 0   1/10 4/10 1/10

1   2/10 2/10 0

Page 8: Ch3_FunctionsRandomVariables_torresgarcia.pdf

8/16/2019 Ch3_FunctionsRandomVariables_torresgarcia.pdf

http://slidepdf.com/reader/full/ch3functionsrandomvariablestorresgarciapdf 8/38 Reference: Most slides adapted from Montgomery et al. (2011)

EXPECTATIONSGiven:

What is E(X1)?

What is E(X2)?

8

p(x1, x2): X1

0 1 2X2 0   1/10 4/10 1/10

1   2/10 2/10 0

2  x10

1

1  x10

6

0  x10

3) p(x

1

1

11

 

1  x10

4

0  x10

6) p(x

2

22

5

4

10

12

10

61

10

30)(

)()(

1

2

0

111

1

 X  E 

 x p x X  E  x

2

0

1

02111

1 2),()(

 x x x x p x X  E or 

5

2

10

41

10

60)(

)()(

2

1

0

222

2

 X  E 

 x p x X  E  x

1

0

2

0

2122

2 1

),()( x x

 x x p x X  E or 

Page 9: Ch3_FunctionsRandomVariables_torresgarcia.pdf

8/16/2019 Ch3_FunctionsRandomVariables_torresgarcia.pdf

http://slidepdf.com/reader/full/ch3functionsrandomvariablestorresgarciapdf 9/38

 Reference: Most slides adapted from Montgomery et al. (2011)

CONDITIONAL PROBABILITY

9

)(

),()|(

2

212211

 x p

 x x p x X  x X  p  

)(

),()|(

1

211122

 x p

 x x p x X  x X  p  

p(x1, x2): X1

0 1 2

X2 0   1/10 4/10 1/10

1   2/10 2/10 0

2  x10

1

1  x10

6

0  x10

3) p(x

1

1

11

 

1  x10

4

0  x10

6) p(x

2

22

Joint probability mass function

Marginal of x1 Marginal of x2

 p(X1 = 0| X2= 0) = (1/10)/(6/10) = 1/6

 p(X1 = 1| X2= 0) = (4/10)/(6/10) = 4/6

 p(X1 = 2| X2= 0) = (1/10)/(6/10) = 1/6

 p(X1 = 0| X2= 1) = (2/10)/(4/10) = 2/4 p(X1 =

1| X2= 1) = (2/10)/(4/10) = 2/4

 p(X1 = 2| X2= 1) = (0/10)/(4/10) = 0

 p(X2 = 0| X1= 0) = (1/10)/(3/10) = 1/3

 p(X2 = 1| X1= 0) = (2/10)/(3/10) = 2/3

 p(X2 = 0| X1= 1) = (4/10)/(6/10) = 4/6

 p(X2 = 1| X1= 1) = (2/10)/(6/10) = 2/6

 p(X2 = 0| X1= 2) = (1/10)/(1/10) = 1

 p(X2 = 1| X1= 2) = (0)/(1/10) = 0

Page 10: Ch3_FunctionsRandomVariables_torresgarcia.pdf

8/16/2019 Ch3_FunctionsRandomVariables_torresgarcia.pdf

http://slidepdf.com/reader/full/ch3functionsrandomvariablestorresgarciapdf 10/38

 Reference: Most slides adapted from Montgomery et al. (2011)

CONDITIONAL EXPECTATION

What is the expected value of X1, given that X2 = 0?That is, find E(X1| X2 = 0).

Using similar logic, the following quantities can becomputed:E(X1| X2 = 0) = 1 (from above), E(X1| X2 = 1) = 2/4

E(X2 | X1= 0) = 2/3, E(X2 | X1= 1) = 2/6, E(X2 | X1= 2) = 0

Pick one of the above and verify

10

16

12

6

41

6

10

)0|()0|( 21

2

0

121

1

 

  

 

 

  

 

 

  

 

 

 x x p x X  X  E 

 x

Page 11: Ch3_FunctionsRandomVariables_torresgarcia.pdf

8/16/2019 Ch3_FunctionsRandomVariables_torresgarcia.pdf

http://slidepdf.com/reader/full/ch3functionsrandomvariablestorresgarciapdf 11/38

 Reference: Most slides adapted from Montgomery et al. (2011)

JOINT DENSITY FUNCTION:

Example:

11

10 and 1x0for)2(3

2),( 212121     x x x x x f  

1),( 1221

1

1

2

2

  dxdx x x f  

high x

low x

high x

low x

),( 21   x x  f  

  113

2

13

2

1)2(3

2

1

1

0

1

1

1

0

1

0

2

21

12

1

0

1

0

21

1

1

2

1 2

dx x

dx x x x

dxdx x x

 x

 x

 x x

TRUE 12

3

3

2

112

1

3

2

123

21

0

1

2

1

 

  

 

 

  

 

 

 

 

   x

 x

Page 12: Ch3_FunctionsRandomVariables_torresgarcia.pdf

8/16/2019 Ch3_FunctionsRandomVariables_torresgarcia.pdf

http://slidepdf.com/reader/full/ch3functionsrandomvariablestorresgarciapdf 12/38

 Reference: Most slides adapted from Montgomery et al. (2011)

MARGINAL DENSITY FUNCTIONSJust as in the discrete case, we can derive the marginal density functionsfor X1, X2, etc. from the joint density function

Mathematical definitions:Marginal density of X1:

Marginal density of X2:

12

2211   ),()(

2

dx x x f   x f   x

1212 ),()(1

dx x x f  x f  x

10 13

2

6

4

3

2

3

4

3

2),()(

11

1

0

2

221

2

1

0

2122

1

0

11

2

 

  

 

 x for x x x x

dx x xdx x x f  x f  x

10 1431

34

31

3

4

3

2),()(

22

1

0

12

2

1

1

1

0

2112

1

0

12

1

 

  

 

 x for x x x x

dx x xdx x x f  x f  x

Page 13: Ch3_FunctionsRandomVariables_torresgarcia.pdf

8/16/2019 Ch3_FunctionsRandomVariables_torresgarcia.pdf

http://slidepdf.com/reader/full/ch3functionsrandomvariablestorresgarciapdf 13/38

 Reference: Most slides adapted from Montgomery et al. (2011)

CRITICAL THINKING

What is and

They are both equal to 1.

How can you find F(x1), F(x2)?

How can you find E(X1), E(X2), VAR(X1), VAR(X2)?

13

1

1

0

1)(

1

dx x f   x

2

1

0

2 )(

2

dx x f   x

Same as always.

Page 14: Ch3_FunctionsRandomVariables_torresgarcia.pdf

8/16/2019 Ch3_FunctionsRandomVariables_torresgarcia.pdf

http://slidepdf.com/reader/full/ch3functionsrandomvariablestorresgarciapdf 14/38

 Reference: Most slides adapted from Montgomery et al. (2011)

ELEMENTARY DEFINITION

14

Xof Marginal

YandXof Jointx)|(YYof lConditiona

,

Yof Marginal

YandXof Jointy)|(XXof lConditiona

Similarly

Holds for both discrete and continuous.

Page 15: Ch3_FunctionsRandomVariables_torresgarcia.pdf

8/16/2019 Ch3_FunctionsRandomVariables_torresgarcia.pdf

http://slidepdf.com/reader/full/ch3functionsrandomvariablestorresgarciapdf 15/38

 Reference: Most slides adapted from Montgomery et al. (2011)

3-11 More Than One Random Variable

and Independence

3-11.2 Independence

Page 16: Ch3_FunctionsRandomVariables_torresgarcia.pdf

8/16/2019 Ch3_FunctionsRandomVariables_torresgarcia.pdf

http://slidepdf.com/reader/full/ch3functionsrandomvariablestorresgarciapdf 16/38

 Reference: Most slides adapted from Montgomery et al. (2011)

3-11 More Than One Random Variable

and Independence

3-11.2 Independence

Page 17: Ch3_FunctionsRandomVariables_torresgarcia.pdf

8/16/2019 Ch3_FunctionsRandomVariables_torresgarcia.pdf

http://slidepdf.com/reader/full/ch3functionsrandomvariablestorresgarciapdf 17/38

 Reference: Most slides adapted from Montgomery et al. (2011)

CONDITIONAL PROBABILITY AND INDEPENDENCE

If X and Y are independent and have densityfunctions f(x) and f(y)...then their Joint Density Function, f(x,y) = f(x)f(y)

Example: Let  () = 1/3 − 1 ≤ ≤ 2

Let  () = 1/8 2 ≤ ≤ 10

Then  (, ) = 1/24 − 1 ≤ ≤ 2 2 ≤ ≤ 10

You can verify the above by doubly integratingf(x,y) over the ranges of x and y.

17

Page 18: Ch3_FunctionsRandomVariables_torresgarcia.pdf

8/16/2019 Ch3_FunctionsRandomVariables_torresgarcia.pdf

http://slidepdf.com/reader/full/ch3functionsrandomvariablestorresgarciapdf 18/38

 Reference: Most slides adapted from Montgomery et al. (2011)

RANDOM VARIABLES AND PROBABILITYDISTRIBUTIONS1. Random Numbers, Random Variables (RVs), Random Experiment (3-1 & 3-2)

2. Probability Laws (3-3)

3. Continuous RVs (3-4 & 3-5) CRVs Distributions: Normal, Lognormal, Gamma, Weibull, Beta

4. Probability Plots (3-6)

5. Discrete RVs (3-7 & 3-8) DRVs Distributions: Binomial and others

6. Poisson Process (3-9)

7. Normal Approximation to the Binomial and Poisson Distributions (3-10)

8. More than one RV and Independence (3-11)

9. Functions of RVs (3-12)

10. Statistics and the Central Limit Theorem (3-13)

Page 19: Ch3_FunctionsRandomVariables_torresgarcia.pdf

8/16/2019 Ch3_FunctionsRandomVariables_torresgarcia.pdf

http://slidepdf.com/reader/full/ch3functionsrandomvariablestorresgarciapdf 19/38

 Reference: Most slides adapted from Montgomery et al. (2011)

FUNCTION TO RANDOM VARIABLES

 Image Source: onlinecourses.science.psu.edu

Page 20: Ch3_FunctionsRandomVariables_torresgarcia.pdf

8/16/2019 Ch3_FunctionsRandomVariables_torresgarcia.pdf

http://slidepdf.com/reader/full/ch3functionsrandomvariablestorresgarciapdf 20/38

 Reference: Most slides adapted from Montgomery et al. (2011)

ALGORITHM #1: DISCRETE CASE 

HOW TO DEVELOP THE PMF AND CDF OF A DISCRETE

RANDOM VARIABLE (Y) THAT IS A FUNCTION OF ANOTHERDISCRETE RANDOM VARIABLE (X)

1. Find the values of y.

2. Sum the pmf values of x that correspond to each y toobtain p(y)

3. Compute F(y) by using the relationship: F(y) = P(Y < y)

20

From 1 - 3 above we can get what we need to find E(Y) and V(Y)

Page 21: Ch3_FunctionsRandomVariables_torresgarcia.pdf

8/16/2019 Ch3_FunctionsRandomVariables_torresgarcia.pdf

http://slidepdf.com/reader/full/ch3functionsrandomvariablestorresgarciapdf 21/38

 Reference: Most slides adapted from Montgomery et al. (2011)

EXAMPLE FOR DISCRETE  Random variable   has pmf

Random variable = 202

21

 otherwise 0 

2xif  .1 

1xif  .3 

0xif  .6 p(x)

 otherwise 0 

80yif  .1 

20yif  .3 0yif  .6 p(y)

80yif  1 

80y20if  .9 

20y0if  .6 

0yif  0F(y)

Page 22: Ch3_FunctionsRandomVariables_torresgarcia.pdf

8/16/2019 Ch3_FunctionsRandomVariables_torresgarcia.pdf

http://slidepdf.com/reader/full/ch3functionsrandomvariablestorresgarciapdf 22/38

Page 23: Ch3_FunctionsRandomVariables_torresgarcia.pdf

8/16/2019 Ch3_FunctionsRandomVariables_torresgarcia.pdf

http://slidepdf.com/reader/full/ch3functionsrandomvariablestorresgarciapdf 23/38

 Reference: Most slides adapted from Montgomery et al. (2011)

ANOTHER EXAMPLE FOR DISCRETE  Let

Find p(y) if Y = |X|+1

Find F(y)

Graph F(y)

23

 1xif  .3 

0xif  .2 

1-xif  .1 

2-xif  .4 p(x)

21

10

21

32

Y  X 

3yif  0.4-2)P(X 

2yif  0.40.30.11) p(X-1) p(X 

1yif  0.20) p(X p(y)

31.0

3y20.6

2y10.2

1y0

F(y)

 y

Page 24: Ch3_FunctionsRandomVariables_torresgarcia.pdf

8/16/2019 Ch3_FunctionsRandomVariables_torresgarcia.pdf

http://slidepdf.com/reader/full/ch3functionsrandomvariablestorresgarciapdf 24/38

 Reference: Most slides adapted from Montgomery et al. (2011)

ALGORITHM #2:HOW TO DEVELOP THE CDF AND PDF OF A CONTINUOUS

RANDOM VARIABLE (Y) THAT IS A FUNCTION OFANOTHER CONTINUOUS RANDOM VARIABLE (X)

1. Find the range of Y.

2. Obtain the CDF, F(y) = P(Y < y)

3. Differentiate F(y) with respect to y to get the probability density, f(y).

or

24

From 1 - 3 above we can get what we need to find E(Y) and V(Y)

dy

dx x f   y f       )()(

Page 25: Ch3_FunctionsRandomVariables_torresgarcia.pdf

8/16/2019 Ch3_FunctionsRandomVariables_torresgarcia.pdf

http://slidepdf.com/reader/full/ch3functionsrandomvariablestorresgarciapdf 25/38

 Reference: Most slides adapted from Montgomery et al. (2011)

EXAMPLE  is a random variable with probability density,

 () = 0.5( − 1) 1 ≤ ≤ 3

If = 2 – 3, find (),  (), (), and ().

25

f(x)

X1 3

1

() = 7/3 () = 17/3 – (7/3)^2 = 2/9

Page 26: Ch3_FunctionsRandomVariables_torresgarcia.pdf

8/16/2019 Ch3_FunctionsRandomVariables_torresgarcia.pdf

http://slidepdf.com/reader/full/ch3functionsrandomvariablestorresgarciapdf 26/38

 Reference: Most slides adapted from Montgomery et al. (2011)

EXAMPLE FOR CONTINUOUS    is a random variable with probability density,

 () = 0.5( − 1) 1 ≤ ≤ 3

If = 2 – 3  = ( + 3)/2

1. Range of W: Find in lower and upper ranges of X

Lower W: 2(1) – 3 = -1 (x = 1)

Upper W: 2(3) – 3 = 3 (x = 3)

2. CDF of W: F(w) = P(W < w) = P(2X-3 < w) = P(X < (w+3)/2)

3. pdf of w:

26

1612

12

3

24)1(5.)(

2

2

3

1

2

3

1

2

ww

w x x

dx xdx x f  

w w

3w1-for8

1)()(  

w

w f w F dw

8

1

4

1

8

3

2

11

2

35.0 

)2

3(

12

35.0)()(

 

 

  

 

 

  

 

  www

dw

wd 

w

dw

dx x f  w f  

or 

Page 27: Ch3_FunctionsRandomVariables_torresgarcia.pdf

8/16/2019 Ch3_FunctionsRandomVariables_torresgarcia.pdf

http://slidepdf.com/reader/full/ch3functionsrandomvariablestorresgarciapdf 27/38

 Reference: Most slides adapted from Montgomery et al. (2011)

3-12 Functions of Random Variables

Page 28: Ch3_FunctionsRandomVariables_torresgarcia.pdf

8/16/2019 Ch3_FunctionsRandomVariables_torresgarcia.pdf

http://slidepdf.com/reader/full/ch3functionsrandomvariablestorresgarciapdf 28/38

 Reference: Most slides adapted from Montgomery et al. (2011)

Now we have the pdf of Y and can determine E(Y) and

VAR(Y):

Because W is a nice, linear function of X, we could havedetermined E(W) and VAR(W) this way also: () = (2 − 3) = (2) − (3) = 2() – (3) = 2([7/3]) − 3 = 5/3

  () = (2 − 3) = 22() = 4(2/9) = 8/9

28

3

8

1w)(w)(

3

1

3

1

dww

dww f  W  E 

9

8

3

5

3

11)]([)()(

3

11 8

1w)(w)(

2

22

3

1

2

3

1

22

 

  

 

W  E W  E W VAR

dww

dww f  W  E 

Page 29: Ch3_FunctionsRandomVariables_torresgarcia.pdf

8/16/2019 Ch3_FunctionsRandomVariables_torresgarcia.pdf

http://slidepdf.com/reader/full/ch3functionsrandomvariablestorresgarciapdf 29/38

 Reference: Most slides adapted from Montgomery et al. (2011)

3-12 Functions of Random Variables

3-12.1 Linear Combinations of Independent

Random Variables

Page 30: Ch3_FunctionsRandomVariables_torresgarcia.pdf

8/16/2019 Ch3_FunctionsRandomVariables_torresgarcia.pdf

http://slidepdf.com/reader/full/ch3functionsrandomvariablestorresgarciapdf 30/38

 Reference: Most slides adapted from Montgomery et al. (2011)

3-12 Functions of Random Variables

3-12.1 Linear Combinations of Independent

Random Variables

Page 31: Ch3_FunctionsRandomVariables_torresgarcia.pdf

8/16/2019 Ch3_FunctionsRandomVariables_torresgarcia.pdf

http://slidepdf.com/reader/full/ch3functionsrandomvariablestorresgarciapdf 31/38

 Reference: Most slides adapted from Montgomery et al. (2011)

3-12 Functions of Random Variables

3-12.1 Linear Combinations of Independent

Random Variables

Page 32: Ch3_FunctionsRandomVariables_torresgarcia.pdf

8/16/2019 Ch3_FunctionsRandomVariables_torresgarcia.pdf

http://slidepdf.com/reader/full/ch3functionsrandomvariablestorresgarciapdf 32/38

 Reference: Most slides adapted from Montgomery et al. (2011)

3-12 Functions of Random Variables

3-12.2 What If the Random Variables Are NotIndependent?

If = + , then

() = ( + ) = () + () () = ( + ) = 2() + 2() + (, )

Note: If X and Y are independent, then

() = 2() + 2() because (,) = 0

Page 33: Ch3_FunctionsRandomVariables_torresgarcia.pdf

8/16/2019 Ch3_FunctionsRandomVariables_torresgarcia.pdf

http://slidepdf.com/reader/full/ch3functionsrandomvariablestorresgarciapdf 33/38

 Reference: Most slides adapted from Montgomery et al. (2011)

DISCRETE CASE EXAMPLE

33

y

0 1

p(x,y) = x   2 0.2 0.4

4 0.3 0.1

E(X) = 2.8

VAR(X) = .96

E(Y) = .5

VAR(Y) = .25

E(XY) = 1.2

(,) = −0.2

= −0.408

What is COV(X,Y) and r?

)()()(),(   Y  E  X  E Y  X  E Y  X COV  XY 

    

  4082.0489.0

2.025.096.0

2.0)()(

),(

Y  X 

 XY 

Y VAR X VAR

Y  X COV 

    r 

  2.04.12.15.08.22.1),(    XY 

Y  X COV      

Y  X 

 XY 

Y VAR X VAR

Y  X COV 

  

  r   

)()(

),(

Page 34: Ch3_FunctionsRandomVariables_torresgarcia.pdf

8/16/2019 Ch3_FunctionsRandomVariables_torresgarcia.pdf

http://slidepdf.com/reader/full/ch3functionsrandomvariablestorresgarciapdf 34/38

 Reference: Most slides adapted from Montgomery et al. (2011)

CONTINUOUS CASE EXAMPLE

 (, ) = 1/24 for -1 < x < 2 and 2 < y < 10

It can be shown that

f(x) = 1/3 for -1 < x < 2, E(X) = 1/2, VAR(X) = 3/4

f(y) = 1/8 for 2 < y < 10, E(Y) = 6, VAR(Y) = 16/3

COV(X,Y) = ?, r = ?

34

396

288

96

12

96

300

248

3

48

48

)1(

48

4

4824)(

10

2

210

2

10

2

210

2

2

1

210

2

2

1

 

  

 

 

 

 

   

 ydy

 y

dy y y

dy y x

dxdy xy

Y  X  E 

  06

2

13)()()(),(

21211221 

 

  

    X  E  X  E  X  X  E  X  X COV      

)()()(),( 21211221   X  E  X  E  X  X  E  X  X COV      

Page 35: Ch3_FunctionsRandomVariables_torresgarcia.pdf

8/16/2019 Ch3_FunctionsRandomVariables_torresgarcia.pdf

http://slidepdf.com/reader/full/ch3functionsrandomvariablestorresgarciapdf 35/38

Page 36: Ch3_FunctionsRandomVariables_torresgarcia.pdf

8/16/2019 Ch3_FunctionsRandomVariables_torresgarcia.pdf

http://slidepdf.com/reader/full/ch3functionsrandomvariablestorresgarciapdf 36/38

 Reference: Most slides adapted from Montgomery et al. (2011)

3-12 Functions of Random Variables

3-12.3 What If the Function Is Nonlinear?

Page 37: Ch3_FunctionsRandomVariables_torresgarcia.pdf

8/16/2019 Ch3_FunctionsRandomVariables_torresgarcia.pdf

http://slidepdf.com/reader/full/ch3functionsrandomvariablestorresgarciapdf 37/38

 Reference: Most slides adapted from Montgomery et al. (2011)

3-12 Functions of Random Variables

3-12.3 What If the Function

Is Nonlinear?

Page 38: Ch3_FunctionsRandomVariables_torresgarcia.pdf

8/16/2019 Ch3_FunctionsRandomVariables_torresgarcia.pdf

http://slidepdf.com/reader/full/ch3functionsrandomvariablestorresgarciapdf 38/38

3-12 Functions of Random Variables

3-12.3 What If the Function Is Nonlinear?