Poster’PrintSize ...ruccs.rutgers.edu/images/publications/g_posters/JRyu...Poster’PrintSize: ’...

1
Methods 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 v Results CogniCve load leads to a higher noise level in goal directed movements and a lower level of sense of agency Jihye Ryu 1,2 , Elizabeth Torres 1,2,3 1 Rutgers University, Psychology Department 2 Rutgers Center for CogniAve Science 3 Rutgers University , Computer Science Department MoCvaCon Different levels of intent in our moAons have different signatures of variability (Torres, 2011). Individuals who pracAce mindfulness report experiencing a higher level of sense of agency (Allen et al., 2009) , while arguably those who have a preoccupied mind may experience a lower level of sense of agency. Can we characterize different levels of one’s sense of agency using signatures of motor output variability? This is an experimental paradigm and analyAcs to explore this quesAon. We show preliminary results. Acknowledgements This research is funded in part by The New Jersey Governor’s Council for Medical Research and Treatment of AuAsm and the New Jersey Department of Health References Allen, M., Bromley, A., Kuyken, W., & Sonnenberg, S. J. (2009). ParAcipants' experiences of mindfulnessbased cogniAve therapy:“it changed me in just about every way possible”. Behavioural and Cogni0ve Psychotherapy, 37(04), 413430 Haggard, P., Clark, S., & Kalogeras, J. (2002). Voluntary acAon and conscious awareness. Nature neuroscience, 5(4), 382385. Limerick, H., Coyle, D., & Moore, J. W. (2014). The experience of agency in humancomputer interacAons: a review. Fron0ers in human neuroscience, 8. Torres, E. B. (2011). Two classes of movements in motor control. Experimental brain research, 215(34), 269283. Future DirecCon The current study was conducted as a pilot study, and will be conducted on a larger sample with other variaAons of mindfulness pracAces involved. Given that the speed variability pauern was found only in forward movements (i.e., goal directed movement) suggests that separate brain areas may be involved for efforvul movements, as opposed to automaAc movements. In fact, it is possible that the regions involved in efforvul movement may be related to how we experience sense of agency. Further studies using devices such as EEG may help to shed light on this conjecture. Experiment Paradigm Task: The parAcipant touched the screen when a low tone signaled to do so. ACer the touch, the parAcipant heard a high tone that beeped 100ms, 400ms, or 700ms aCer the touch. Then the parAcipant was presented with a sliding scale between 0 to 1 second, to indicate how long they perceived the Ame elapsed between the touch and the high tone. Control condiAon (Control): Performed 60 trials right aCer becoming familiar with the procedure. Mindfulness condiAon (Mindful): Performed 60 trials aCer a 10minute guided meditaAon. CogniAve load condiAon (CogLoad): Performed 60 trials while counAng backwards from 400 by 3. A) Plot the posiAonal trajectory of the poinAng (P) and Ame esAmaAng (T) movement separated by forward (deliberate) and backward (spontaneousuninstructed) moAons. B) Plot the temporal speed profiles (linear velocity, angular velocity, linear acceleraAon, angular acceleraAon) C) Plot frequency distribuAon of the kinemaAc parameter (peak speed, Ame to peak etc.) D) Empirically esAmate the probability distribuAon parameters fiwng histogram in C) using the conAnuous Gamma family of probability distribuAons and their staAsAcs (mu, sigma) E) Plot esAmated parameters on the Gamma plane Red: Forward move for poinCng (P) Blue: Backward move for poinCng (P) Red: Forward move to indicate Cme (T) Blue: Backward move to indicate Cme(T) Forward trajectory Backward trajectory Normalized Peak Accel Time to Peak Accel (ms) Forward trajectory speed profile A) B) C) Control Mindful CogLoad time(sec) 0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.2 0.4 0.6 0.8 1 Gamma pdf 0 0.5 1 1.5 2 2.5 3 Control P Control T Mindful P Mindful T CogLoad P CogLoad T Mean 0.59 0.6 0.61 0.62 0.63 0.64 Standard Deviation 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 Control P Control T Mindful P Mindful T CogLoad P CogLoad T Shape 5 10 15 20 25 Scale 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0 0.2 0.4 0.6 0.8 1 Gamma pdf 0 1 2 3 4 5 6 7 Control P Control T Mindful P Mindful T CogLoad P CogLoad T Mean 0.15 0.16 0.17 0.18 0.19 0.2 0.21 Standard Deviation 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.024 Control P Control T Mindful P Mindful T CogLoad P CogLoad T Shape 1 2 3 4 5 6 Scale 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0 0.2 0.4 0.6 0.8 1 Gamma pdf 0 0.5 1 1.5 2 2.5 Control P Control T Mindful P Mindful T CogLoad P CogLoad T Mean 0.59 0.6 0.61 0.62 0.63 0.64 0.65 0.66 0.67 Standard Deviation 0.025 0.03 0.035 0.04 0.05 Control P Control T Mindful P Mindful T CogLoad P CogLoad T Shape 5 10 15 20 Scale 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0 0.2 0.4 0.6 0.8 1 Gamma pdf 0 1 2 3 4 5 6 Control P Control T Mindful P Mindful T CogLoad P CogLoad T Mean 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 Standard Deviation 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 Control P Control T Mindful P Mindful T CogLoad P CogLoad T Shape 1 2 3 4 5 6 Scale 0 0.05 0.1 0.15 0.2 0.25 Conclusion When participants had cognitive load, the speed profile (e.g., peak angular acceleration and time to peak angular acceleration) showed to have more noise in the movements, than when participants did not have cognitive load (i.e., in control and mindful conditions). Noticeably, this pattern was only found in the forward movement (i.e., goal directed action). Also, when participants had cognitive load, they experienced a lower level of sense of agency, as was shown by the longer perceived time duration between the intended movement and its action effect. Figure from Limerick et al. (2014) Sense of agency was measured using the intenAonal binding method. IntenAonal binding is a phenomenon where an individual perceives the Ame between one’s acAon and its effect to be shorter when the acAon is voluntary, and longer when the acAon is involuntary (Haggard et al, 2002). Number of trials Backward trajectory speed profile Results for ParCcipant A on Normalized Peak Angular AcceleraCon Gamma fit by condiCon Pdf of fiRed gamma funcCon by condiCon Results for ParCcipant B on Normalized Peak Angular AcceleraCon Gamma fit by condiCon Pdf of fiRed gamma funcCon by condiCon Results for ParCcipant A on Time to Peak Angular AcceleraCon Gamma fit by condiCon Pdf of fiRed gamma funcCon by condiCon Results for ParCcipant B on Time to Peak Angular AcceleraCon Gamma fit by condiCon Pdf of fiRed gamma funcCon by condiCon Mean Perceived Time between touch and high tone for 3 parCcipants by condiCon There was a staAsAcally significant difference between condiAons as determined by oneway ANOVA (F(2,177) = 60.65, p <0.001). Fano Factor by condiCon Gamma StaCsCcs by CondiCon Gamma StaCsCcs by CondiCon Fano Factor by condiCon Gamma StaCsCcs by CondiCon Gamma StaCsCcs by CondiCon Fano Factor by condiCon 0 100 200 300 400 500 600 700 800 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 100 200 300 400 500 600 700 800 900 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Angular AcceleraAon (m/s) Angular AcceleraAon (m/s) Time(ms) Time(ms) YposiAon YposiAon XposiAon XposiAon 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0 0.05 0.1 0.15 0.2 0.25 0 0.05 0.1 0.15 0.2 0.25 Fano Factor by condiCon ControlP ControlT MindfulP MindfulT CogLoadP CogLoadT ControlP ControlT MindfulP MindfulT CogLoadP CogLoadT ControlP ControlT MindfulP MindfulT CogLoadP CogLoadT ControlP ControlT MindfulP MindfulT CogLoadP CogLoadT Analyses Peak velocity Peak velocity Sample parsing

Transcript of Poster’PrintSize ...ruccs.rutgers.edu/images/publications/g_posters/JRyu...Poster’PrintSize: ’...

Page 1: Poster’PrintSize ...ruccs.rutgers.edu/images/publications/g_posters/JRyu...Poster’PrintSize: ’ This’poster’template’is’36”’high’by’ 48”’wide.’Itcan’be’used’to’printany’

Poster  Print  Size:  This  poster  template  is  36”  high  by  48”  wide.  It  can  be  used  to  print  any  poster  with  a  3:4  aspect  raAo.  

Placeholders:  The  various  elements  included  in  this  poster  are  ones  we  oCen  see  in  medical,  research,  and  scienAfic  posters.  Feel  free  to  edit,  move,    add,  and  delete  items,  or  change  the  layout  to  suit  your  needs.  Always  check  with  your  conference  organizer  for  specific  requirements.  

Image  Quality:  You  can  place  digital  photos  or  logo  art  in  your  poster  file  by  selecAng  the  Insert,  Picture  command,  or  by  using  standard  copy  &  paste.  For  best  results,  all  graphic  elements  should  be  at  least  150-­‐200  pixels  per  inch  in  their  final  printed  size.  For  instance,  a  1600  x  1200  pixel  photo  will  usually  look  fine  up  to  8“-­‐10”  wide  on  your  printed  poster.  To  preview  the  print  quality  of  images,  select  a  magnificaAon  of  100%  when  previewing  your  poster.  This  will  give  you  a  good  idea  of  what  it  will  look  like  in  print.  If  you  are  laying  out  a  large  poster  and  using  half-­‐scale  dimensions,  be  sure  to  preview  your  graphics  at  200%  to  see  them  at  their  final  printed  size.  Please  note  that  graphics  from  websites  (such  as  the  logo  on  your  hospital's  or  university's  home  page)  will  only  be  72dpi  and  not  suitable  for  prinAng.  

 [This  sidebar  area  does  not  print.]  

Change  Color  Theme:  This  template  is  designed  to  use  the  built-­‐in  color  themes  in  the  newer  versions  of  PowerPoint.  To  change  the  color  theme,  select  the  Design  tab,  then  select  the  Colors  drop-­‐down  list.                    The  default  color  theme  for  this  template  is  “Office”,  so  you  can  always  return  to  that  aCer  trying  some  of  the  alternaAves.  

PrinAng  Your  Poster:  Once  your  poster  file  is  ready,  visit  www.genigraphics.com  to  order  a  high-­‐quality,  affordable  poster  print.  Every  order  receives  a  free  design  review  and  we  can  deliver  as  fast  as  next  business  day  within  the  US  and  Canada.    Genigraphics®  has  been  producing  output  from  PowerPoint®  longer  than  anyone  in  the  industry;  daAng  back  to  when  we  helped  MicrosoC®  design  the  PowerPoint®  soCware.      US  and  Canada:    1-­‐800-­‐790-­‐4001  Email:  [email protected]  

 [This  sidebar  area  does  not  print.]  

Methods    

     0.35 0.4 0.45 0.5 0.55 0.6 0.65

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.3 0.35 0.4 0.45 0.5 0.55 0.60.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

   v  

Results  

CogniCve  load  leads  to  a  higher  noise  level  in  goal  directed  movements  and  a  lower  level  of  sense  of  agency    

Jihye  Ryu1,2,  Elizabeth  Torres1,2,3  1Rutgers  University,  Psychology  Department      2Rutgers  Center  for  CogniAve  Science        3Rutgers  University  ,  Computer  Science  Department    

MoCvaCon  •  Different  levels  of  intent  in  our  moAons  have  different  

signatures  of  variability  (Torres,  2011).      •  Individuals  who  pracAce  mindfulness  report  experiencing  a  

higher  level  of  sense  of  agency  (Allen  et  al.,  2009)  ,  while  arguably  those  who  have  a  preoccupied  mind  may  experience  a  lower  level  of  sense  of  agency.    

 •  Can  we  characterize  different  levels  of  one’s  sense  of  agency  

using  signatures  of  motor  output  variability?      •  This  is  an  experimental  paradigm  and  analyAcs  to  explore  

this  quesAon.  We  show  preliminary  results.    

Acknowledgements  This  research  is  funded  in  part  by  The  New  Jersey  Governor’s  Council  for  Medical  Research  and  Treatment  of  AuAsm  and  the  New  Jersey  Department  of  Health

References  •  Allen,  M.,  Bromley,  A.,  Kuyken,  W.,  &  Sonnenberg,  S.  J.  (2009).  ParAcipants'  experiences  of  mindfulness-­‐based  cogniAve  therapy:“it  changed  me  in  just  about  every  way  possible”.  Behavioural  and  Cogni0ve  Psychotherapy,  37(04),  413-­‐430  •  Haggard,  P.,  Clark,  S.,  &  Kalogeras,  J.  (2002).  Voluntary  acAon  and  conscious  awareness.  Nature  neuroscience,  5(4),  382-­‐385.  •  Limerick,  H.,  Coyle,  D.,  &  Moore,  J.  W.  (2014).  The  experience  of  agency  in  human-­‐computer  interacAons:  a  review.  Fron0ers  in  human  neuroscience,  8.  •  Torres,  E.  B.  (2011).  Two  classes  of  movements  in  motor  control.  Experimental  brain  research,  215(3-­‐4),  269-­‐283.      

Future  DirecCon    •  The  current  study  was  conducted  as  a  pilot  study,  and  will  

be  conducted  on  a  larger  sample  with  other  variaAons  of  mindfulness  pracAces  involved.    

•  Given  that  the  speed  variability  pauern  was    found  only    in  forward  movements  (i.e.,  goal  directed  movement)  suggests  that  separate  brain  areas  may  be  involved  for  efforvul  movements,  as  opposed  to  automaAc  movements.  In  fact,  it  is  possible  that  the  regions  involved  in  efforvul  movement  may    be  related  to  how  we  experience  sense  of  agency.  

•  Further  studies  using  devices  such  as  EEG  may  help  to  shed  light  on  this  conjecture.    

Experiment  Paradigm    • Task:  The  parAcipant  touched  the  screen  when  a  low  tone  signaled  to  do  so.  ACer  the  touch,  the  parAcipant  heard  a  high  tone  that  beeped  100ms,  400ms,  or  700ms  aCer  the  touch.  Then  the  parAcipant  was  presented  with  a  sliding  scale  between  0  to  1  second,  to  indicate  how  long  they  perceived  the  Ame  elapsed  between  the  touch  and  the  high  tone.    

• Control  condiAon  (Control):  Performed  60  trials  right  aCer  becoming  familiar  with  the  procedure.    

• Mindfulness  condiAon  (Mindful):  Performed  60  trials  aCer  a  10-­‐minute  guided  meditaAon.    • CogniAve  load  condiAon  (CogLoad):  Performed  60  trials  while  counAng  backwards  from  400  by  3.    

A)  Plot  the  posiAonal  trajectory  of  the  poinAng  (P)  and  Ame  esAmaAng  (T)  movement  separated  by  forward  (deliberate)  and  backward  (spontaneous-­‐uninstructed)  moAons.      

B)  Plot  the  temporal  speed  profiles  (linear  velocity,  angular  velocity,  linear  acceleraAon,  angular  acceleraAon)    C)  Plot  frequency  distribuAon  of  the  kinemaAc  parameter  (peak  speed,  Ame  to  peak  etc.)      D)  Empirically  esAmate  the  probability  distribuAon  parameters  fiwng  histogram  in  C)  using  the  conAnuous  Gamma  

family  of  probability  distribuAons  and  their  staAsAcs  (mu,  sigma)    E)  Plot  esAmated  parameters  on  the  Gamma  plane    

Red:  Forward  move  for  poinCng  (P)  Blue:  Backward  move  for  poinCng  (P)  

Red:  Forward  move  to  indicate  Cme  (T)  Blue:  Backward  move  to  indicate  Cme(T)  

Forward  trajectory   Backward  trajectory  

Normalized  Peak  Accel   Time  to  Peak  Accel  (ms)  Forward  trajectory  speed  profile  

A)  

B)   C)  

Control Mindful CogLoad

time(sec)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

Gam

ma

pdf

0

0.5

1

1.5

2

2.5

3Control PControl TMindful PMindful TCogLoad PCogLoad T

Mean0.59 0.6 0.61 0.62 0.63 0.64

Stan

dard

Dev

iatio

n

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055Normalized Peak Gamma Statistics for Angular Acceleration

Control PControl TMindful PMindful TCogLoad PCogLoad T

Shape5 10 15 20 25

Scale

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0 0.2 0.4 0.6 0.8 1

Gam

ma

pdf

0

1

2

3

4

5

6

7Control PControl TMindful PMindful TCogLoad PCogLoad T

Mean0.15 0.16 0.17 0.18 0.19 0.2 0.21

Stan

dard

Dev

iatio

n

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024Time to Peak Gamma Statistics for Angular Acceleration

Control PControl TMindful PMindful TCogLoad PCogLoad T

Shape1 2 3 4 5 6

Scale

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 0.2 0.4 0.6 0.8 1

Gam

ma

pdf

0

0.5

1

1.5

2

2.5Control PControl TMindful PMindful TCogLoad PCogLoad T

Mean0.59 0.6 0.61 0.62 0.63 0.64 0.65 0.66 0.67

Stan

dard

Dev

iatio

n

0.025

0.03

0.035

0.04

0.045

0.05Normalized Peak Gamma Statistics for Angular Acceleration

Control PControl TMindful PMindful TCogLoad PCogLoad T

Shape5 10 15 20

Scale

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 0.2 0.4 0.6 0.8 1

Gam

ma

pdf

0

1

2

3

4

5

6Control PControl TMindful PMindful TCogLoad PCogLoad T

Mean0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28

Stan

dard

Dev

iatio

n

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05Time to Peak Gamma Statistics for Angular Acceleration

Control PControl TMindful PMindful TCogLoad PCogLoad T

Shape1 2 3 4 5 6

Scale

0

0.05

0.1

0.15

0.2

0.25 Conclusion  When participants had cognitive load, the speed profile (e.g., peak angular acceleration and time to peak angular acceleration) showed to have more noise in the movements, than when participants did not have cognitive load (i.e., in control and mindful conditions). Noticeably, this pattern was only found in the forward movement (i.e., goal directed action). Also, when participants had cognitive load, they experienced a lower level of sense of agency, as was shown by the longer perceived time duration between the intended movement and its action effect.  

Figure  from  Limerick  et  al.  (2014)  

Sense  of  agency  was  measured  using  the  intenAonal  binding  method.  IntenAonal  binding  is  a  phenomenon  where  an  individual  perceives  the  Ame  between  one’s  acAon  and  its  effect  to  be  shorter  when  the  acAon  is  voluntary,  and  longer  when  the  acAon  is  involuntary  (Haggard  et  al,  2002).      

Num

ber  o

f  tria

ls    

Backward  trajectory  speed  profile  

Results  for  ParCcipant  A  on  Normalized  Peak  Angular  AcceleraCon  

Gamma  fit  by  condiCon   Pdf  of  fiRed  gamma  funcCon  by  condiCon  

Results  for  ParCcipant  B  on  Normalized  Peak  Angular  AcceleraCon  

Gamma  fit  by  condiCon   Pdf  of  fiRed  gamma  funcCon  by  condiCon  

Results  for  ParCcipant  A  on  Time  to  Peak  Angular  AcceleraCon  Gamma  fit  by  condiCon   Pdf  of  fiRed  gamma  funcCon  by  condiCon  

Results  for  ParCcipant  B  on  Time  to  Peak  Angular  AcceleraCon  Gamma  fit  by  condiCon   Pdf  of  fiRed  gamma  funcCon  by  condiCon  

Mean  Perceived  Time  between  touch  and  high  tone  for  3  parCcipants  by  condiCon    

There  was  a  staAsAcally  significant  difference  between  condiAons  as  determined  by  one-­‐way  ANOVA  (F(2,177)  =  60.65,  p  <0.001).    

Fano  Factor  by  condiCon  Gamma  StaCsCcs  by  CondiCon  Gamma  StaCsCcs  by  CondiCon   Fano  Factor  by  condiCon  

Gamma  StaCsCcs  by  CondiCon   Gamma  StaCsCcs  by  CondiCon   Fano  Factor  by  condiCon  

0 100 200 300 400 500 600 700 8000

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 100 200 300 400 500 600 700 800 9000

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Angular  A

cceleraA

on  (m

/s)  

Angular  A

cceleraA

on  (m

/s)  

Time(ms)   Time(ms)  

Y-­‐po

siAon

 

Y-­‐po

siAon

 

X-­‐posiAon   X-­‐posiAon  

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0

0.05

0.1

0.15

0.2

0.25Fano Factor for Time to Peak

0

0.05

0.1

0.15

0.2

0.25Fano  Factor  by  condiCon  

ControlP  ControlT  MindfulP  MindfulT  CogLoadP  CogLoadT  

ControlP  ControlT  MindfulP  MindfulT  CogLoadP  CogLoadT  

ControlP  ControlT  MindfulP  MindfulT  CogLoadP  CogLoadT  

ControlP  ControlT  MindfulP  MindfulT  CogLoadP  CogLoadT  

Analyses  

Peak  velocity  

Peak  velocity  

     

Sample  parsing