1-s2.0-S0047248414000633-main

download 1-s2.0-S0047248414000633-main

of 8

Transcript of 1-s2.0-S0047248414000633-main

  • 8/12/2019 1-s2.0-S0047248414000633-main

    1/8

    Middle Paleolithic and Uluzzian human remains from FumaneCave, Italy

    Stefano Benazzi a,b,*, Shara E. Bailey b,c, Marco Peresani d, MarcelloA. Mannino b,Matteo Romandini d, Michael P. Richards b,e, Jean-Jacques Hublin b

    a Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121 Ravenna, Italyb Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig, Germanyc Center for the Study of Human Origins, Department of Anthropology, New York University, 25 Waverly Place, New York, NY 10003, USAd Sezione di Scienze Preistoriche e Antropologiche, Dipartimento di Studi Umanistici, Universit di Ferrara, Corso Ercole I dEste 32, I-44100 Ferrara, Italye Department of Anthropology, University of British Columbia, Vancouver, British Columbia, V6T 1Z1 Canada

    a r t i c l e i n f o

    Article history:

    Received 16 December 2013

    Accepted 3 March 2014

    Available online xxx

    Keywords:

    Deciduous teeth

    Homo neanderthalensis

    Homo sapiens

    Late Pleistocene

    Southern Europe

    a b s t r a c t

    The site of Fumane Cave (western Lessini Mountains, Italy) contains a stratigraphic sequence spanning

    the Middle to early Upper Paleolithic. During excavations from 1989 to 2011, four human teeth were

    unearthed from the Mousterian (Fumane 1, 4, 5) and Uluzzian (Fumane 6) levels of the cave. In this

    contribution, we provide the rst morphological description and morphometric analysis of the dental

    remains. All of the human remains, except for Fumane 6, are deciduous teeth. Based on metric data

    (crown and cervical outline analysis, and lateral enamel thickness) and non-metric dental traits (e.g.,

    mid-trigonid crest), Fumane 1 (lower left second deciduous molar) clearly belongs to a Neandertal. For

    Fumane 4 (upper right central deciduous incisor), the taxonomic attribution is difcult due to heavy

    incisal wear. Some morphological features observed in Fumane 5 (lower right lateral deciduous incisor),

    coupled with the large size of the tooth, support Neandertal afnity. Fumane 6, a fragment of a per-

    manent molar, does not show any morphological features useful for taxonomic discrimination. The

    human teeth from Fumane Cave increase the sample of Italian fossil remains, and emphasize the need todevelop new methods to extract meaningful taxonomic information from deciduous and worn teeth.

    2014 Elsevier Ltd. All rights reserved.

    Introduction

    Fumane Cave is located at the foot of the Venetian Pre-Alps in

    the western Lessini Mountains (Fig. 1). The cave is part of a fossil

    karst system and comprises a large entrance in which three tunnels,

    A, B and C, converge (Supplementary Online Material [SOM]

    Figs. S1, S2). Excavations over the last two decades yielded a

    stratigraphic sequence spanning the late Middle to early Upper

    Paleolithic (sealed by thick slope waste and rockfall deposits), fromwhichve human dental remains were discovered. In this contri-

    bution, we present the rst detailed morphological description and

    morphometric comparison of the four human teeth (Fumane 1, 4, 5

    (all deciduous) and Fumane 6) unearthed from the Mousterian and

    Uluzzian levelsof the cave (Table 1). Since human remains dating to

    the late Middle Paleolithic are extremely scarce in Italy, these

    ndings have the potential to further clarify the evolutionary his-

    tory of Neandertals. The fth human deciduous tooth (Fumane 2),

    discovered in the Proto-Aurignacian deposit, is currently under

    investigation and its description will be part of a forthcoming

    contribution.

    Archaeological context

    The uppermost Mousterian deposits of Fumane Cave consist of

    numerous thin to very thin parallel levels and lenses grouped into

    nine stratigraphic units, labeled from bottom to top as A13 to A5(Peresani et al., 2008) (SOM Fig. S1). Except A13 and A12, which are

    composed of at angular stones embedded in yellow sands and

    silts, the other units consist of frost-shattered slabs with variable

    sand content and aeolian dust. Units A13, A12 and A7 are archae-

    ologically sterile. Nevertheless, A12 contains portions of the over-

    lying anthropogenic unit A11, displaced by post-depositional

    deformations. Unit A11 is, in fact, composed of loamy dark-brown

    sediment with stones associated with abundant lithic artifacts

    and faunal remains. Above, unit A10 yielded anthropogenic lenses

    embedded in various levels of stones resulting from frost-

    shattering.* Corresponding author.

    E-mail address: [email protected](S. Benazzi).

    Contents lists available atScienceDirect

    Journal of Human Evolution

    j o u r n a l h o m e p a g e : w w w . e l s e v i e r . co m / l o c a t e / j h e v o l

    http://dx.doi.org/10.1016/j.jhevol.2014.03.001

    0047-2484/

    2014 Elsevier Ltd. All rights reserved.

    Journal of Human Evolution xxx (2014) 1e8

    Please cite this article in press as: Benazzi, S., et al., Middle Paleolithic and Uluzzian human remains from Fumane Cave, Italy, Journal of HumanEvolution (2014), http://dx.doi.org/10.1016/j.jhevol.2014.03.001

    http://-/?-http://-/?-mailto:[email protected]://www.sciencedirect.com/science/journal/00472484http://www.elsevier.com/locate/jhevolhttp://dx.doi.org/10.1016/j.jhevol.2014.03.001http://dx.doi.org/10.1016/j.jhevol.2014.03.001http://dx.doi.org/10.1016/j.jhevol.2014.03.001http://dx.doi.org/10.1016/j.jhevol.2014.03.001http://dx.doi.org/10.1016/j.jhevol.2014.03.001http://dx.doi.org/10.1016/j.jhevol.2014.03.001http://www.elsevier.com/locate/jhevolhttp://www.sciencedirect.com/science/journal/00472484mailto:[email protected]://-/?-http://-/?-
  • 8/12/2019 1-s2.0-S0047248414000633-main

    2/8

    Unit A9 comprises several layers showing a succession of dark,

    anthropogenic thin levels alternating with loose, stone-supported

    layers or thin sandy levels. Unit A7 separates A9 from A6, which

    consists of dark sediment with a high content of anthropogenic

    remains. Unit A5 is composed of loose stones with a loamy ne

    fraction and fewer archaeological remains than A6.

    Lithic artifacts from the Middle Paleolithic sequence (Peresani,

    2012) belong to the Levallois Mousterian in the lowermost unit

    (A11). Lithics in units A6eA5 belong to the Levallois Mousterian but

    also include sporadic artifacts attributed to other aking methods

    (Peresani et al., 2013a). Sandwiched between layers A11 and A6, the

    set of levels of unit A10 has been attributed to the Levallois and

    discoid reduction sequences, either alternating or coexisting in the

    same level, while the discoid technology becomes exclusive in A9

    (Peresani, 2012). Analysis of the faunal remains shows that reddeer,

    roe deer, ibex, chamois and giant deer were the most frequently

    hunted species (Fiore et al., 20 04; Peresani et al., 2011a; Romandini

    et al., in press). In addition, remains of brown bear (Ursus) and fox

    (Vulpes) showing traces of exploitation are found in A6 and A5. The

    large and varied avifauna from these same units reveals unusual

    human modications on species that are not clearly related to

    consumption or utilitarian purposes (Peresani et al., 2011b).

    The Upper Paleolithic sequence includes six stratigraphic units

    labeled from bottomto top as A4 toA1, D6 and D3, where A4 and A3

    are Uluzzian, and A2, A1 up to D3 are Proto-Aurignacian (Broglio

    et al., 2005). The bottom units A4 and A3 consist of frost-

    Figure 1. Geographical position of Fumane Cave (western Lessini Mountains, Italy).

    Table 1

    Inventory of human dental remains from Fumane Cave.

    Inventory no. Tooth class MD BL Wear stagea Estimated ageb-e Stratigraphic unit Deposit

    Fumane 1 Lower left second deciduous molar (Ldm2) 9.9 9.4 5/6 10/11 years A11 Mousterian

    Fumane 4 Upper right central deciduous incisor (Rdi1) 6.1 5.4 5 6 years A9 I Mousterian

    Fumane 5 Lower right lateral deciduous incisor (Rdi2) 5.5 5.1 5 6 years A9 Mousterian

    Fumane 6 Molar fragment 5 A3 I Uluzzian/Proto-Aurignacian

    a Molnar (1971).b Moorrees et al. (1963).c Ubelaker (1978).d AlQahtani et al. (2010).e

    Shackelford et al. (2012).

    S. Benazzi et al. / Journal of Human Evolution xxx (2014) 1e82

    Please cite this article in press as: Benazzi, S., et al., Middle Paleolithic and Uluzzian human remains from Fumane Cave, Italy, Journal of HumanEvolution (2014), http://dx.doi.org/10.1016/j.jhevol.2014.03.001

  • 8/12/2019 1-s2.0-S0047248414000633-main

    3/8

    shattered slabs with variable sand content and aeolian dust that

    becomes more prevalent toward the outermost part of the cave. In

    addition to numerous lithic artifacts and bones, dwelling structures

    with hearths and a refuse area were identied during the 2005e

    2006eldwork season (Peresani, 2008). Faunal remains from units

    A4 and A3 reveal exploitation of red deer, ibex and carnivores

    (Tagliacozzo et al., 2013).

    The radiocarbon dataset from the whole sequence suggests that

    the Uluzzian units accumulated between 43.9 and 41.9 ka (thou-

    sands of years ago) cal BP, the nal Mousterian units A5 and A6

    between 44.8 and 43.9 ka cal BP and underlying Mousterian units

    A8eA9 to A11 between 47.6 ka cal BP (considered as the minimum

    age) and 44.8 ka cal BP (Peresani et al., 2008; Higham et al., 2009).

    The discovery context of the teeth

    The late Mousterian layers from A11 to A5 and the Uluzzian

    layers A4 and A3 have been excavated at different times since 1989

    outside the present-day drip-line and inside the cave. All of the

    teeth (Table 1, SOM Figs. S1, S2) were found during sediment

    sieving.

    Fumane 1 was discovered at the base of unit A11, in square 63,

    during the 1989 excavation that explored the stratigraphy in theeasternmost zone in proximity to the present-day cave entrance

    (SOM Figs. S1, S2). In the same square and during the same eld

    season in which Fumane 1 was found, the labial half of an incisor

    was discovered. This tooth, labeled Fumane 3 and initially consid-

    ered human, proved to be a lower incisor ofUrsussp.

    Fumane 4 and 5 were discovered during the 2010e2011 exca-

    vations in unit A9 (level A9I-square 98f, and level A9- square 97 g,

    respectively), in the westernmost zone at the entrance of the

    present-day cavity (SOM Fig. S2). Extensively excavated over a total

    surface of68 m2, the stratigraphic complex identied under the unit

    A9has variablethickness,reaching about20 cmin squares98 and97,

    where it also includes the anthropogenic levels A9 and A9I, sepa-

    ratedby thin sheetsof sand. Layering is regular, boundaries are clear

    and no traces of bioturbation, cryoturbation or injections ofallocthonous sediment were recorded during the excavation in this

    zone. Moreover, no artifacts diagnostic of the overlying and under-

    lying Levallois Mousterian units A6 and A10 were identied in A9.

    Unfortunately, the exact position of Fumane 6 (a small tooth

    fragment) cannot be dened. It was found in layer A3I, which

    extends for over 10 m2 in the easternmost part of the cave

    entrance. Field observations in this zone carried out during the

    1993, 1995 and 1996 excavations have revealed post-depositional

    disturbances due to frost action and other mechanisms which

    have affected the sequence between layers A4 to D3, thus pro-

    ducing signicant dispersion of Proto-Aurignacian stone imple-

    ments in the layers below. Based on the spatial scattering of the

    diagnosticint artifacts, the attribution of the fragmented tooth to

    the Uluzzian or Proto-Aurignacian complexes remains uncertain.Nevertheless, Fumane 6 has been included in the present contri-

    bution because, following the recent reassessment of the teeth

    from Grotta del Cavallo (Benazzi et al., 2011a), it has become

    paramount to establish whether the last Neandertals may have

    had anything to do with the Uluzzian across the geographical

    spread of this culture.

    Materials and methods

    Micro-CT scan

    High-resolution micro-CT images of the Fumane teeth ( Table 1,

    Fig. 2) were obtained with a Skyscan 1172 microtomographic sys-

    tem (Max Planck Institute for Evolutionary Anthropology, Leipzig,

    Germany) using the following scan parameters: 100 kV, 100 mA,

    with an aluminum/copper lter (0.50 mm/0.04 mm thickness).

    Volume data were reconstructed using isometric voxels ranging

    between 11.98 mm and 13.35 mm. The micro-CT images of the

    original sample were virtually segmented using a semiautomatic

    threshold-based approach in Avizo 7 (Visualization Sciences Group

    Inc.) to reconstruct 3D digital models of the teeth, which were then

    used to support the morphological description and to collect

    morphometric data on the teeth.

    Morphological description

    Terminology for the morphological description of the teeth

    followsScott and Turner (1997). Owing to the lack of guidelines to

    assess non-metric dental traits in the deciduous dentition, non-

    metric characters were recorded using the Arizona State Univer-

    sity Dental Anthropology System (ASUDAS) (Turner et al., 1991),

    which was developed for permanent teeth.Occlusal wear stage was

    assessed based onMolnar (1971).Ages at death for the deciduous

    teeth were estimated using the tooth formation, dental eruption

    and root resorption sequences provided byMoorrees et al. (1963),

    Ubelaker (1978)and AlQahtani et al. (2010)for recent Homo sapi-

    ens. Moorrees and colleagues approach (which for the deciduousdentition is limited to canines, rst and second molars), was

    recently improved by Shackelford et al. (2012) by translating the

    graphical information from Moorrees et al. (1963) to numerical

    parameters. We used these parameters for a more accurate esti-

    mation of age at death.

    Metric comparison

    For metric traits, we measured the mesio-distal (MD) and

    bucco-lingual (BL) crown and cervical diameters in the digital

    models of the teeth (Table 1). The BL diameters were then

    compared with a sample of Neandertals (N), Upper PaleolithicH. sapiens (UPHS) and recent H. sapiens (RHS) collected from the

    scientic literature (Henry-Gambier, 2001; Henry-Gambier et al.,2004; Crevecoeur et al., 2010; Hershkovitz et al., 2011).

    Moreover, further morphometric analyses for the specimen

    Fumane 1 (lower second deciduous molar) were carried out, as for

    this tooth class digital methods for taxonomic discrimination have

    been recently developed (Benazzi et al., 2011b, 2012). We used

    crown and cervical outline analysis (Benazzi et al., 2012), and we

    measured various parameters (such as enamel and dentine vol-

    ume) gathered from the lateral aspects of the crown (Benazzi et al.,

    2011b). Since the adoption of a common orientation system is

    required for outline analysis, the best-t plane of the cervical line

    was computed in Rapidform XOR2 (INUS Technology, Inc., Seoul,

    Korea). The tooth was aligned with the cervical plane parallel to the

    xy-plane of the Cartesian coordinate systemand rotated around the

    z-axis, so that the tangent to the geometrical minimum of the twolobes of the lingual side is parallel to the x-axis (Benazzi et al.,

    2012). For outline analysis, the crown outline was projected onto

    the cervical plane, while the cervical outline was represented by

    the contour of the section identied by the cervical plane itself

    (SOM Fig. S3). Since Fumane 1 shows interproximal wear (see

    morphological description below), the mesial and distal borders of

    the crown outline were corrected following the crown margins in

    occlusal view (e.g.,Wood et al., 1983; Bailey, 2004; Benazzi et al.,

    2011c). The outlines were imported in Rhino 4.0 Beta CAD envi-

    ronment (Robert McNeel and Associates, Seattle, WA), centered

    superimposing the centroids of their area according to the sample

    created in a previous contribution (Benazzi et al., 2012), repre-

    sented by 16 pseudolandmarks obtained by equiangularly spaced

    radial vectors out of the centroid, and scaled to unit centroid size

    S. Benazzi et al. / Journal of Human Evolution xxx (2014) 1e8 3

    Please cite this article in press as: Benazzi, S., et al., Middle Paleolithic and Uluzzian human remains from Fumane Cave, Italy, Journal of HumanEvolution (2014), http://dx.doi.org/10.1016/j.jhevol.2014.03.001

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/12/2019 1-s2.0-S0047248414000633-main

    4/8

    (Benazzi et al., 2011a,c; 2012). The shape variables of the Fumane 1

    crown and cervical outlines were projected into the shape-space

    obtained from a principal component analysis (PCA) of the

    comparative sample used by Benazzi et al. (2012). Leave-one-out

    cross-validation quadratic discriminant analysis (QDA) was thenused to classify Fumane 1.

    Three measurements (the enamel volume in mm3, the lateral

    dentine plus pulp volume [LDPV] in mm3, and the EDJ lateral sur-

    face in mm2) were collected from a region between the cervical

    plane and a plane parallel to the cervical plane and passing through

    the lowest point of the enamel-dentine junction (EDJ) in the mid-

    occlusal basin (SOM Fig. S3)(Toussaint et al., 2010; Benazzi et al.,

    2011b). These measurements were used for the computation of

    both the lateral average enamel thickness index (AET volume of

    lateral enamel divided by the EDJ lateral surface, measured in

    millimeters) and the lateral relative enamel thickness index

    (RET AET divided by the cubic root of LDPV, a scale-free index)

    (Toussaint et al., 2010). Finally,the distance between the two planes

    (lateral crown height LCH) was measured. Parameters gatheredfrom the lateral aspect of the Fumane 1 crown were compared with

    those obtained byBenazzi et al. (2011b).

    Standardized scores (Z-scores) were computed to establish to

    which group means the values of the Fumane teeth were closest.

    The data were processed and analyzed using R v. 2.15.1 (R

    Development Core Team, 2012).

    Results

    Morphological description

    Fumane 1 Lower left second deciduous molar (Ldm2), repre-

    sented by a complete crown and the cervical quarter of the root

    (Fig. 2). The tooth, split in two halves by a MD fracture and with

    several smaller fractures, is heavily worn, equal to an advanced

    wear stage 5 (Molnar, 1971). On the occlusal surface, which is worn

    obliquely mesio-buccally to disto-lingually, only a small area of

    enamel is preserved. When the enamel is digitally removed, the

    remnants of ve principal cusps, as well as a complex pattern ofgrooves and crests are still visible on the dentine surface (EDJ). The

    metaconid is in contact with the hypoconid, conrming the classic

    Y-5 pattern. The two deep grooves that separate respectively the

    protoconid/hypoconid and hypoconid/hypoconulid are interrupted

    by two crests that connect these cusps. Two additional grooves can

    be distinguished on the buccal face of the EDJ, one on the mesio-

    buccal aspect of the protoconid and another on the disto-buccal

    aspect of the hypoconulid. Moreover, an anterior fovea is

    bordered distally by a continuous mid-trigonidcrest (MTC) of grade

    2 or 3(Bailey et al., 2011)(Fig. 3a), a trait that appears with high

    frequency in Neandertals (Bailey, 2002).

    The buccal wall of the crown bulges and is evenly convex mesio-

    distally. This morphology is typically observed in Neandertal dm2s

    (Benazzi et al., 2012). Both mesial and distal aspects bear largeinterproximal wear facets. The mesial facet is more invasive than

    the distal (where subvertical grooves can be noted; see Villa and

    Giacobini, 1995), having reached the underlying dentine. Root

    resorption suggests that the tooth had been lost ante-mortem due

    to the emergence of the permanent fourth premolar. The degree of

    resorption (stage Res3/4 ofMoorrees et al., 1963) corresponds to an

    age ranging from about nine to 12 years based on the work by

    Shackelford et al. (2012). This age is also supported by the wear

    stage. Traces of calculus are present in the buccal and mesio-lingual

    cervical third of the crown. There is no evidence of either caries or

    enamel hypoplasia.

    The tooth crown has a MD diameter of 9.9 mm (minimum

    estimation due to wear) and a BL diameter of 9.4 mm (Table 1). At

    the cervix, the MD diameter is 8.2 mm and BL diameter is 7.9 mm.

    Figure 2. Three-dimensional digital models of Fumane 1 (lower left second deciduous molar, Ldm2), Fumane 4 (upper right central deciduous incisor, Rdi1), Fumane 5 (lower right

    lateral deciduous incisor, Rdi2), and Fumane 6 (molar fragment). The black bar is equivalent to 1 cm. B, buccal; D, distal; L, lingual; M, mesial; O, occlusal.

    S. Benazzi et al. / Journal of Human Evolution xxx (2014) 1e84

    Please cite this article in press as: Benazzi, S., et al., Middle Paleolithic and Uluzzian human remains from Fumane Cave, Italy, Journal of HumanEvolution (2014), http://dx.doi.org/10.1016/j.jhevol.2014.03.001

    http://-/?-http://-/?-
  • 8/12/2019 1-s2.0-S0047248414000633-main

    5/8

    Fumane 4 Upper right central deciduous incisor (Rdi 1), repre-

    sented by a well-preserved crown and the cervical quarter of the

    root (Fig. 2). There is a large and deep crack (extending past the

    cervix) that runs the MD length of the tooth, from which a shal-

    lower disto-labially directed crack emanates. This smaller crack

    does not reach the cervix. The worn incisal surface corresponds to a

    wear stage 6 (Molnar, 1971) and is notable for its sharply obliqueorientation. On the mesio-labial border of the incisal edge, small

    fragments of enamel are chipped off. From the incisal view, the

    crown has moderate labial convexity (ASUDAS grade 3) with a

    cervical swelling (but no tubercle-like structure). Due to the heavy

    wear, shovel-shaped morphology cannot be ascertained. A small

    interproximal wear facet is visible on the distal side of the crown,

    but not on the mesial side, and was probably removed by wear.

    The preserved root is longer labially (2.5 mm) than lingually

    (1.6 mm). The stage of resorption of the tooth is close to grade Res3/4ofMoorrees et al. (1963), suggesting that the tooth had been lost

    ante-mortem through dental development, a stage that corre-

    sponds to an age of approximately six years in recent modern

    children (Ubelaker, 1978; AlQahtani et al., 2010). Traces of calculus

    are present in the mesio-labial wall of the crown, but there is noevidence of either caries or enamel hypoplasia.

    The tooth crown has a MD diameter of 6.1 mm (minimum

    estimation due to wear) and a BL diameter of 5.4 mm (Table 1). At

    the cervix, the MD diameter is 4.6 mm and BL diameter is 4.9 mm.

    Fumane 5 Lower right lateral deciduous incisor (Rdi2) with well-

    preserved crown and about two-thirds of the root preserved

    (Fig. 2). The dentine shows several fractures, and one of them

    crosses the enamel on the mesial side. The incisal surface is worn

    obliquely mesially to distally, exposing a large area of dentine

    equivalent to wear stage 4 (Molnar, 1971). From the incisal view the

    crown appears asymmetrical, mainly due to the distal projection of

    a moderate lingual cervical eminence (but no tubercle-like struc-

    ture). The labial surface exhibits pronounced mesio-distal con-

    vexity (ASUDAS grade 4). The lingual surface is concave, and shows

    remnants of faint mesial and distal marginal ridges, as well as a

    median ridge, which disappears as it reaches the cervical eminence.

    Interproximal wear facets are visible on the mesial and distal sides;

    the latter, which is more extensive, has impacted and reduced theexpression of the distal marginal ridge.

    The preserved root stump, more elongated labially (6.05 mm)

    than lingually (1.45 mm), appears to be resorptive, conrming an

    age of approximately six years on the basis of recent human stan-

    dards (Ubelaker, 1978; AlQahtani et al., 2010). There is no evidence

    of either caries or enamel hypoplasia.

    The tooth crown has a MD diameter of 5.5 mm (minimum

    estimation due to wear) and a BL diameter of 5.1 mm (Table 1). At

    the cervix, the MD diameter is 4.6 mm and BL diameter is 4.9 mm.

    Fumane 6 Small molar fragment with a short segment of root

    preserved (Fig. 2). The occlusal surface is heavily worn (at least

    wear stage 5), and a large interproximal wear facet marks one side

    of the fragment. On the portion of the crown where the enamel is

    preserved, the cervical line is nearly straight, and the enamel risesalmost vertically after a hint ofaring. When the enamelis virtually

    removed, a fovea is visible on the EDJ (Fig. 3b). Based on these

    features, it is likely that this fragment represents the mesio-lingual

    portion of a lower molar.

    Metric comparison

    Comparative data for BL crown diameters are reported in

    Table 2. For Fumane 5 (Rdi2), the computed Z-score is closer to the

    Neandertal mean than to Upper Paleolithic and recent H. sapiens.

    More ambiguous are the results obtained for Fumane 1 (Ldm2),

    Table 2Dental dimensions (in mm) of the Fumane teeth standardized to Z-scores of the hominin samplesaed used in this study (m mean;s standard deviation;n number of

    individuals).

    di1 di2 dm2

    BL Z score BL Z score BL Z score

    m s (n) m s (n) m s(n)

    Fumane 5.44 5.08 9.36

    N 6.13 0.35 (23)a 1.97 4.85 0.25 (15)a 0.92 9.4 0.5 (34)b 0.08

    UPHS 5.42 0.35 (18)a 0.06 4.58 0.30 (18)a 1.67 9.44 0.35 (8)c,d 0.23

    RHS 4.87 0.35 (47)a 1.63 4.14 0.37 (62)a 2.54 8.3 0.6 (57)b 1.77

    N Neandertals; UPHS Upper PaleolithicHomo sapiens; RHS recentHomo sapiens.a Crevecoeur et al. (2010).b Hershkovitz et al. (2011).c Henry-Gambier et al. (2004).d

    Henry-Gambier (2001).

    Figure 3. 3D digital model of the enameledentine junction (EDJ) of (a) Fumane 1, and (b) Fumane 6. MTC mid-trigonid crest. B, buccal; D, distal; L, lingual; M, mesial.

    S. Benazzi et al. / Journal of Human Evolution xxx (2014) 1e8 5

    Please cite this article in press as: Benazzi, S., et al., Middle Paleolithic and Uluzzian human remains from Fumane Cave, Italy, Journal of HumanEvolution (2014), http://dx.doi.org/10.1016/j.jhevol.2014.03.001

  • 8/12/2019 1-s2.0-S0047248414000633-main

    6/8

  • 8/12/2019 1-s2.0-S0047248414000633-main

    7/8

    classify Fumane 4, the Z-score computed for its BL diameter is

    closer to those ofH. sapiens than it is to Neandertals. The asym-

    metrical crown of Fumane 5, with faint mesial and distal ridges on

    the lingual aspect, coupled with the large BL diameter suggests that

    the tooth belongs to a Neandertal (Bailey, unpublished data). As the

    teeth were found in the same unit (A9) and appear to be in a nal

    stage of resorption, it is possible that they both belong to a second

    individual (approximately six years old based on recent H. sapiens

    standards), younger than the oneto which Fumane 1 belongs (w10/

    11 years old based on recent H. sapiensstandards).

    Even less can be said for Fumane 6, for which the archaeological

    integrity of the context in which the fossil was discovered is un-

    certain (Uluzzian levels but with dispersion of Proto-Aurignacian

    stone implements due to post-depositional disturbance). The

    crown fragment is unambiguously part of a permanent molar, most

    probably a lower molar, and the advanced stage of wear does not

    support its association with either Fumane 1 or Fumane 4/5, thus

    raising up to three the minimum number of individuals repre-

    sented in the Middle Paleolithic and Uluzzian levels of Fumane

    Cave. However, there are no morphological features useful for a

    taxonomic discrimination of the tooth.

    The human remains unearthed from the Mousterian deposit of

    Fumane Cave are among the last Neandertals in Italy. This lendsfurther support to inferences based on the cultural record that

    Neandertals were the bearers of the Aspa marginataochered shell

    (a Miocene-Pliocene fossil marine shell smeared with pigment,

    discovered in Unit A9, and supposed to be a component of Nean-

    dertal symbolic culture;Peresani et al., 2013b) and the makers of

    the cut-marked bird bone assemblages recovered from several

    layers across the late Mousterian sequence (Peresani et al., 2011b).

    Based on the recent reassessment of the dental remains from the

    Uluzzian levels of Cavallo Cave (South Italy; Benazzi et al., 2011a;

    Ronchitelli et al., 2014; Bailey et al., in press), the Uluzzian of

    Fumane might be provisionally assigned toH. sapiens, even though

    the uncertainty about both the position in which Fumane 6 was

    found and its taxonomic attribution do not allow us to conclude

    this with certainty. In the nearby site of Riparo Mezzena, Nean-dertal remains associated with Levallois Mousterian lithic in-

    dustries were retrieved from a deposit claimed to date to 40,380e

    38,840 cal years BP (Longo et al., 2012; Condemi et al., 2013). If this

    chronological attribution is correct, Neandertals occupied Mezzena

    when Proto-Aurignacian modern humans were already at Fumane

    (Higham et al., 2009), which would suggest that they co-existed for

    about 5000 years and that replacement of the former by the latter

    was discontinuous in biological and cultural terms. It should be

    pointed out, however, that there is a strong disparity in the quality

    of the archaeological data from these two sites and that the limited

    data from Riparo Mezzena requires the support of an adequate

    dating programme to be taken fully into account (as previously

    suggested byDouka et al., 2014).

    Further research is needed to better understand the timing ofthe disappearance of Neandertals from the Italian Peninsula and

    the role played by incoming modern humans in this process during

    the Middle to Upper Paleolithic transition. Besides an increase in

    well documented and chronologically-dated sites, it is essential to

    acquire diagnostic human remains to study with state-of-the-art

    methods. Due to methodological limitations, there is a real risk

    that the taxonomic discrimination of Late Pleistocene human re-

    mains might be inuenced by the archaeological context in which

    the fossils were discovered (Benazzi et al., 2014), assuming that, at

    least in Europe, Neandertals were the makers of Mousterian tech-

    nocomplexes. Therefore, while the human teeth from Fumane Cave

    increase the sample of Italian fossil remains, they emphasize the

    need to develop new methods to extract meaningful taxonomic

    information from deciduous and worn teeth.

    Acknowledgments

    The authors are grateful to H. Temming for technical support.

    We wish to thank the Editor (Dr. S. Elton), the Associate Editor and

    the anonymous reviewers for their important comments, which

    improved tremendously the manuscript. Research at Fumane is

    coordinated by the Ferrara University in the framework of a project

    supported by the Ministry of Culture eVeneto Archaeological Su-

    perintendency, public institutions (Lessinia Mountain Community

    e Regional Natural Park, Fumane Municipality, Veneto Region e

    Department for Cultural Heritage), and private associations and

    companies (Cariverona Foundation, Banca CC Valpolicella-Benaco,

    Roberto Gardina & C., Albino Armani Vinegrowers, Dental Clinic

    Rea Sibilla).

    Appendix A. Supplementary data

    Supplementary data related to this article can be found at http://

    dx.doi.org/10.1016/j.jhevol.2014.03.001

    References

    AlQahtani, S.J., Hector, M.P., Liversidge, H.M., 2010. The London atlas of human toothdevelopment and eruption. Am. J. Phys. Anthropol. 142, 481e490.

    Bailey, S.E., 2002. A closer look at Neanderthal postcanine dental morphology: themandibular dentition. Anat. Rec. 269, 148e156.

    Bailey, S.E., 2004. A morphometric analysis of maxillary molar crowns of Middle-Late Pleistocene hominins. J. Hum. Evol. 47, 183e198.

    Bailey, S.E., 2006. Beyond shovel shaped incisors: Neandertal dental morphology ina comparative context. Period. Biol. 108, 253e267.

    Bailey, S.E., Skinner, M.M., Hublin, J.-J., 2011. What lies beneath? An evaluation oflower molar trigonid crest patterns based on both dentine and enamelexpression. Am. J. Phys. Anthropol. 145, 505e518.

    Bailey, S.E., Benazzi, S., Hublin, J.-J., 2014. Allometry, merism and tooth shape of theupper deciduous M2 and permanent M1. Am. J. Phys. Anthropol. http://dx.doi.org/10.1002/ajpa.22477 .

    Bailey, S.E., Benazzi, S., Souday, C., Astorino, C., Paul, K., Hublin, J.-J., Taxonomicdifferences in deciduous upper second molar crown outlines ofHomo sapiens,

    Homo neanderthalensis, and Homo erectus. J. Hum. Evol. (in press).Bayle, P., Braga, J., Mazurier, A., Macchiarelli, R., 2009. Brief communication: High-

    resolution assessment of the dental developmental pattern and characteriza-tion of tooth tissue proportions in the late Upper Paleolithic child from LaMadeleine, France. Am. J. Phys. Anthropol. 138, 493e498.

    Bayle, P., Macchiarelli, R., Trinkaus, E., Duarte, C., Mazurier, A., Zilho, J., 2010. Dentalmaturational sequence and dental tissue proportions in the early UpperPaleolithic child from Abrigo do Lagar Velho, Portugal. Proc. Natl. Acad. Sci. 107,1338e1342.

    Benazzi, S., 2012. The rst modern Europeans. J. Anthropol. Sci. 90, 3e6.Benazzi, S., Douka, K., Fornai, C., Bauer, C.C., Kullmer, O., Svoboda, J., Pap, I.,

    Mallegni, F., Bayle, P., Coquerelle, M., Condemi, S., Ronchitelli, A., Harvati, K.,Weber, G.W., 2011a. Early dispersal of modern humans in Europe and impli-cations for Neanderthal behaviour. Nature 479, 525e528.

    Benazzi, S., Fornai, C., Bayle, P., Coquerelle, M., Kullmer, O., Mallegni, F., Weber, G.W.,2011b. Comparison of dental measurement systems for taxonomic assignmentof Neanderthal and modern human lower second deciduous molars. J. Hum.Evol. 61, 320e326.

    Benazzi, S., Coquerelle, M., Fiorenza, L., Bookstein, F., Katina, S., Kullmer, O., 2011c.

    Comparison of dental measurement systems for taxonomic assignment ofrstmolars. Am. J. Phys. Anthropol. 144, 342e354.

    Benazzi, S., Fornai, C., Buti, L., Toussaint, M., Mallegni, F., Ricci, S., Gruppioni, G.,Weber, G., Condemi, S., Ronchitelli, A., 2012. Cervical and crown outline analysisof worn Neanderthal and modern human lower second deciduous molars. Am.

    J. Phys. Anthropol. 149, 537e546.Benazzi, S., Bailey, S.E., Mallegni, F., 2013. A morphometric analysis of the Nean-

    dertal upper second molar Leuca I. Am. J. Phys. Anthropol. 152, 300e305.Benazzi, S., Peresani, M., Talamo, S., Fu, Q., Mannino, M.A., Richards, M.P., Hublin, J.-

    J., 2014. A reassessment of the presumed Neandertal human remains from SanBernardino Cave, Italy. J. Hum. Evol. 66, 89e94.

    Broglio, A., Bertola, S., De Stefani, M., Marini, D., Lemorini, C., Rossetti, P., 2005. Laproduction lamellaire et les armatures lamellaires de lAurignacien ancien dansla Grotte de Fumane (Monts Lessini, Vntie). In: Le Brun-Ricalens, F. (Ed.),Productions lamellaires attribues lAurignacien, Archologiques 1. MuseumNational Histoire Archologie, Luxemburg, pp. 415e436.

    Condemi, S., Mounier, A., Giunti, P., Lari, M., Caramelli, D., Longo, L., 2013. Possibleinterbreeding in late Italian Neanderthals? New data from the Mezzena jaw

    (Monti Lessini, Verona, Italy). PLoS One 8 (3), e59781.

    S. Benazzi et al. / Journal of Human Evolution xxx (2014) 1e8 7

    Please cite this article in press as: Benazzi, S., et al., Middle Paleolithic and Uluzzian human remains from Fumane Cave, Italy, Journal of HumanEvolution (2014), http://dx.doi.org/10.1016/j.jhevol.2014.03.001

    http://dx.doi.org/10.1016/j.jhevol.2014.03.001http://dx.doi.org/10.1016/j.jhevol.2014.03.001http://refhub.elsevier.com/S0047-2484(14)00063-3/sref1http://refhub.elsevier.com/S0047-2484(14)00063-3/sref1http://refhub.elsevier.com/S0047-2484(14)00063-3/sref1http://refhub.elsevier.com/S0047-2484(14)00063-3/sref2http://refhub.elsevier.com/S0047-2484(14)00063-3/sref2http://refhub.elsevier.com/S0047-2484(14)00063-3/sref2http://refhub.elsevier.com/S0047-2484(14)00063-3/sref3http://refhub.elsevier.com/S0047-2484(14)00063-3/sref3http://refhub.elsevier.com/S0047-2484(14)00063-3/sref3http://refhub.elsevier.com/S0047-2484(14)00063-3/sref4http://refhub.elsevier.com/S0047-2484(14)00063-3/sref4http://refhub.elsevier.com/S0047-2484(14)00063-3/sref4http://refhub.elsevier.com/S0047-2484(14)00063-3/sref4http://refhub.elsevier.com/S0047-2484(14)00063-3/sref5http://refhub.elsevier.com/S0047-2484(14)00063-3/sref5http://refhub.elsevier.com/S0047-2484(14)00063-3/sref5http://refhub.elsevier.com/S0047-2484(14)00063-3/sref5http://dx.doi.org/10.1002/ajpa.22477http://dx.doi.org/10.1002/ajpa.22477http://dx.doi.org/10.1002/ajpa.22477http://refhub.elsevier.com/S0047-2484(14)00063-3/sref8http://refhub.elsevier.com/S0047-2484(14)00063-3/sref8http://refhub.elsevier.com/S0047-2484(14)00063-3/sref8http://refhub.elsevier.com/S0047-2484(14)00063-3/sref8http://refhub.elsevier.com/S0047-2484(14)00063-3/sref8http://refhub.elsevier.com/S0047-2484(14)00063-3/sref9http://refhub.elsevier.com/S0047-2484(14)00063-3/sref9http://refhub.elsevier.com/S0047-2484(14)00063-3/sref9http://refhub.elsevier.com/S0047-2484(14)00063-3/sref9http://refhub.elsevier.com/S0047-2484(14)00063-3/sref9http://refhub.elsevier.com/S0047-2484(14)00063-3/sref10http://refhub.elsevier.com/S0047-2484(14)00063-3/sref10http://refhub.elsevier.com/S0047-2484(14)00063-3/sref10http://refhub.elsevier.com/S0047-2484(14)00063-3/sref10http://refhub.elsevier.com/S0047-2484(14)00063-3/sref11http://refhub.elsevier.com/S0047-2484(14)00063-3/sref11http://refhub.elsevier.com/S0047-2484(14)00063-3/sref11http://refhub.elsevier.com/S0047-2484(14)00063-3/sref11http://refhub.elsevier.com/S0047-2484(14)00063-3/sref11http://refhub.elsevier.com/S0047-2484(14)00063-3/sref12http://refhub.elsevier.com/S0047-2484(14)00063-3/sref12http://refhub.elsevier.com/S0047-2484(14)00063-3/sref12http://refhub.elsevier.com/S0047-2484(14)00063-3/sref12http://refhub.elsevier.com/S0047-2484(14)00063-3/sref12http://refhub.elsevier.com/S0047-2484(14)00063-3/sref13http://refhub.elsevier.com/S0047-2484(14)00063-3/sref13http://refhub.elsevier.com/S0047-2484(14)00063-3/sref13http://refhub.elsevier.com/S0047-2484(14)00063-3/sref13http://refhub.elsevier.com/S0047-2484(14)00063-3/sref13http://refhub.elsevier.com/S0047-2484(14)00063-3/sref13http://refhub.elsevier.com/S0047-2484(14)00063-3/sref14http://refhub.elsevier.com/S0047-2484(14)00063-3/sref14http://refhub.elsevier.com/S0047-2484(14)00063-3/sref14http://refhub.elsevier.com/S0047-2484(14)00063-3/sref14http://refhub.elsevier.com/S0047-2484(14)00063-3/sref14http://refhub.elsevier.com/S0047-2484(14)00063-3/sref14http://refhub.elsevier.com/S0047-2484(14)00063-3/sref15http://refhub.elsevier.com/S0047-2484(14)00063-3/sref15http://refhub.elsevier.com/S0047-2484(14)00063-3/sref15http://refhub.elsevier.com/S0047-2484(14)00063-3/sref15http://refhub.elsevier.com/S0047-2484(14)00063-3/sref16http://refhub.elsevier.com/S0047-2484(14)00063-3/sref16http://refhub.elsevier.com/S0047-2484(14)00063-3/sref16http://refhub.elsevier.com/S0047-2484(14)00063-3/sref16http://refhub.elsevier.com/S0047-2484(14)00063-3/sref17http://refhub.elsevier.com/S0047-2484(14)00063-3/sref17http://refhub.elsevier.com/S0047-2484(14)00063-3/sref17http://refhub.elsevier.com/S0047-2484(14)00063-3/sref17http://refhub.elsevier.com/S0047-2484(14)00063-3/sref17http://refhub.elsevier.com/S0047-2484(14)00063-3/sref17http://refhub.elsevier.com/S0047-2484(14)00063-3/sref17http://refhub.elsevier.com/S0047-2484(14)00063-3/sref17http://refhub.elsevier.com/S0047-2484(14)00063-3/sref17http://refhub.elsevier.com/S0047-2484(14)00063-3/sref17http://refhub.elsevier.com/S0047-2484(14)00063-3/sref18http://refhub.elsevier.com/S0047-2484(14)00063-3/sref18http://refhub.elsevier.com/S0047-2484(14)00063-3/sref18http://refhub.elsevier.com/S0047-2484(14)00063-3/sref18http://refhub.elsevier.com/S0047-2484(14)00063-3/sref18http://refhub.elsevier.com/S0047-2484(14)00063-3/sref18http://refhub.elsevier.com/S0047-2484(14)00063-3/sref18http://refhub.elsevier.com/S0047-2484(14)00063-3/sref17http://refhub.elsevier.com/S0047-2484(14)00063-3/sref17http://refhub.elsevier.com/S0047-2484(14)00063-3/sref17http://refhub.elsevier.com/S0047-2484(14)00063-3/sref17http://refhub.elsevier.com/S0047-2484(14)00063-3/sref17http://refhub.elsevier.com/S0047-2484(14)00063-3/sref17http://refhub.elsevier.com/S0047-2484(14)00063-3/sref16http://refhub.elsevier.com/S0047-2484(14)00063-3/sref16http://refhub.elsevier.com/S0047-2484(14)00063-3/sref16http://refhub.elsevier.com/S0047-2484(14)00063-3/sref16http://refhub.elsevier.com/S0047-2484(14)00063-3/sref15http://refhub.elsevier.com/S0047-2484(14)00063-3/sref15http://refhub.elsevier.com/S0047-2484(14)00063-3/sref15http://refhub.elsevier.com/S0047-2484(14)00063-3/sref14http://refhub.elsevier.com/S0047-2484(14)00063-3/sref14http://refhub.elsevier.com/S0047-2484(14)00063-3/sref14http://refhub.elsevier.com/S0047-2484(14)00063-3/sref14http://refhub.elsevier.com/S0047-2484(14)00063-3/sref14http://refhub.elsevier.com/S0047-2484(14)00063-3/sref13http://refhub.elsevier.com/S0047-2484(14)00063-3/sref13http://refhub.elsevier.com/S0047-2484(14)00063-3/sref13http://refhub.elsevier.com/S0047-2484(14)00063-3/sref13http://refhub.elsevier.com/S0047-2484(14)00063-3/sref12http://refhub.elsevier.com/S0047-2484(14)00063-3/sref12http://refhub.elsevier.com/S0047-2484(14)00063-3/sref12http://refhub.elsevier.com/S0047-2484(14)00063-3/sref12http://refhub.elsevier.com/S0047-2484(14)00063-3/sref12http://refhub.elsevier.com/S0047-2484(14)00063-3/sref11http://refhub.elsevier.com/S0047-2484(14)00063-3/sref11http://refhub.elsevier.com/S0047-2484(14)00063-3/sref11http://refhub.elsevier.com/S0047-2484(14)00063-3/sref11http://refhub.elsevier.com/S0047-2484(14)00063-3/sref11http://refhub.elsevier.com/S0047-2484(14)00063-3/sref10http://refhub.elsevier.com/S0047-2484(14)00063-3/sref10http://refhub.elsevier.com/S0047-2484(14)00063-3/sref9http://refhub.elsevier.com/S0047-2484(14)00063-3/sref9http://refhub.elsevier.com/S0047-2484(14)00063-3/sref9http://refhub.elsevier.com/S0047-2484(14)00063-3/sref9http://refhub.elsevier.com/S0047-2484(14)00063-3/sref9http://refhub.elsevier.com/S0047-2484(14)00063-3/sref8http://refhub.elsevier.com/S0047-2484(14)00063-3/sref8http://refhub.elsevier.com/S0047-2484(14)00063-3/sref8http://refhub.elsevier.com/S0047-2484(14)00063-3/sref8http://refhub.elsevier.com/S0047-2484(14)00063-3/sref8http://dx.doi.org/10.1002/ajpa.22477http://dx.doi.org/10.1002/ajpa.22477http://refhub.elsevier.com/S0047-2484(14)00063-3/sref5http://refhub.elsevier.com/S0047-2484(14)00063-3/sref5http://refhub.elsevier.com/S0047-2484(14)00063-3/sref5http://refhub.elsevier.com/S0047-2484(14)00063-3/sref5http://refhub.elsevier.com/S0047-2484(14)00063-3/sref4http://refhub.elsevier.com/S0047-2484(14)00063-3/sref4http://refhub.elsevier.com/S0047-2484(14)00063-3/sref4http://refhub.elsevier.com/S0047-2484(14)00063-3/sref3http://refhub.elsevier.com/S0047-2484(14)00063-3/sref3http://refhub.elsevier.com/S0047-2484(14)00063-3/sref3http://refhub.elsevier.com/S0047-2484(14)00063-3/sref2http://refhub.elsevier.com/S0047-2484(14)00063-3/sref2http://refhub.elsevier.com/S0047-2484(14)00063-3/sref2http://refhub.elsevier.com/S0047-2484(14)00063-3/sref1http://refhub.elsevier.com/S0047-2484(14)00063-3/sref1http://refhub.elsevier.com/S0047-2484(14)00063-3/sref1http://dx.doi.org/10.1016/j.jhevol.2014.03.001http://dx.doi.org/10.1016/j.jhevol.2014.03.001
  • 8/12/2019 1-s2.0-S0047248414000633-main

    8/8

    Crevecoeur, I., Bayle, P., Rougier, H., Maureille, B., Higham, T., van der Plicht, J., DeClerck, N., Semal, P., 2010. The Spy VI child: a newly discovered Neandertalinfant. J. Hum. Evol. 59, 641e656.

    Douka, K., Higham, T.F.G., Wood, R., Boscato, P., Gambassini, P., Karkanas, P.,Peresani, M., Ronchitelli, A., 2014. On the chronology of the Uluzzian. J. Hum.Evol.. http://dx.doi.org/10.1016/j.jhevol.2013.12.007.

    Fiore, I., Gala, M., Tagliacozzo, A., 2004. Ecology and subsistence strategies in theeastern Italian Alps during the Middle Palaeolithic. Int. J. Osteoarchaeol. 14,273e286.

    Gomez-Robles, A., Bermudez de Castro, J.M., Martinon-Torres, M., Prado-Simon, L.,

    Arsuaga, J.L., 2012. A geometric morphometric analysis of hominin upper sec-ond and third molars, with particular emphasis on European Pleistocene pop-ulations. J. Hum. Evol. 63, 512e526.

    Henry-Gambier, D., 2001. La spulture des enfants de Grimaldi (Baouss-Rouss,Italie). In: Anthropologie et palethnologie funraire des populations de la n duPalolithique suprieur. CTHS, Paris.

    Henry-Gambier, D., Maureille, B., White, R., 2004. Vestiges humains des niveaux delAurignacien ancien du site de Brassempouy (Landes). Bull. Mm. Soc.Anthropol. Paris 16 (1e2), 49e88.

    Hershkovitz, I., Smith, P., Sarig, R., Quam, R., Rodrguez, L., Garca, R., Arsuaga, J.L.,Barkai, R., Gopher, A., 2011. Middle Pleistocene dental remains from Qesem Cave(Israel). Am. J. Phys. Anthropol. 144, 575e592.

    Higham, T.F.G., Brock, F., Peresani, M., Broglio, A., Wood, R., Douka, K., 2009. Prob-lems with radiocarbon dating the Middle and Upper Palaeolithic transition inItaly. Quatern. Sci. Rev. 28, 1257e1267.

    Longo, L., Boaretto, E., Caramelli, D., Giunti, P., Lari, M., Milani, L., Mannino, M.A.,Sala, B., Hohenstein, U.T., Condemi, S., 2012. Did Neandertals and anatomicallymodern humans coexist in northern Italy during the late MIS 3? Quatern. Int.259, 102e112.

    Molnar, S., 1971. Human tooth wear, tooth function and cultural variability. Am. J.Phys. Anthropol. 34, 175e190.

    Moorrees, C.F.A., Fanning, E.A., Hunt Jr., E.E., 1963. Formation and resorption of threedeciduous teeth in children. Am. J. Phys. Anthropol. 21, 205e213.

    Romandini, M., Nannini, N., Tagliacozzo, A., Peresani, M., The ungulate assemblagefrom layer A9 at Grotta di Fumane, Italy: a zooarchaeological contribution to thereconstruction of Neanderthal ecology. Quat. Int. in press, http://dx.doi.org/10.3406/pal.1998.1133

    Olejniczak, A.J., Smith, T.M., Feeney, R.N.M., Macchiarelli, R., Mazurier, A.,Bondioli, L., Rosas, A., Fortea, J., de la Rasilla, M., Garcia-Tabernero, A.,Radovcic, J., Skinner, M.M., Toussaint, M., Hublin, J.-J., 2008. Dental tissue pro-portions and enamel thickness in Neandertal and modern human molars.

    J. Hum. Evol. 55, 12e23.Peresani, M., 2008. A new cultural frontier for the last Neanderthals: the Uluzzian in

    Northern Italy. Curr. Anthropol. 49, 725e731.Peresani, M., 2012. Variability in lithic technology from the recent Middle Palae-

    olithic to the Uluzzian across the 50 ky record of Fumane Cave. Quatern. Int.247, 125e150.

    Peresani, M., Cremaschi, M., Ferraro, F., Falgures, Ch., Bahain, J.J., Gruppioni, G.,Sibilia, E., Quarta, G., Calcagnile, L., Dolo, J.M., 2008. Age of the nal MiddlePalaeolithic and Uluzzian levels at Fumane Cave, Northern Italy, using 14C, ESR,234U/230Th and thermoluminescence methods. J. Archaeol. Sci. 35, 2986e2996.

    Peresani, M., Chravzez, J., Danti, A., De March, M., Duches, R., Gurioli, F., Muratori, S.,Romandini, M., Tagliacozzo, A., Trombino, L., 2011a. Fire-places, frequentationsand the environmental setting of the nal Mousterian at Fumane Cave: a reportfrom the 2006e2008 research. Quartr 58, 131e151.

    Peresani, M., Fiore, I., Gala, M., Romandini, M., Tagliacozzo, A., 2011b. Late Nean-dertals and the intentional removal of feathers as evidenced from bird bonetaphonomy at Fumane cave 44ky BP, Italy. Proc. Natl. Acad. Sci. 108, 3888e3893.

    Peresani, M., Centi, L., Di Taranto, E., 2013a. Blades, bladelets and akes: a case ofvariability in tool design at the dawn of the Middle e Upper Palaeolithictransition in Italy. C.R. Palevol 12, 211e221.

    Peresani, M., Vanhaeren, M., Quaggiotto, E., Queffelec, A., dErrico, F., 2013b. Anochered fossil marine shell from the Mousterian of Fumane Cave, Italy. PLos One8 (7), e68572.

    R Development Core Team., 2012. R: a language and environment for statisticalcomputing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org.

    Ronchitelli, A., Benazzi, S., Boscato, P., Douka, K., Moroni, A., 2014. Comments onHuman-climate interaction during the Early Upper Paleolithic: testing thehypothesis of an adaptive shift between the Proto-Aurignacian and the EarlyAurignacianby W.E. Banks, F. d Errico, J. Zilho. J. Hum. Evol.http://dx.doi.org/10.1016/j.jhevol.2013.12.010.

    Scott, G.R., Turner II, C.G., 1997. The Anthropology of Modern Human Teeth. DentalMorphology and its Variation in Recent Human Populations. Cambridge Uni-versity Press, Cambridge.

    Shackelford, L.L., Stinespring Harris, A.E., Konigsberg, L.W., 2012. Estimating thedistribution of probable age-at-death from dental remains of immature humanfossils. Am. J. Phys. Anthropol. 147, 227e253.

    Smith, T.M., Olejniczak, A.J., Zermeno, J.P., Tafforeau, P., Skinner, M.M.,Hoffmann, A., Radovcic, J., Toussaint, M., Kruszynski, R., Menter, C., Moggi-Cecchi, J., Glasmacher, U.A., Kullmer, O., Schrenk, F., Stringer, C., Hublin, J.-J.,2012. Variation in enamel thickness within the genus Homo. J. Hum. Evol. 62,395e411.

    Tagliacozzo, A., Romandini, M., Fiore, I., Gala, M., Peresani, M., 2013. Animalexploitation strategies during the Uluzzian at Grotta di Fumane (Verona). In:Clark, J.L., Speth, J.D. (Eds.), Zooarchaeology and Modern Human Origins: Hu-man Hunting Behavior during the Later Pleistocene, Vertebrate Paleobiologyand Paleoanthropology. Springer, Dordrecht, pp. 129e150.

    Toussaint, M., Olejniczak, A.J., El Zaatari, S., Cattelain, P., Flas, D., Letourneux, C.,Pirson, S., 2010. The Neanderthal lower right deciduous second molar fromTroude lAbme at Couvin, Belgium. J. Hum. Evol. 58, 56e67.

    Turner II, C.G., Nichol, C.R., Scott, G.R., 1991. Scoring procedures for key morpho-logical traits of the permanent dentition: the Arizona State University DentalAnthropology System. In: Kelley, M., Larsen, C. (Eds.), Advances in Dental An-thropology. Wiley Liss, New York, pp. 13e31.

    Ubelaker, D.H.,1978. Human Skeletal Remains. Excavations, Analysis, Interpretation.Aldine, Chicago.

    Villa, G., Giacobini, G., 1995. Subvertical grooves of interproximal facets in Nean-

    dertal posterior teeth. Am. J. Phys. Anthropol. 96, 51e

    62.Wood, B.A., Abbott, S.A., Graham, S.H., 1983. Analysis of the dental morphology ofPlio-Pleistocene hominids. II. Mandibular molars-study of cusp areas, ssurepattern and cross sectional shape of the crown. J. Anat. 137, 287e314.

    S. Benazzi et al. / Journal of Human Evolution xxx (2014) 1e88

    Please cite this article in press as: Benazzi, S., et al., Middle Paleolithic and Uluzzian human remains from Fumane Cave, Italy, Journal of HumanEvolution (2014) http://dx doi org/10 1016/j jhevol 2014 03 001

    http://refhub.elsevier.com/S0047-2484(14)00063-3/sref19http://refhub.elsevier.com/S0047-2484(14)00063-3/sref19http://refhub.elsevier.com/S0047-2484(14)00063-3/sref19http://refhub.elsevier.com/S0047-2484(14)00063-3/sref19http://dx.doi.org/10.1016/j.jhevol.2013.12.007http://dx.doi.org/10.1016/j.jhevol.2013.12.007http://refhub.elsevier.com/S0047-2484(14)00063-3/sref21http://refhub.elsevier.com/S0047-2484(14)00063-3/sref21http://refhub.elsevier.com/S0047-2484(14)00063-3/sref21http://refhub.elsevier.com/S0047-2484(14)00063-3/sref21http://refhub.elsevier.com/S0047-2484(14)00063-3/sref21http://refhub.elsevier.com/S0047-2484(14)00063-3/sref22http://refhub.elsevier.com/S0047-2484(14)00063-3/sref22http://refhub.elsevier.com/S0047-2484(14)00063-3/sref22http://refhub.elsevier.com/S0047-2484(14)00063-3/sref22http://refhub.elsevier.com/S0047-2484(14)00063-3/sref22http://refhub.elsevier.com/S0047-2484(14)00063-3/sref22http://refhub.elsevier.com/S0047-2484(14)00063-3/sref23http://refhub.elsevier.com/S0047-2484(14)00063-3/sref23http://refhub.elsevier.com/S0047-2484(14)00063-3/sref23http://refhub.elsevier.com/S0047-2484(14)00063-3/sref23http://refhub.elsevier.com/S0047-2484(14)00063-3/sref23http://refhub.elsevier.com/S0047-2484(14)00063-3/sref23http://refhub.elsevier.com/S0047-2484(14)00063-3/sref24http://refhub.elsevier.com/S0047-2484(14)00063-3/sref24http://refhub.elsevier.com/S0047-2484(14)00063-3/sref24http://refhub.elsevier.com/S0047-2484(14)00063-3/sref24http://refhub.elsevier.com/S0047-2484(14)00063-3/sref24http://refhub.elsevier.com/S0047-2484(14)00063-3/sref24http://refhub.elsevier.com/S0047-2484(14)00063-3/sref24http://refhub.elsevier.com/S0047-2484(14)00063-3/sref25http://refhub.elsevier.com/S0047-2484(14)00063-3/sref25http://refhub.elsevier.com/S0047-2484(14)00063-3/sref25http://refhub.elsevier.com/S0047-2484(14)00063-3/sref25http://refhub.elsevier.com/S0047-2484(14)00063-3/sref26http://refhub.elsevier.com/S0047-2484(14)00063-3/sref26http://refhub.elsevier.com/S0047-2484(14)00063-3/sref26http://refhub.elsevier.com/S0047-2484(14)00063-3/sref26http://refhub.elsevier.com/S0047-2484(14)00063-3/sref26http://refhub.elsevier.com/S0047-2484(14)00063-3/sref27http://refhub.elsevier.com/S0047-2484(14)00063-3/sref27http://refhub.elsevier.com/S0047-2484(14)00063-3/sref27http://refhub.elsevier.com/S0047-2484(14)00063-3/sref27http://refhub.elsevier.com/S0047-2484(14)00063-3/sref27http://refhub.elsevier.com/S0047-2484(14)00063-3/sref28http://refhub.elsevier.com/S0047-2484(14)00063-3/sref28http://refhub.elsevier.com/S0047-2484(14)00063-3/sref28http://refhub.elsevier.com/S0047-2484(14)00063-3/sref28http://refhub.elsevier.com/S0047-2484(14)00063-3/sref29http://refhub.elsevier.com/S0047-2484(14)00063-3/sref29http://refhub.elsevier.com/S0047-2484(14)00063-3/sref29http://refhub.elsevier.com/S0047-2484(14)00063-3/sref29http://dx.doi.org/10.3406/pal.1998.1133http://dx.doi.org/10.3406/pal.1998.1133http://refhub.elsevier.com/S0047-2484(14)00063-3/sref31http://refhub.elsevier.com/S0047-2484(14)00063-3/sref31http://refhub.elsevier.com/S0047-2484(14)00063-3/sref31http://refhub.elsevier.com/S0047-2484(14)00063-3/sref31http://refhub.elsevier.com/S0047-2484(14)00063-3/sref31http://refhub.elsevier.com/S0047-2484(14)00063-3/sref31http://refhub.elsevier.com/S0047-2484(14)00063-3/sref32http://refhub.elsevier.com/S0047-2484(14)00063-3/sref32http://refhub.elsevier.com/S0047-2484(14)00063-3/sref32http://refhub.elsevier.com/S0047-2484(14)00063-3/sref33http://refhub.elsevier.com/S0047-2484(14)00063-3/sref33http://refhub.elsevier.com/S0047-2484(14)00063-3/sref33http://refhub.elsevier.com/S0047-2484(14)00063-3/sref33http://refhub.elsevier.com/S0047-2484(14)00063-3/sref33http://refhub.elsevier.com/S0047-2484(14)00063-3/sref34http://refhub.elsevier.com/S0047-2484(14)00063-3/sref34http://refhub.elsevier.com/S0047-2484(14)00063-3/sref34http://refhub.elsevier.com/S0047-2484(14)00063-3/sref34http://refhub.elsevier.com/S0047-2484(14)00063-3/sref34http://refhub.elsevier.com/S0047-2484(14)00063-3/sref34http://refhub.elsevier.com/S0047-2484(14)00063-3/sref34http://refhub.elsevier.com/S0047-2484(14)00063-3/sref35http://refhub.elsevier.com/S0047-2484(14)00063-3/sref35http://refhub.elsevier.com/S0047-2484(14)00063-3/sref35http://refhub.elsevier.com/S0047-2484(14)00063-3/sref35http://refhub.elsevier.com/S0047-2484(14)00063-3/sref35http://refhub.elsevier.com/S0047-2484(14)00063-3/sref35http://refhub.elsevier.com/S0047-2484(14)00063-3/sref35http://refhub.elsevier.com/S0047-2484(14)00063-3/sref35http://refhub.elsevier.com/S0047-2484(14)00063-3/sref35http://refhub.elsevier.com/S0047-2484(14)00063-3/sref36http://refhub.elsevier.com/S0047-2484(14)00063-3/sref36http://refhub.elsevier.com/S0047-2484(14)00063-3/sref36http://refhub.elsevier.com/S0047-2484(14)00063-3/sref36http://refhub.elsevier.com/S0047-2484(14)00063-3/sref37http://refhub.elsevier.com/S0047-2484(14)00063-3/sref37http://refhub.elsevier.com/S0047-2484(14)00063-3/sref37http://refhub.elsevier.com/S0047-2484(14)00063-3/sref37http://refhub.elsevier.com/S0047-2484(14)00063-3/sref37http://refhub.elsevier.com/S0047-2484(14)00063-3/sref37http://refhub.elsevier.com/S0047-2484(14)00063-3/sref37http://refhub.elsevier.com/S0047-2484(14)00063-3/sref37http://refhub.elsevier.com/S0047-2484(14)00063-3/sref38http://refhub.elsevier.com/S0047-2484(14)00063-3/sref38http://refhub.elsevier.com/S0047-2484(14)00063-3/sref38http://refhub.elsevier.com/S0047-2484(14)00063-3/sref38http://refhub.elsevier.com/S0047-2484(14)00063-3/sref38http://www.r-project.org/http://www.r-project.org/http://dx.doi.org/10.1016/j.jhevol.2013.12.010http://dx.doi.org/10.1016/j.jhevol.2013.12.010http://refhub.elsevier.com/S0047-2484(14)00063-3/sref41http://refhub.elsevier.com/S0047-2484(14)00063-3/sref41http://refhub.elsevier.com/S0047-2484(14)00063-3/sref41http://refhub.elsevier.com/S0047-2484(14)00063-3/sref42http://refhub.elsevier.com/S0047-2484(14)00063-3/sref42http://refhub.elsevier.com/S0047-2484(14)00063-3/sref42http://refhub.elsevier.com/S0047-2484(14)00063-3/sref42http://refhub.elsevier.com/S0047-2484(14)00063-3/sref43http://refhub.elsevier.com/S0047-2484(14)00063-3/sref43http://refhub.elsevier.com/S0047-2484(14)00063-3/sref43http://refhub.elsevier.com/S0047-2484(14)00063-3/sref43http://refhub.elsevier.com/S0047-2484(14)00063-3/sref43http://refhub.elsevier.com/S0047-2484(14)00063-3/sref43http://refhub.elsevier.com/S0047-2484(14)00063-3/sref43http://refhub.elsevier.com/S0047-2484(14)00063-3/sref43http://refhub.elsevier.com/S0047-2484(14)00063-3/sref43http://refhub.elsevier.com/S0047-2484(14)00063-3/sref43http://refhub.elsevier.com/S0047-2484(14)00063-3/sref43http://refhub.elsevier.com/S0047-2484(14)00063-3/sref44http://refhub.elsevier.com/S0047-2484(14)00063-3/sref44http://refhub.elsevier.com/S0047-2484(14)00063-3/sref44http://refhub.elsevier.com/S0047-2484(14)00063-3/sref44http://refhub.elsevier.com/S0047-2484(14)00063-3/sref44http://refhub.elsevier.com/S0047-2484(14)00063-3/sref44http://refhub.elsevier.com/S0047-2484(14)00063-3/sref45http://refhub.elsevier.com/S0047-2484(14)00063-3/sref45http://refhub.elsevier.com/S0047-2484(14)00063-3/sref45http://refhub.elsevier.com/S0047-2484(14)00063-3/sref45http://refhub.elsevier.com/S0047-2484(14)00063-3/sref45http://refhub.elsevier.com/S0047-2484(14)00063-3/sref45http://refhub.elsevier.com/S0047-2484(14)00063-3/sref45http://refhub.elsevier.com/S0047-2484(14)00063-3/sref46http://refhub.elsevier.com/S0047-2484(14)00063-3/sref46http://refhub.elsevier.com/S0047-2484(14)00063-3/sref46http://refhub.elsevier.com/S0047-2484(14)00063-3/sref46http://refhub.elsevier.com/S0047-2484(14)00063-3/sref46http://refhub.elsevier.com/S0047-2484(14)00063-3/sref46http://refhub.elsevier.com/S0047-2484(14)00063-3/sref47http://refhub.elsevier.com/S0047-2484(14)00063-3/sref47http://refhub.elsevier.com/S0047-2484(14)00063-3/sref48http://refhub.elsevier.com/S0047-2484(14)00063-3/sref48http://refhub.elsevier.com/S0047-2484(14)00063-3/sref48http://refhub.elsevier.com/S0047-2484(14)00063-3/sref49http://refhub.elsevier.com/S0047-2484(14)00063-3/sref49http://refhub.elsevier.com/S0047-2484(14)00063-3/sref49http://refhub.elsevier.com/S0047-2484(14)00063-3/sref49http://refhub.elsevier.com/S0047-2484(14)00063-3/sref49http://refhub.elsevier.com/S0047-2484(14)00063-3/sref49http://refhub.elsevier.com/S0047-2484(14)00063-3/sref49http://refhub.elsevier.com/S0047-2484(14)00063-3/sref49http://refhub.elsevier.com/S0047-2484(14)00063-3/sref49http://refhub.elsevier.com/S0047-2484(14)00063-3/sref49http://refhub.elsevier.com/S0047-2484(14)00063-3/sref49http://refhub.elsevier.com/S0047-2484(14)00063-3/sref48http://refhub.elsevier.com/S0047-2484(14)00063-3/sref48http://refhub.elsevier.com/S0047-2484(14)00063-3/sref48http://refhub.elsevier.com/S0047-2484(14)00063-3/sref47http://refhub.elsevier.com/S0047-2484(14)00063-3/sref47http://refhub.elsevier.com/S0047-2484(14)00063-3/sref46http://refhub.elsevier.com/S0047-2484(14)00063-3/sref46http://refhub.elsevier.com/S0047-2484(14)00063-3/sref46http://refhub.elsevier.com/S0047-2484(14)00063-3/sref46http://refhub.elsevier.com/S0047-2484(14)00063-3/sref46http://refhub.elsevier.com/S0047-2484(14)00063-3/sref45http://refhub.elsevier.com/S0047-2484(14)00063-3/sref45http://refhub.elsevier.com/S0047-2484(14)00063-3/sref45http://refhub.elsevier.com/S0047-2484(14)00063-3/sref45http://refhub.elsevier.com/S0047-2484(14)00063-3/sref44http://refhub.elsevier.com/S0047-2484(14)00063-3/sref44http://refhub.elsevier.com/S0047-2484(14)00063-3/sref44http://refhub.elsevier.com/S0047-2484(14)00063-3/sref44http://refhub.elsevier.com/S0047-2484(14)00063-3/sref44http://refhub.elsevier.com/S0047-2484(14)00063-3/sref44http://refhub.elsevier.com/S0047-2484(14)00063-3/sref43http://refhub.elsevier.com/S0047-2484(14)00063-3/sref43http://refhub.elsevier.com/S0047-2484(14)00063-3/sref43http://refhub.elsevier.com/S0047-2484(14)00063-3/sref43http://refhub.elsevier.com/S0047-2484(14)00063-3/sref43http://refhub.elsevier.com/S0047-2484(14)00063-3/sref43http://refhub.elsevier.com/S0047-2484(14)00063-3/sref43http://refhub.elsevier.com/S0047-2484(14)00063-3/sref43http://refhub.elsevier.com/S0047-2484(14)00063-3/sref42http://refhub.elsevier.com/S0047-2484(14)00063-3/sref42http://refhub.elsevier.com/S0047-2484(14)00063-3/sref42http://refhub.elsevier.com/S0047-2484(14)00063-3/sref42http://refhub.elsevier.com/S0047-2484(14)00063-3/sref41http://refhub.elsevier.com/S0047-2484(14)00063-3/sref41http://refhub.elsevier.com/S0047-2484(14)00063-3/sref41http://dx.doi.org/10.1016/j.jhevol.2013.12.010http://dx.doi.org/10.1016/j.jhevol.2013.12.010http://www.r-project.org/http://www.r-project.org/http://refhub.elsevier.com/S0047-2484(14)00063-3/sref38http://refhub.elsevier.com/S0047-2484(14)00063-3/sref38http://refhub.elsevier.com/S0047-2484(14)00063-3/sref38http://refhub.elsevier.com/S0047-2484(14)00063-3/sref37http://refhub.elsevier.com/S0047-2484(14)00063-3/sref37http://refhub.elsevier.com/S0047-2484(14)00063-3/sref37http://refhub.elsevier.com/S0047-2484(14)00063-3/sref37http://refhub.elsevier.com/S0047-2484(14)00063-3/sref37http://refhub.elsevier.com/S0047-2484(14)00063-3/sref36http://refhub.elsevier.com/S0047-2484(14)00063-3/sref36http://refhub.elsevier.com/S0047-2484(14)00063-3/sref36http://refhub.elsevier.com/S0047-2484(14)00063-3/sref36http://refhub.elsevier.com/S0047-2484(14)00063-3/sref35http://refhub.elsevier.com/S0047-2484(14)00063-3/sref35http://refhub.elsevier.com/S0047-2484(14)00063-3/sref35http://refhub.elsevier.com/S0047-2484(14)00063-3/sref35http://refhub.elsevier.com/S0047-2484(14)00063-3/sref35http://refhub.elsevier.com/S0047-2484(14)00063-3/sref35http://refhub.elsevier.com/S0047-2484(14)00063-3/sref34http://refhub.elsevier.com/S0047-2484(14)00063-3/sref34http://refhub.elsevier.com/S0047-2484(14)00063-3/sref34http://refhub.elsevier.com/S0047-2484(14)00063-3/sref34http://refhub.elsevier.com/S0047-2484(14)00063-3/sref34http://refhub.elsevier.com/S0047-2484(14)00063-3/sref33http://refhub.elsevier.com/S0047-2484(14)00063-3/sref33http://refhub.elsevier.com/S0047-2484(14)00063-3/sref33http://refhub.elsevier.com/S0047-2484(14)00063-3/sref33http://refhub.elsevier.com/S0047-2484(14)00063-3/sref32http://refhub.elsevier.com/S0047-2484(14)00063-3/sref32http://refhub.elsevier.com/S0047-2484(14)00063-3/sref32http://refhub.elsevier.com/S0047-2484(14)00063-3/sref31http://refhub.elsevier.com/S0047-2484(14)00063-3/sref31http://refhub.elsevier.com/S0047-2484(14)00063-3/sref31http://refhub.elsevier.com/S0047-2484(14)00063-3/sref31http://refhub.elsevier.com/S0047-2484(14)00063-3/sref31http://refhub.elsevier.com/S0047-2484(14)00063-3/sref31http://dx.doi.org/10.3406/pal.1998.1133http://dx.doi.org/10.3406/pal.1998.1133http://refhub.elsevier.com/S0047-2484(14)00063-3/sref29http://refhub.elsevier.com/S0047-2484(14)00063-3/sref29http://refhub.elsevier.com/S0047-2484(14)00063-3/sref29http://refhub.elsevier.com/S0047-2484(14)00063-3/sref28http://refhub.elsevier.com/S0047-2484(14)00063-3/sref28http://refhub.elsevier.com/S0047-2484(14)00063-3/sref28http://refhub.elsevier.com/S0047-2484(14)00063-3/sref27http://refhub.elsevier.com/S0047-2484(14)00063-3/sref27http://refhub.elsevier.com/S0047-2484(14)00063-3/sref27http://refhub.elsevier.com/S0047-2484(14)00063-3/sref27http://refhub.elsevier.com/S0047-2484(14)00063-3/sref27http://refhub.elsevier.com/S0047-2484(14)00063-3/sref26http://refhub.elsevier.com/S0047-2484(14)00063-3/sref26http://refhub.elsevier.com/S0047-2484(14)00063-3/sref26http://refhub.elsevier.com/S0047-2484(14)00063-3/sref26http://refhub.elsevier.com/S0047-2484(14)00063-3/sref25http://refhub.elsevier.com/S0047-2484(14)00063-3/sref25http://refhub.elsevier.com/S0047-2484(14)00063-3/sref25http://refhub.elsevier.com/S0047-2484(14)00063-3/sref25http://refhub.elsevier.com/S0047-2484(14)00063-3/sref24http://refhub.elsevier.com/S0047-2484(14)00063-3/sref24http://refhub.elsevier.com/S0047-2484(14)00063-3/sref24http://refhub.elsevier.com/S0047-2484(14)00063-3/sref24http://refhub.elsevier.com/S0047-2484(14)00063-3/sref23http://refhub.elsevier.com/S0047-2484(14)00063-3/sref23http://refhub.elsevier.com/S0047-2484(14)00063-3/sref23http://refhub.elsevier.com/S0047-2484(14)00063-3/sref22http://refhub.elsevier.com/S0047-2484(14)00063-3/sref22http://refhub.elsevier.com/S0047-2484(14)00063-3/sref22http://refhub.elsevier.com/S0047-2484(14)00063-3/sref22http://refhub.elsevier.com/S0047-2484(14)00063-3/sref22http://refhub.elsevier.com/S0047-2484(14)00063-3/sref21http://refhub.elsevier.com/S0047-2484(14)00063-3/sref21http://refhub.elsevier.com/S0047-2484(14)00063-3/sref21http://refhub.elsevier.com/S0047-2484(14)00063-3/sref21http://dx.doi.org/10.1016/j.jhevol.2013.12.007http://refhub.elsevier.com/S0047-2484(14)00063-3/sref19http://refhub.elsevier.com/S0047-2484(14)00063-3/sref19http://refhub.elsevier.com/S0047-2484(14)00063-3/sref19http://refhub.elsevier.com/S0047-2484(14)00063-3/sref19