Antenna Selection FTW 2010 Posting

43
1 © 2010 A. F. Molisch Antenna selection Antenna selection in MIMO systems Andreas F. Molisch Wireless Devices and Systems (WiDeS) Group University of Southern California (USC) FTW Telekommunikationsforum June 18 th 2010, Vienna, Austria

description

Selección de Antenas en sistemas MIMO

Transcript of Antenna Selection FTW 2010 Posting

  • 1 2010 A. F. MolischAntenna selection

    Antenna selection in MIMO systems

    Andreas F. Molisch

    Wireless Devices and Systems (WiDeS) GroupUniversity of Southern California (USC)

    FTW TelekommunikationsforumJune 18th 2010, Vienna, Austria

  • 2 2010 A. F. MolischAntenna selection

    Contents

    Introduction and motivation

    Performance analysis

    Effect of nonidealities

    Training

    RF preprocessing

    Results in measured channels

    Hardware aspects

    Summary and conclusions

  • 3 2010 A. F. MolischAntenna selection

    Antenna Selection

    Additional costs for MIMO

    1. more antenna elements (cheap)

    2. more signal processing (Moores law)

    3. one RF chain for each antenna element

    Basic idea of antenna selection:

    have many antenna elements, but select only best for downconversion and processing

    only at one link end: cost reductions might be more important at one link end (MS) than the other

    Hybrid antenna selection: select best L out of available N antenna elements, use those for

    processing

  • 4 2010 A. F. MolischAntenna selection

    Transmit antenna selection

    Antenna selection can be applied at transmitter or receiver or both

    Fewer expensive RF chains

    S/W

    DAC x PA

    DAC x PA

    DAC x PA

  • 5 2010 A. F. MolischAntenna selection

    Contents

    Introduction and motivation

    Performance analysis

    Effect of nonidealities

    Training

    RF preprocessing

    Results in measured channels

    Hardware aspects

    Summary and conclusions

  • 6 2010 A. F. MolischAntenna selection

    Antenna Selection for Diversity

    Weight selection if all antenna elements are used

    Write channel matrix as

    Excite channel with Vi, receive with WiH

    Received power is i2

    Antenna and weight selection for H-S/MRT

    Create submatrices by striking rows

    Compute maximum singular value for this submatrix

    Search submatrix that gives largest max. singular val.

    Use singular values associated with selected submatrix as antenna weights

    maxSH maxii2

    HVH W

  • 7 2010 A. F. MolischAntenna selection

    Bounds for the SNR distribution

    Upper and lower bounds

    Determine

    where (i) are ordered SNRs with distribution

    i i

    iii

    i

    rt NL

    222 ~~max~

    ,min

    1

    i j

    2

    ijH~

    Si

    2i

    H~

    Sbound h

    ~max

    ~max

    tL

    1i

    ibound

    p i1,2, N t N!

    i1

    Nt1

    N riN r1 expi for 1 2 N t

    0 otherwise .

  • 8 2010 A. F. MolischAntenna selection

    Bounds for the SNR distribution

    Characteristic function:

    Analytical evaluation: recursive algorithm

    j N t !N rNt

    0

    d11

    Nr1e 1ejLt1 1

    0

    1d22

    Nr1e 2ejLt2 2

    0

    Nt1dNtNt

    Nr1e NtejLtNt Nt

  • 9 2010 A. F. MolischAntenna selection

    HS-MRT vs. MRT

    capacity C [bits/s/Hz]15

    capacity C [bits/s/Hz]

    cd

    f(C

    )

    0.2

    0.4

    0.6

    0.8

    1

    5 10 15

    N =1

    t

    234

    N =5

    t

    678

    L =5

    t

    678

    cd

    f(C

    )

    0.2

    0.4

    0.6

    0.8

    1

    5 10

    L =1

    t

    234

    Hybrid selection

    Maximum ratio transmission

  • 10 2010 A. F. MolischAntenna selection

    Capacity with RX antenna selection

    L=2 L=3

    L=8cdf

    (C)

    10 20 30

    L=2 L=3

    L=8

    capacity C [bits/s/Hz]

    10 20 30

    0

    0.5

    1

    3 transmit antennas, 20dB SNR

    Admissible number of spatial streams: determined by number of RF chainsSlope of capacity cdf: determined by number of antenna elements

  • 11 2010 A. F. MolischAntenna selection

    Contents

    System model

    Performance analysis

    Effect of nonidealities

    Training

    RF preprocessing

    Results in measured channels

    Hardware aspects

    Summary and conclusions

  • 12 2010 A. F. MolischAntenna selection

    Channel Estimation Error -

    Diversity

    ideal channelestimation

    cdf

    (C)

    capacity C [bits/s/Hz]7 8 9 10

    1

    110

    0.5

    noisy antennaselection

    noisy antennaselection

    noisy TX weights

    noisy antennaselection

    noisy TX weightsnoisy RX weights

    ideal channelestimation

  • 13 2010 A. F. MolischAntenna selection

    Channel Correlation - Diversity

    -2 -1.5 -1 -0.5 0 0.5 1 1.5 27

    7.5

    8

    8.5

    9

    9.5

    10

    Log(L / )corr

    Ca

    pa

    city

    [b

    its/s

    /Hz]

    3/8 systemwith power selection

    8/8 system

    3/8 systemwith optimumselection

  • 14 2010 A. F. MolischAntenna selection

    Contents

    System model

    Performance analysis

    Antenna selection algorithms

    Effect of nonidealities

    Training

    RF preprocessing

    Results in measured channels

    Hardware aspects

    Summary and conclusions

  • 15 2010 A. F. MolischAntenna selection

    Hardware constraints on training

    Need to learn channel states of both antennas. But, only 1 antenna

    can transmit/receive at any time

    Increased time and (pilot) energy overhead

    Step 1

    Tx2

    Tx1Rx1

    Rx2

    Rx2

    Tx1

    Tx2

    Rx1

    Step 2

    RF chain

    RF chain

    Transmit antenna selection

    Tx2

    Tx1Rx1

    Rx2

    Step 2

    Step 1

    Tx2

    Tx1Rx1

    Rx2

    Tx1Rx1

    Rx2

    Tx1Rx1

    Rx2

    Receive antenna selection

  • 16 2010 A. F. MolischAntenna selection

    AS training in 802.11n WLANs

    Training done using MAC headers only

    Consecutive packets train disjoint antenna subsets

    Feedback: CQI or antenna indices directly

    TXASR

    Tx4

    Tx2

    Tx1

    Rx

    Request AS training

    ASFB

    AS feedback

    Data from best antenna

    SIFS

    SIFS

    Rx estimates channels

    TXASI

    AS train1

    AS train2

    AS train3

  • 17 2010 A. F. MolischAntenna selection

    Impact of outdated training

    Outdated CSI leads to error floor

    Analytical consideration: 1-out-of-N selection

  • 18 2010 A. F. MolischAntenna selection

    Estimation, selection, reception

  • 19 2010 A. F. MolischAntenna selection

    Closed-form expression of SEP

  • 20 2010 A. F. MolischAntenna selection

    Optimal weights

  • 21 2010 A. F. MolischAntenna selection

    Simulation results

  • 22 2010 A. F. MolischAntenna selection

    Contents

    System model

    Performance analysis

    Antenna selection algorithms

    Effect of nonidealities

    Training

    RF preprocessing

    Results in measured channels

    Hardware aspects

    Summary and conclusions

  • 23 2010 A. F. MolischAntenna selection

    Principle

    .

    .

    .

    .

    Down

    ConvLNA A/D

    Down

    ConvLNA A/D

    Sig

    Proc

    1

    L

    1

    2

    Nr

    S

    W

    I

    T

    C

    H

    BasebandDemodulator

    Pre-

    Proc

    (M)

    RF

    Diversity gain AND Beamforming gain maintained Beam selection Vs Antenna Selection Can be implemented using variable phase-shifters In case M is of size L x Nr, selection switch/algorithm is not required

  • 24 2010 A. F. MolischAntenna selection

    RF Pre-processing Solutions

    Channel-independent solution

    Fixed matrix (FFT Butler matrix)

    Time-variant solution

    Elements of pre-processing matrix tuned to instantaneous channel

    state

    Time-invariant solution

    Elements of pre-processing matrix based only on channel-

    statistics

    Can be implemented with or without selection

  • 25 2010 A. F. MolischAntenna selection

    Channel-independent solution

    Transformation matrix is DFT matrix

    Transforms from antenna space to beamspace

    Each output of DFT has full beamforming gain N

    M 1r

    1 1 1

    1 ejr ejr1r

    1 ejr1r ejr12r

  • 26 2010 A. F. MolischAntenna selection

    Time-variant solution

    (instantaneous CSI)

    For diversity:

    Achievable performance: same as with full-complexity CSI

    Phase-shifter only solution: optimum performance with 2 RF chains

    Frequent channel sounding required

  • 27 2010 A. F. MolischAntenna selection

    Time-invariant preprocessing

    Time-variant selection

    Difficult to handle analytically

    SL that depends on instantaneous channel state

    Tractable lower bound: Swap max and expectation (EH)

    22/1

    maxmax HvMSSMMSwHMS rrr

    rN

    NNN LLL

    t

    TIN

    EL

    22/1

    maxmax HvMSSMMSwS

    HM rrr

    rN

    NNN LLL

    t

    TIN

    EL

  • 28 2010 A. F. MolischAntenna selection

    Solution that Improves Lower

    Bound

    Given SL, problem is similar to the LxNr case

    Specifies only L columns of M

    Remaining (Nr - L) columns must be orthogonal to these L columns

    Given SL, fix corresponding L columns

    Subsequent manipulations should not deteriorate previously considered selections

    Successive improvement of lower bound by fixing remaining columns

    rNLTI

    ,,,,1 PM

  • 29 2010 A. F. MolischAntenna selection

    Beam Patterns

    FFT Butler Time-Invariant

    (Mean AoA = 450)

    TI adapts to mean AoA and angle spread (unlike FFT)

    Adapts to presence of multiple clusters

  • 30 2010 A. F. MolischAntenna selection

    Receivers with L demodulators

    Gain of over 5.0 dB over antenna selection

    Mean AoA = 450: Gain of 2.2 dB over FFT-Selection

    Mean AoA = 450: No gain over FFT-Selection

    SNR (dB)

    CD

    F o

    f S

    NR

    Nr = Nt = 4, L = 1

    Angle spread = 60

    dt/ = 0.5

  • 31 2010 A. F. MolischAntenna selection

    Effect of Spatial Correlation

    SNR (dB)

    CD

    F o

    f S

    NR

    Time-invariant solution efficacy decreases as correlation decreases

    Antenna selection efficacy improves as correlation decreases

    Nr = Nt = 4, L = 1

    Mean AoA = 600

    dt/ = 0.5

  • 32 2010 A. F. MolischAntenna selection

    Contents

    System model

    Performance analysis

    Antenna selection algorithms

    Effect of nonidealities

    Training

    RF preprocessing

    Results in measured channels

    Hardware aspects

    Summary and conclusions

  • 33 2010 A. F. MolischAntenna selection

    Measurement setup

    Measure channel for Personal Area Networks

    Use access point, PC, and handheld

  • 34 2010 A. F. MolischAntenna selection

    Diversity gain

  • 35 2010 A. F. MolischAntenna selection

    Impact of antenna configurations

    d

    Configurations

    lamda/2

    lamda/2

    d

    Polarization

    Line

    Saw

    Rectangular

    Horizontal (H)

    Vertical (V)

    Alternate H & V (Alt HV)

    Dual polarized (DP)

    d

    d

    Configurations

    lamda/2

    lamda/2

    d

    Polarization

    Line

    Saw

    Rectangular

    Horizontal (H)

    Vertical (V)

    Alternate H & V (Alt HV)

    Dual polarized (DP)

    d

    -5 0 5 1010

    -4

    10-2

    100

    Line

    Em

    pir

    ical C

    DF

    -5 0 5 1010

    -4

    10-2

    100

    Saw

    -5 0 5 1010

    -4

    10-2

    100

    Rectangle

    Normalized SNR [dB]

    Em

    pir

    ical C

    DF

    -5 0 5 1010

    -4

    10-2

    100

    Separation

    Normalized SNR [dB]

    H - pol

    V - pol

    H alt V pol

    DP

    H - pol

    V - pol

    H alt V pol

    DP

    H - pol

    V - pol

    H alt V pol

    DP

    DP rect /2

    DP rect

    DP rect 2

    DP line

    Configuration comparison for the AP - PC scenario HS-B at PC only. LOS. 4:22:2.

  • 36 2010 A. F. MolischAntenna selection

    Contents

    System model

    Performance analysis

    Antenna selection algorithms

    Effect of nonidealities

    Training

    RF preprocessing

    Results in measured channels

    Hardware aspects

    Summary and conclusions

  • 37 2010 A. F. MolischAntenna selection

    Hardware Aspects

    Attenuation of switches

    either decrease the effective SNR,

    or LNA has to be before switchrequires more LNAs

    Switching time: has to be much smaller than duration of training sequence

    Accuracy of switch: transfer function has to be same from each input to each output port

    MEMS switches: have low insertion loss (0.1dB), but large switching time (5 microsec)

    Solid-state switches: high insertion loss (>1 dB), but short switching times (100 ns)

  • 38 2010 A. F. MolischAntenna selection

    Phase Quantization Errors

    3-bit phase quantization (steps of 450): capacity within 0.1 bits/sec/Hz 2-bit phase quantization (steps of 900): capacity within 0.3 bits/sec/Hz

    Spatial diversity: 1 dB loss in mean SNR observed

  • 39 2010 A. F. MolischAntenna selection

    Summary and Conclusions

    Antenna selection retains the diversity degree, but SNR penalty

    For spatial multiplexing, comparable capacity if LrNt Optimum selection algorithms have complexity N!/(N-L)!;

    however, fast, good selection algorithms exist

    For low-rank channels, transmit antenna selection can increase capacity

    Channel estimation errors do not decrease capacity significantly

    Frequency selectivity reduces effectiveness of antenna selection

    RF preprocessing greatly improves performance, especially in correlated channels

    Covariance-based preprocessing especially suitable for frequency-selective channels

    Switches with low attenuation required both for TX and RX

  • 40 2010 A. F. MolischAntenna selection

    Acknowledgements

    This work was done in collaboration with Moe Z. Win

    Jack H. Winters

    Yang-Seok Choi

    Xinying Zhang

    Sun-Yuan Kung

    Jin-Yun Zhang

    Neelesh B. Mehta

    Pallav Sudarshan

    Yabo Li

    Peter Almers

  • 41 2010 A. F. MolischAntenna selection

    References (1)

    Book chapters and journal papers V. Kristem, N. B. Mehta, and A. F. Molisch, Optimal Receive Antenna Selection in Time-Varying Fading Channels

    with Practical Training Constraints, IEEE Trans. Comm., submitted (first round of reviews). T. Wang, J. Tao, A. F. Molisch, P. Orlik, and J. Zhang, Adaptive Antenna Selection at Mobile Stations for SDMA in

    WiMAX Networks, Wireless Computing and Mobile Communications, in press P. Almers, T. Santos, F. Tufvesson, A. F. Molisch, J. Karedal, and A. Johansson, Antenna selection in measured

    indoor channels, IET Microwaves, Antennas & Popagation 1, 1092-1100 (2007). Y. Li, N. B. Mehta, A. F. Molisch, and J. Zhang, Optimal Signaling and Selection Verification for Transmit Antenna

    Selection, IEEE Trans. Comm, 55, 778-789, 2007. N. Mehta and A. F. Molisch, Antenna selection, in G. Tsoulos (ed.), MIMO antenna technology for wireless

    communications, invited, Wiley, (2006). H. Zhang, A. F. Molisch, and J. Zhang, Applying Antenna Selection in WLANs for Achieving Broadband Multimedia

    Communications, IEEE Trans. Broadcasting, 52, 475-482 (2006).

    P. Sudarshan, N. B. Mehta, A. F. Molisch, and J. Zhang, Channel Statistics-Based Joint RF-Baseband Design for Antenna Selection for Spatial Multiplexing, IEEE Trans. Wireless Comm. 5, 3501-3511, (2006)

    A. F. Molisch, M. Z. Win, Y. S. Choi, and J. H. Winters, Capacity of MIMO systems with antenna selection, IEEE Trans. Wireless Comm., 4, 142-154 (2005).

    X. Zhang, A. F. Molisch, and S. Y. Kung, Variable-phase-shift-based RF-baseband codesign for MIMO antenna selection, IEEE Trans. Signal Proc., 53, 4091-4103 (2005).

    A. F. Molisch and X. Zhang, FFT-based Hybrid Antenna Selection Schemes for spatially correlated MIMO channels, IEEE Comm. Lett., 8, 36-38 (2004).

    A. F. Molisch and M. Z. Win, MIMO systems with antenna selection, IEEE Microwave Magazine March 2004, 46-56 (2004).

    A. F. Molisch, M. Z. Win, and J. H. Winters, Reduced-complexity transmit/receive diversity systems, IEEE Proc. Signal Proc, special issue on MIMO., 51, 2729-2738 (2003).

  • 42 2010 A. F. MolischAntenna selection

    References (2)

    Conference papers V. Kristem, N. B. Mehta, and A. F. Molisch, A Novel Energy-Efficient Training Method for Receive Antenna Selection, IEEE ICC 2010, in

    press.

    V. Kristem, N. B. Mehta, and A. F. Molisch, Optimal Weighted Antenna Selection For Imperfect Channel Knowledge From Training, IEEE ICC 2009.

    T. Wang, Z. Tao, A. F. Molisch, P. Orlik, and J. Zhang, Antenna Selection for SDMA in Next Generation WiMAX Networks, IEEE IWCMC2009.

    C. Nie, Z. Tao, N. B. Mehta, A. F. Molisch, J. Zhang, T. Kuze, and S. Panwar, Antenna Selection for Next Generation IEEE 802.16 Mobile Stations, IEEE ICC 2008 3457-3462 (2008).

    N. B. Mehta, A. F. Molisch, J. Zhang, and E. Bala, Antenna Selection Training in MIMO-OFDM/OFDMA Cellular Systems, IEEE CAMSAP 2007, invited, 2007.

    Y. Li, N. B. Mehta, A. F. Molisch, and J. Zhang, Optimal Signaling for Single Transmit Antenna Selection with Erroneous Feedback, Proc. IEEE Globecom 2006, (2006).

    P. Almers, T. Santos, F. Tufvesson, A. F. Molisch, J. Karedal, and A. J. Johansson, Measured Diversity Gains from MIMO Antenna Selection, Proc. IEEE VTC 2006 fall 1-6 (2006)

    H. Zhang, A. F. Molisch, D. Gu, D. Wang, and J. Zhang, Implementing Antenna Selection in Wireless LAN, IEEE International Symposium on Broadband Multimedia Systems and Broadcasting 2006, Las Vegas, NV, April 6-7, 2006.

    P. Sudarshan, N. B. Mehta, A. F. Molisch, and J. Zhang, Channel Statistics-Based Joint RF-Baseband Design for Antenna Selection for Spatial Multiplexing, Proc. IEEE Globecom 2004, 3947 3951 (2004).

    P. Sudarshan, N. B. Mehta, A. F. Molisch, and J. Zhang, Spatial Diversity and Channel Statistics-Based RF-Baseband Co-design for Antenna Selection, Proc. 60th IEEE Vehicular Techn. Conf.,, invited paper, 1658 - 1662 (2004).

    P. Sudarshan, N. B. Mehta, A. F. Molisch, and J. Zhang, Antenna Selection with RF Pre-Processing: Robustness to RF- and Selection- Non-Idealities, Proc. IEEE Radio and Wireless Conf. (RAWCON) 2004, 391 394 (2004).

    X. Zhang, A. F. Molisch, and S. Y. Kung, Phase-shift-based antenna selection for MIMO channels, Proc. IEEE Globecom 2003, 1089-1093 (2003).

    Y. S. Choi, A. F. Molisch, M. Z. Win, and J. H. Winters, Fast antenna selection algorithms for MIMO systems, (invited) Proc. 58th IEEE Vehicular Techn. Conf., 1733 - 1737 (2003).

    A. F. Molisch, X. Zhang, S. Y. Kung, and J. Zhang, FFT-based Hybrid Antenna Selection Schemes for spatially correlated MIMO channels,Proc. IEEE Symp. Personal Indoor Mobile Radio Comm 2003, 1119-1123 (2003).

    A. F. Molisch, MIMO systems with antenna selection an overview, (invited), Proc. IEEE Radio and Wireless Conf. (RAWCON) 2003, 167-170 (2003).

    A. F. Molisch, M. Z. Win, and J. H. Winters, Performance of Reduced-Complexity Transmit/Receive-Diversity Systems, Proc. IEEE Int. Conf. Wireless Personal Multimedia Comm. 2002, 738-742 (2002).

    A. F. Molisch, M. Z. Win, and J. H. Winters, Reduced-Complexity Transmit/Receive-Diversity Systems , Proc. 53rd IEEE Vehicular Techn. Conf., 1996-2000 (2001).

    A. F. Molisch, M. Z. Win, and J. H. Winters, Capacity of MIMO systems with antenna selection , Proc. IEEE ICC 2001, 570-574 (2001).

  • 43 2010 A. F. MolischAntenna selection

    Andreas F. Molisch

    Ph.D., FIEEE, FIETHead, Wireless Devices and Systems (WiDeS) GroupCommunications Sciences Institute, Dpt. Of Electrical EngineeringViterbi School of EngineeringUniversity of Southern California (USC)Los Angeles, CA, USA

    Email: [email protected]: wides.usc.edu

    Acknowledgement: some slides in this presentation are based on cooperations withDr. N. B. Mehta (IISc), Dr. J. Zhang (MERL), Dr. F. Tufvesson (Lund Univ.), Dr. H. Zhang (Marvell), Dr. X. Zhang (Princeton)

    Contact information