Cannibalizaon’of’Dwarf’Galaxies’by’the’Milky’Way’ …...Poster’PrintSize: ’...

1
Cannibaliza?on of Dwarf Galaxies by the Milky Way Distance to the Leading Arm of the Magellanic System Jacqueline AntwiDanso 1 and Kat Barger 1,2 1 Department of Physics & Astronomy, Texas Chris?an University, Fort Worth, TX 76129, USA 2 Department of Physics, University of Notre Dame, IN 46556, USA Jacqueline AntwiDanso Department of Physics and Astronomy, Texas Chris?an University Email: [email protected] Website: www.tcu.digica?on.com/jacqueline_antwidanso Phone: (817)7032418 Contact 1. Fox et al. 2014 2. Reynolds et al. 1998 3. Haffner et al. 2003 4. CasetDinescu et al. 2014 5. Fox et al. 2005 6. BlandHawthorn et al. 1999, 2001 7. Haardt & Madau 2001 References Background Since the strength of the Hα emission is directly propor?onal to the rate of recombina?on, Hα emission traces all the warm ionized gas in the Leading Arm. Figure 4 shows the Fox et al. 2005 model for the ionizing flux of the MW combined with the Haardt & Madau 2001 model for the EGB as a func?on of distance from the Galac?c center. The ionizing flux is most intense at the center because that is where most star forma?on takes place. This plot is two dimensional for illustra?on purposes, but is adequate for describing this region in threedimensional space because the ionizing flux contribu?ons from the MW and EGB are symmetric. We took the calculated Hα intensi?es and their corresponding sta?s?cal errors and calculated the ionizing flux needed to reproduce the Hα emission through photoioniza?on alone using Equa?on 1. We then compared this value with MW and EGB models of the ionizing flux in Figure to determine the distance that best matched the an?cipated flux at the Galac?c longitude and la?tude of our observa?ons. From this, our best es?mate for the distance to the Leading Arm at the loca?on of our observa?ons is 18.1 kpc from the Sun. This represents a minimum value for what the distance could be, as we are ignoring the ionizing contribu?on of the Magellanic Clouds and sources of collisional ioniza?on. Therefore, we find that this part of the LA is ≥ 14.8 kpc from the Sun at a Galac?c height of ≥ 9 kpc. Casse?Dinescu et al. 2014 find the O6V star formed in the LA to be 40 kpc 4 from the Sun. Using the reported coordinates of the star, we found it to be at a Galac?c height of 10 kpc; hence our study is consistent with their results. ObservaHons and ReducHon To determine the Hα intensity, we modeled the emission as a Gaussian convolved with the WHAM instrument profile. Since the LA Hα emission is faint and diffuse, this behooves us to employ sta?s?cal methods that ensure that our uncertain?es are reported to a high degree of accuracy. Of the seven sightlines, four exceed a 3σ detec?on. We determined the best fit by minimizing the χ 2 with the goodnessoffit technique, using the IDL MPFIT rou?nes. To calculate the systema?c uncertain?es in our intensity values, we created a threedimensional best χ 2 ±1 volume and found the loca?on of the minimum value in the volume, which corresponds to the loca?on of the best χ 2 value for the data set. Using this loca?on as an index, we created a similar intensity volume and calculated the differences between the value at that loca?on in the volume and the maximum and minimum values in the volume. These represent the upper and lower systema?c uncertain?es respec?vely. Error Analysis The Na?onal Science Founda?on supported WHAM through AST 1108911 and the TCU REU through grant number NSF PHY1358770. K. A. Barger is further supported through NSF Astronomy and Astrophysical Postdoctoral Fellowship award AST 1203059. Acknowledgements Results Fig 1. Map of the 21cm HI emission in the Magellanic System noHng distances above and below the GalacHc plane of our observed region and the O6V star. Photo credit: Nidever, et al. 2010, NRAO/AUI/NSF and Meilinger, LeidenArgenHneBonn Survey, Parkes Observatory, Westerbork Observatory, Arecibo Observatory. Fig 2. – LocaHons of Hα observaHons in the LA. DetecHons are open circles and nondetecHons are crossfilled circles. The seven WHAM observaHons presented in this study lie within the black rectangle and are labeled (ag). LocaHons with HST/COS observaHons by Fox et al. 2014 are marked with orange circles. The star marks the locaHon of an O6V star observed by Case_Dinescu et al. 2014. Fig 4. – Ionizing radiaHon field of the Galaxy 5,6 and the EGB 7 . The plot shows a 400 x 400 kpc slice through the center of the Galaxy. The numbers on the contour lines give the logarithm of the flux in units of photons cm 2 s 1 . The ionizing contribuHon of the EGB has a constant value of 3.22 x 10 4 photons cm 2 s 1 (Haardt & Madau 2001, BlandHawthorn et al. 1991, 2001) . 10 15 20 25 88 83 78 g a b f c d e Magellanic Stream Longitude (Degrees) Magellanic Stream Latitude (Degrees) 30 -20 20 100 70 40 10 -20 Magellanic Stream Longitude (Degrees) Magellanic Stream Latitude (Degrees) Log(HI Column Density / cm -2 ) 17.6 17.8 18.0 18.2 18.4 Leading Arm Magellanic Stream LMC SMC Milky Way We collected our observa?ons using the Wisconsin Hα Mapper Telescope (WHAM) at the Cerro Tololo InterAmerican Observatory (CTIO) in Chile. It is currently the best instrument available for detec?ng faint emission from diffuse ionized sources due its highthroughput duel FabryPerόt spectrometer combined with a 0.6meter objec?ve lens 2 . We made seven pointed Hα observa?ons posi?oned at 75 – 90 ° from the LMC and SMC and reduced the data with the same OnOff target procedure used in Barger et al. 2015 and the standard WHAM pipeline 3 . We ignore collisional sources of ioniza?on and photoioniza?on from the Magellanic Clouds (MCs) and propose that if the MW and EGB cause most of the photoioniza?on, then the rate of ioniza?on of the gas is propor?onal to the rate of recombina?on of the protons and electrons. The strength of the Hα emission will then be propor?onal to the ionizing flux because the Hα transi?on line arises from recombina?on. Since our Universe is made of mostly hydrogen, the number of “free” electrons will be approximately equal to that of ionized hydrogen atoms, hence: We assumed that the gas is op?cally thick and that T e =10 4 K since Hα emission peaks at this temperature. Galaxies form stars from clouds of gas and dust. In the absence of a source of replenishment, large galaxies – like the Milky Way (MW) deplete their gas reservoirs in a few billion years, far shorter than their life?mes. Chemical evolu?on models suggest that the Galaxy has survived by accre?ng low metallicity gas from the intergalac?c medium and dwarf galaxies. Tidal interac?ons between two dwarf galaxies near the MW, the Large and Small Magellanic Clouds (LMC and SMC), have caused large quan??es of gas to be flung into the halo of the MW. Much of this ?dal debris, known as the Magellanic System (M sys ), is currently headed towards the disk of the MW, spearheaded by the Leading Arm (LA). Es?mates for the amount of gas contained in the M sys suggest that it could raise the present star forma?on rate (SFR) of the Galaxy 1 . Unfortunately, its posi?on predisposes it to ionizing radia?on from the MW halo and extragalac?c background (EGB), hindering gas accre?on. The LA, however, appears to have already survived the trip to the disk as its morphology indicates interac?on with the interstellar medium (ISM) of the Galaxy. The exact amount of gas that this structure contains is uncertain because of weak constrains in its distance. We made an emissionline study of the Hα ioniza?on in the LA and compared the observed with models of the an?cipated ionizing flux from the MW and EGB. Based on this, our current best es?mate for the distance to the LA at 80 ° from the LMC is d ≤ 14.8 kpc from the Sun. Fig 3. – Data fi_ng using modified IDL MPFIT rouHnes. The blue line is the “best guess” fit of the data set. The fit with the best 2 and its corresponding background are ploged in purple. LSR Velocity (km s 1 ) Intensity (mR/km s 1 ) φ LC =2.1 10 5 I H0.1R ◆✓ T e 10 4 K 0.094 photons cm -2 s -1 . Observed Region +6.3 3.3 10 kpc ≥ 9 kpc (1)

Transcript of Cannibalizaon’of’Dwarf’Galaxies’by’the’Milky’Way’ …...Poster’PrintSize: ’...

Page 1: Cannibalizaon’of’Dwarf’Galaxies’by’the’Milky’Way’ …...Poster’PrintSize: ’ This’poster’template’is’44”’high’by’ 44”’wide.’Itcan’be’used’to’printany’

Poster  Print  Size:  This  poster  template  is  44”  high  by  44”  wide.  It  can  be  used  to  print  any  poster  with  a  1:1  aspect  ra?o.  

Placeholders:  The  various  elements  included  in  this  poster  are  ones  we  oAen  see  in  medical,  research,  and  scien?fic  posters.  Feel  free  to  edit,  move,    add,  and  delete  items,  or  change  the  layout  to  suit  your  needs.  Always  check  with  your  conference  organizer  for  specific  requirements.  

Image  Quality:  You  can  place  digital  photos  or  logo  art  in  your  poster  file  by  selec?ng  the  Insert,  Picture  command,  or  by  using  standard  copy  &  paste.  For  best  results,  all  graphic  elements  should  be  at  least  150-­‐200  pixels  per  inch  in  their  final  printed  size.  For  instance,  a  1600  x  1200  pixel  photo  will  usually  look  fine  up  to  8“-­‐10”  wide  on  your  printed  poster.  To  preview  the  print  quality  of  images,  select  a  magnifica?on  of  100%  when  previewing  your  poster.  This  will  give  you  a  good  idea  of  what  it  will  look  like  in  print.  If  you  are  laying  out  a  large  poster  and  using  half-­‐scale  dimensions,  be  sure  to  preview  your  graphics  at  200%  to  see  them  at  their  final  printed  size.  Please  note  that  graphics  from  websites  (such  as  the  logo  on  your  hospital's  or  university's  home  page)  will  only  be  72dpi  and  not  suitable  for  prin?ng.  

 [This  sidebar  area  does  not  print.]  

Change  Color  Theme:  This  template  is  designed  to  use  the  built-­‐in  color  themes  in  the  newer  versions  of  PowerPoint.  To  change  the  color  theme,  select  the  Design  tab,  then  select  the  Colors  drop-­‐down  list.                    The  default  color  theme  for  this  template  is  “Office”,  so  you  can  always  return  to  that  aAer  trying  some  of  the  alterna?ves.  

Prin?ng  Your  Poster:  Once  your  poster  file  is  ready,  visit  www.genigraphics.com  to  order  a  high-­‐quality,  affordable  poster  print.  Every  order  receives  a  free  design  review  and  we  can  deliver  as  fast  as  next  business  day  within  the  US  and  Canada.    Genigraphics®  has  been  producing  output  from  PowerPoint®  longer  than  anyone  in  the  industry;  da?ng  back  to  when  we  helped  MicrosoA®  design  the  PowerPoint®  soAware.      US  and  Canada:    1-­‐800-­‐790-­‐4001  Email:  [email protected]  

 [This  sidebar  area  does  not  print.]  

Cannibaliza?on  of  Dwarf  Galaxies  by  the  Milky  Way    Distance  to  the  Leading  Arm  of  the  Magellanic  System  

Jacqueline  Antwi-­‐Danso1  and  Kat  Barger1,2  1Department  of  Physics  &  Astronomy,  Texas  Chris?an  University,  Fort  Worth,  TX  76129,  USA    

2Department  of  Physics,  University  of  Notre  Dame,  IN  46556,  USA  

Jacqueline  Antwi-­‐Danso  Department  of  Physics  and  Astronomy,  Texas  Chris?an  University  ✉︎  Email:  [email protected]  ☞  Website:  www.tcu.digica?on.com/jacqueline_antwidanso  ☏  Phone:  (817)-­‐703-­‐2418  

Contact  1.  Fox  et  al.  2014  2.  Reynolds  et  al.  1998    3.  Haffner  et  al.  2003  4.  Caset-­‐Dinescu  et  al.  2014  5.  Fox  et  al.  2005    6.  Bland-­‐Hawthorn  et  al.  1999,  2001  7.  Haardt  &  Madau  2001      

References  

Background  Since  the  strength  of  the  Hα  emission  is  directly  propor?onal  to  the  rate  of   recombina?on,   Hα   emission   traces   all   the   warm   ionized   gas   in   the  Leading  Arm.  Figure  4  shows  the  Fox  et  al.  2005  model   for   the   ionizing  flux  of  the  MW  combined  with  the  Haardt  &  Madau  2001  model  for  the  EGB  as  a  func?on  of  distance  from  the  Galac?c  center.  The  ionizing  flux  is  most   intense   at   the   center   because   that   is  where  most   star   forma?on  takes  place.  This  plot  is  two  dimensional  for  illustra?on  purposes,  but  is  adequate   for  describing   this   region   in   three-­‐dimensional   space  because  the  ionizing  flux  contribu?ons  from  the  MW  and  EGB  are  symmetric.  We  took   the   calculated   Hα   intensi?es   and   their   corresponding   sta?s?cal  errors   and   calculated   the   ionizing   flux   needed   to   reproduce   the   Hα  emission   through   photoioniza?on   alone   using   Equa?on   1.   We   then  compared   this   value   with  MW   and   EGB  models   of   the   ionizing   flux   in  Figure  to  determine  the  distance  that  best  matched  the  an?cipated  flux  at  the  Galac?c  longitude  and  la?tude  of  our  observa?ons.  From  this,  our  best  es?mate  for  the  distance  to  the  Leading  Arm  at  the  loca?on  of  our  observa?ons  is  18.1        kpc  from  the  Sun.  This  represents  a  minimum  value  for   what   the   distance   could   be,   as   we   are   ignoring   the   ionizing  contribu?on   of   the   Magellanic   Clouds   and   sources   of   collisional  ioniza?on.  Therefore,  we  find  that  this  part  of  the  LA  is  ≥  14.8  kpc  from  the  Sun  at  a  Galac?c  height  of  ≥  9  kpc.  Casse?-­‐Dinescu  et  al.  2014  find  the   O6V   star   formed   in   the   LA   to   be   40   kpc4   from   the   Sun.   Using   the  reported  coordinates  of  the  star,  we  found  it  to  be  at  a  Galac?c  height  of  -­‐10  kpc;  hence  our  study  is  consistent  with  their  results.    ObservaHons  and  ReducHon  

To  determine  the  Hα   intensity,  we  modeled  the  emission  as  a  Gaussian  convolved  with  the  WHAM  instrument  profile.  Since  the  LA  Hα  emission  is   faint  and  diffuse,  this  behooves  us  to  employ  sta?s?cal  methods  that  ensure  that  our  uncertain?es  are  reported  to  a  high  degree  of  accuracy.  Of  the  seven  sightlines,  four  exceed  a  3σ  detec?on.  We  determined  the  best  fit  by  minimizing  the  χ2  with  the  goodness-­‐of-­‐fit  technique,  using  the  IDL   MPFIT   rou?nes.   To   calculate   the   systema?c   uncertain?es   in   our  intensity   values,  we   created   a   three-­‐dimensional   best  χ2±1  volume  and  found   the   loca?on   of   the   minimum   value   in   the   volume,   which  corresponds   to   the   loca?on  of   the  best  χ2  value   for   the  data   set.  Using  this   loca?on   as   an   index,   we   created   a   similar   intensity   volume   and  calculated   the   differences   between   the   value   at   that   loca?on   in   the  volume   and   the   maximum   and   minimum   values   in   the   volume.   These  represent  the  upper  and  lower  systema?c  uncertain?es  respec?vely.    

Error  Analysis  

The  Na?onal  Science  Founda?on  supported  WHAM  through  AST  1108911  and  the  TCU  REU  through  grant  number  NSF  PHY-­‐1358770.  K.  A.  Barger  is  further  supported  through  NSF  Astronomy  and  Astrophysical  Postdoctoral  Fellowship  award  AST  1203059.    

Acknowledgements    

Results  

Fig  1.  Map  of  the  21cm  HI  emission  in  the  Magellanic  System  noHng  distances  above  and  below  the  GalacHc  plane  of  our  observed  region  and  the  O6V  star.  Photo  credit:  Nidever,  et  al.  2010,  NRAO/AUI/NSF  and  Meilinger,  Leiden-­‐ArgenHne-­‐Bonn  Survey,  Parkes  Observatory,  Westerbork  Observatory,  Arecibo  Observatory.    

Fig  2.  –  LocaHons  of  Hα  observaHons  in  the  LA.  DetecHons  are  open  circles  and  non-­‐detecHons  are  cross-­‐filled  circles.  The  seven  WHAM  observaHons  presented    in  this  study  lie  within  the  black  rectangle  and  are  labeled  (a-­‐g).  LocaHons  with    HST/COS  observaHons  by  Fox  et  al.  2014  are  marked  with  orange  circles.  The  star    marks  the  locaHon  of  an  O6V  star  observed  by  Case_-­‐Dinescu  et  al.  2014.      

 Fig  4.  –  Ionizing  radiaHon  field  of  the  Galaxy5,6    and  the  EGB7.  The  plot  shows  a    400  x  400  kpc  slice    through  the  center  of  the  Galaxy.  The  numbers  on  the  contour    lines  give  the    logarithm    of  the  flux  in  units  of  photons  cm-­‐2  s-­‐1.  The  ionizing    contribuHon  of  the  EGB  has  a  constant  value  of  3.22  x  104  photons  cm-­‐2  s-­‐1      (Haardt  &  Madau  2001,  Bland-­‐Hawthorn  et  al.  1991,  2001)  .  

10

15

20

25

88 83 78

g

a

b

f

c d

e

Magellanic Stream Longitude (Degrees)

Ma

ge

lla

nic

Str

ea

m L

atitu

de

(D

eg

re

es)

30

-20

20

100 70 40 10 -20

Magellanic Stream Longitude (Degrees)

Ma

ge

lla

nic

Str

ea

m L

atitu

de

(D

eg

re

es)

Log(HI Column Density / cm-2)

17.6 17.8 18.0 18.2 18.4

Leading  Arm    

Magellanic  Stream    

LMC  

SMC  

Milky  Way  

We  collected  our  observa?ons  using  the  Wisconsin  Hα  Mapper  Telescope  (WHAM)  at  the  Cerro  Tololo  Inter-­‐American  Observatory  (CTIO)  in  Chile.  It  is  currently  the  best  instrument  available  for  detec?ng  faint  emission  from  diffuse   ionized   sources   due   its   high-­‐throughput   duel   Fabry-­‐Perόt  spectrometer  combined  with  a  0.6-­‐meter  objec?ve  lens2.  We  made  seven  pointed  Hα  observa?ons  posi?oned  at  75  –  90°  from  the  LMC  and  SMC  and  reduced  the  data  with  the  same  On-­‐Off  target  procedure  used  in  Barger  et  al.  2015  and  the  standard  WHAM  pipeline3.  We  ignore  collisional  sources  of   ioniza?on   and   photoioniza?on   from   the  Magellanic   Clouds   (MCs)   and  propose  that  if  the  MW  and  EGB  cause  most  of  the  photoioniza?on,  then  the   rate   of   ioniza?on   of   the   gas   is   propor?onal   to   the   rate   of  recombina?on   of   the   protons   and   electrons.   The   strength   of   the   Hα  emission   will   then   be   propor?onal   to   the   ionizing   flux   because   the   Hα  transi?on   line   arises   from   recombina?on.   Since   our  Universe   is  made   of  mostly   hydrogen,   the   number   of   “free”   electrons   will   be   approximately  equal  to  that  of  ionized  hydrogen  atoms,  hence:      We   assumed   that   the   gas   is   op?cally   thick   and   that   Te=104   K   since   Hα  emission  peaks  at  this  temperature.      

Galaxies  form  stars  from  clouds  of  gas  and  dust.  In  the  absence  of  a  source  of  replenishment,  large  galaxies  –  like  the  Milky  Way  (MW)  –  deplete  their  gas   reservoirs   in   a   few   billion   years,   far   shorter   than   their   life?mes.  Chemical   evolu?on   models   suggest   that   the   Galaxy   has   survived   by  accre?ng   low   metallicity   gas   from   the   intergalac?c   medium   and   dwarf  galaxies.  Tidal  interac?ons  between  two  dwarf  galaxies  near  the  MW,  the  Large   and   Small   Magellanic   Clouds   (LMC   and   SMC),   have   caused   large  quan??es  of  gas  to  be  flung   into  the  halo  of   the  MW.  Much  of   this  ?dal  debris,   known   as   the   Magellanic   System   (Msys),   is   currently   headed  towards   the   disk   of   the   MW,   spearheaded   by   the   Leading   Arm   (LA).  Es?mates  for  the  amount  of  gas  contained  in  the  Msys  suggest  that  it  could  raise  the  present  star  forma?on  rate  (SFR)  of  the  Galaxy1.  Unfortunately,  its   posi?on   predisposes   it   to   ionizing   radia?on   from   the   MW   halo   and  extragalac?c  background  (EGB),  hindering  gas  accre?on.  The  LA,  however,  appears   to   have   already   survived   the   trip   to   the   disk   as   its  morphology  indicates  interac?on  with  the  interstellar  medium  (ISM)  of  the  Galaxy.  The  exact   amount  of   gas   that   this   structure   contains   is   uncertain  because  of  weak  constrains  in  its  distance.  We  made  an  emission-­‐line  study  of  the  Hα  ioniza?on   in   the   LA   and   compared   the   observed   with   models   of   the  an?cipated  ionizing  flux  from  the  MW  and  EGB.  Based  on  this,  our  current  best  es?mate  for  the  distance  to  the  LA  at  80°  from  the  LMC  is  d  ≤  14.8  kpc  from  the  Sun.      

Fig  3.  –  Data  fi_ng  using  modified  IDL  MPFIT  rouHnes.  The  blue  line  is  the  “best    guess”  fit  of  the  data  set.  The  fit  with  the  best  𝜒2  and  its  corresponding    background  are  ploged  in  purple.    

LSR  Velocity  (km  s-­‐1)  

Intensity

 (mR/km

 s-­‐1 )  

�LC = 2.1⇥ 10

5

✓IH↵

0.1R

◆✓Te

10

4K

◆0.094

photons cm

�2s

�1.

Observed  Region    

+6.3  

-­‐3.3  

∼10  kpc  

≥  9  kpc  

(1)