03Lect9BluffBodyAero

29
Basic bluff-body aerodynamics II Wind loading and structural response Lecture 9 Dr. J.D. Holmes

Transcript of 03Lect9BluffBodyAero

Page 1: 03Lect9BluffBodyAero

8/3/2019 03Lect9BluffBodyAero

http://slidepdf.com/reader/full/03lect9bluffbodyaero 1/29

Basic bluff-body aerodynamics II

Wind loading and structural response

Lecture 9 Dr. J.D. Holmes

Page 2: 03Lect9BluffBodyAero

8/3/2019 03Lect9BluffBodyAero

http://slidepdf.com/reader/full/03lect9bluffbodyaero 2/29

Basic bluff-body aerodynamics

•  Pressures on prisms in turbulent boundary layer :

• drag coefficient (based on   Uh ) 0.8

-0.20 -0.10 -0.20

-0.23 -0.18 -0.23xx x

-0.20 -0.20

x x

xx x

Sym.aboutCL 

-0.2

-0.5

-0.8

-0.8

-0.5

-0.8

-0.6

-0.7

0.7

0.50.0

Wind

windward wall

side wall

roof leeward wall

Page 3: 03Lect9BluffBodyAero

8/3/2019 03Lect9BluffBodyAero

http://slidepdf.com/reader/full/03lect9bluffbodyaero 3/29

Basic bluff-body aerodynamics

•  Pressures on prisms in turbulent boundary layer :

-0.5

-0.4 to  –

0.49

Leeward wall

-0.5

-0.5

x -0.6

x -0.6

x-0.6

-0.5

-0.6

-0.6

-0.7

Wind

Side wall

x 0.4

0.3 x

0.9x

0.5 x

Windward wall

-0.6

-0.56 to  –

0.59-0.6x x

Wind

Roof 

shows effect

of velocity

profile

nearly

uniform

Page 4: 03Lect9BluffBodyAero

8/3/2019 03Lect9BluffBodyAero

http://slidepdf.com/reader/full/03lect9bluffbodyaero 4/29

Basic bluff-body aerodynamics

•  Circular cylinders :

Complexity due to interacting effects of surface roughness, Reynolds

Number and turbulence in the approach flow

Flow regimes in smooth flow :

Re < 2 105 Cd = 1.2

Sub-critical

Laminarboundary layer Separation

Subcritical regime : most wind-tunnel tests - separation at about 90o from the

windward generator

Page 5: 03Lect9BluffBodyAero

8/3/2019 03Lect9BluffBodyAero

http://slidepdf.com/reader/full/03lect9bluffbodyaero 5/29

Basic bluff-body aerodynamics

•  Circular cylinders :

Complexity due to interacting effects of surface roughness, Reynolds

Number and turbulence in the approach flow

Flow regimes in smooth flow :

Supercritical : flow in boundary layer becomes turbulent -

separation at 140o - minimum drag coefficient

Re 5 105 Cd  0.4

Super-critical

Laminar TurbulentSeparation

Page 6: 03Lect9BluffBodyAero

8/3/2019 03Lect9BluffBodyAero

http://slidepdf.com/reader/full/03lect9bluffbodyaero 6/29

Basic bluff-body aerodynamics

•  Circular cylinders :

Complexity due to interacting effects of surface roughness, Reynolds

Number and turbulence in the approach flow

Flow regimes in smooth flow :

Post-critical : flow in boundary layer is turbulent - separation at

about 120o 

Re 107 Cd 0.7

Post-critical

TurbulentSeparation

Page 7: 03Lect9BluffBodyAero

8/3/2019 03Lect9BluffBodyAero

http://slidepdf.com/reader/full/03lect9bluffbodyaero 7/29

Basic bluff-body aerodynamics

•  Circular cylinders :

Pressure distributions at sub-critical and super-critical Reynolds Numbers

20 60 100 140

1.0

0.5

0

-0.5

-1.0

-1.5

-2.0

-2.5

U

q degrees

C p 

Drag coefficient mainly determined by pressure on leeward side (wake)

Page 8: 03Lect9BluffBodyAero

8/3/2019 03Lect9BluffBodyAero

http://slidepdf.com/reader/full/03lect9bluffbodyaero 8/29

Basic bluff-body aerodynamics

•  Circular cylinders :

Effect of surface roughness :

Increasing surface roughness : decreases critical Re - increases minimum Cd 

1.2

0.8

0.4

U  b

104 2 4 8 105 2 4 8 106 2 4 8 107 

k/b = 0.02

k/b = 0.007

k/b = 0.002

Sanded surfaceSmooth surface

Cd 

Re

increasing surface roughness

Page 9: 03Lect9BluffBodyAero

8/3/2019 03Lect9BluffBodyAero

http://slidepdf.com/reader/full/03lect9bluffbodyaero 9/29

Basic bluff-body aerodynamics

•  Circular cylinders :

Effect of aspect ratio on mean pressure distribution :

Silos, tanks in

atmosphericboundary layer

-2 

-1.5 

-1 

-0.5 

0.5 

0  90  180 

Angle (degrees) 

h/b = 0.5 

h/b = 1.0 

h/b = 2.0 

  Cp b 

Decreasing h/b : increases minimum   Cp (less negative)

Page 10: 03Lect9BluffBodyAero

8/3/2019 03Lect9BluffBodyAero

http://slidepdf.com/reader/full/03lect9bluffbodyaero 10/29

Basic bluff-body aerodynamics

•  Fluctuating forces and pressures on bluff bodies :

Sources of fluctuating pressures and forces : 

•  Freestream turbulence (buffeting)

- associated with flow fluctuations in the approach flow

•  Vortex-shedding (wake-induced)

- unsteady flow generated by the bluff body itself 

•  Aeroelastic forces

- forces due to the movement of the body (e.g. aerodynamic damping)

Page 11: 03Lect9BluffBodyAero

8/3/2019 03Lect9BluffBodyAero

http://slidepdf.com/reader/full/03lect9bluffbodyaero 11/29

Basic bluff-body aerodynamics

•  Buffeting - the Quasi-steady assumption :

Fluctuating pressure on the body is assumed to follow the

variations in wind velocity in the approach flow : 

p(t) = Cpo (1/2) a [U(t)]2 

Cpo is a quasi-steady pressure coefficient 

Expanding :

p(t) = Cpo (1/2) a [  U + u(t) ]2 

= Cpo (1/2) a [  U2 + 2  U u(t) + u(t)2 ]

Taking mean values :

  p = Cpo (1/2) a [  U2 + u2]

Page 12: 03Lect9BluffBodyAero

8/3/2019 03Lect9BluffBodyAero

http://slidepdf.com/reader/full/03lect9bluffbodyaero 12/29

Basic bluff-body aerodynamics

•  Buffeting - the Quasi-steady assumption :

Small turbulence intensities : 

  p Cpo (1/2) a  U2 =  Cp (1/2) a  U2 

i.e. Cpo is approximately equal to   Cp 

Fluctuating component :

p' (t) = Cpo (1/2) a [2  U u'(t) + u'(t)2 ]

(e.g. for Iu = 0.15, u2 = 0.0225  U2 )

Squaring and taking mean values :

    Cp2 (1/4) a

2 [4  U2 ]=   Cp2 a

2   U2 u2 2

 p 2u

Page 13: 03Lect9BluffBodyAero

8/3/2019 03Lect9BluffBodyAero

http://slidepdf.com/reader/full/03lect9bluffbodyaero 13/29

Basic bluff-body aerodynamics

•  Peak pressures by the Quasi-steady assumption :

Quasi-steady assumption gives predictions of either maximum

or minimum pressure, depending on sign of   Cp 

Time

p(t)

p

]Uˆ[(1/2)ρC]Uˆ[(1/2)ρCporp̂ 2

ap

2

apo

Page 14: 03Lect9BluffBodyAero

8/3/2019 03Lect9BluffBodyAero

http://slidepdf.com/reader/full/03lect9bluffbodyaero 14/29

Basic bluff-body aerodynamics

•  Vortex shedding :

On a long (two-dimensional) bluff body, the rolling up of 

separating shear layers generates vortices on each side

alternately

• Occurs in smooth or turbulent approach flow

•  may be enhanced by vibration of the body (‘lock -in’) 

• cross-wind force produced as each vortex is shed

Page 15: 03Lect9BluffBodyAero

8/3/2019 03Lect9BluffBodyAero

http://slidepdf.com/reader/full/03lect9bluffbodyaero 15/29

Basic bluff-body aerodynamics

•  Vortex shedding :

Strouhal Number - non dimensional vortex shedding

frequency, ns :

• b = cross-wind dimension of body

• St varies with shape of cross section

bnSt 

s

• circular cylinder : varies with Reynolds Number

Page 16: 03Lect9BluffBodyAero

8/3/2019 03Lect9BluffBodyAero

http://slidepdf.com/reader/full/03lect9bluffbodyaero 16/29

Basic bluff-body aerodynamics

•  Vortex shedding - circular cylinder :

• vortex shedding not regular in the super-critical Reynolds

Number range

Page 17: 03Lect9BluffBodyAero

8/3/2019 03Lect9BluffBodyAero

http://slidepdf.com/reader/full/03lect9bluffbodyaero 17/29

Basic bluff-body aerodynamics

•  Vortex shedding - other cross-sections :

0.08

2b

2.5b

~10b

0.12 

0.06

0.14

Page 18: 03Lect9BluffBodyAero

8/3/2019 03Lect9BluffBodyAero

http://slidepdf.com/reader/full/03lect9bluffbodyaero 18/29

Basic bluff-body aerodynamics

•  fluctuating pressure coefficient :

•  fluctuating sectional force coefficient :

2

a

2

p

Uρ2

1

pC

bUρ2

1

f C

2

a

2

•  fluctuating (total) force coefficient :

AUρ2

1

FC

2

a

2

F

Page 19: 03Lect9BluffBodyAero

8/3/2019 03Lect9BluffBodyAero

http://slidepdf.com/reader/full/03lect9bluffbodyaero 19/29

Basic bluff-body aerodynamics

•  fluctuating cross-wind sectional force coefficient forcircular cylinder :

dependecy on Reynolds Number

105 106 107 

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Fluctuatingside force

coefficientC

Reynolds number, Re

Page 20: 03Lect9BluffBodyAero

8/3/2019 03Lect9BluffBodyAero

http://slidepdf.com/reader/full/03lect9bluffbodyaero 20/29

Basic bluff-body aerodynamics

•  Quasi-steady fluctuating pressure coefficient :

•  Quasi-steady drag coefficient :

up2

a

2

ap

2

a

2

p IC2

Uρ2

1

uUρC

Uρ2

1

pC

u D D I C C  2

Page 21: 03Lect9BluffBodyAero

8/3/2019 03Lect9BluffBodyAero

http://slidepdf.com/reader/full/03lect9bluffbodyaero 21/29

Basic bluff-body aerodynamics

•  Correlation coefficient for fluctuating forces on a two-

dimensional body :

•  Correlation length :

2

21

2

21

σ

(t)f (t)f 

(t)f (t)f ρ

dy y

0

)(  l

y is separation distance between sections

Page 22: 03Lect9BluffBodyAero

8/3/2019 03Lect9BluffBodyAero

http://slidepdf.com/reader/full/03lect9bluffbodyaero 22/29

Basic bluff-body aerodynamics

•  Correlation length for a stationary circular cylinder

(smooth flow) :

cross-wind vibration at same frequency as vortex shedding increases

correlation length

6

4

2

0

104 105 106 

Reynolds number,Re 

Correlationlength / diameter

Page 23: 03Lect9BluffBodyAero

8/3/2019 03Lect9BluffBodyAero

http://slidepdf.com/reader/full/03lect9bluffbodyaero 23/29

Basic bluff-body aerodynamics

•  Total fluctuating force on a slender body :

We require the total mean and fluctuating forces on the whole body

L

iii f f f 

Nf 

1f 

 jf 

   δ   y   1 δy

i δy j

δyN

Page 24: 03Lect9BluffBodyAero

8/3/2019 03Lect9BluffBodyAero

http://slidepdf.com/reader/full/03lect9bluffbodyaero 24/29

Basic bluff-body aerodynamics

•  Total fluctuating force on a slender body :

mean total force :   F =   f i  yi  i

L

0

i dyf 

instantaneous total fluctuating force :   F(t) = f i  (t) yi 

= f 1 (t) y1 + f 2 (t) y2 + ……………….f N (t) yN

Squaring both sides : [F(t)]2 = [ f 1 (t) y1 + f 2 (t) y2 + ……………….f N (t) yN]2 

= [f 1 (t) y1]2 + [f 2 (t) y2]

2 ..+ [f N (t) yN]2+ f 1 (t) f 2(t) y1y2 + f 1 (t) f 3(t) y1y3 +...

 ji j

N

 j

i

N

i

δyδy(t)f (t)f 

Page 25: 03Lect9BluffBodyAero

8/3/2019 03Lect9BluffBodyAero

http://slidepdf.com/reader/full/03lect9bluffbodyaero 25/29

Basic bluff-body aerodynamics

•  Total fluctuating force on a slender body :

Taking mean values :

As yi, y j tend to zero :

writing the integrand (covariance) as :

 ji

 N 

 j

 ji

 N 

i

 y yt  f t  f F     )()(2

 ji ji

 L L

dydyt  f t  f F  )()(00

2

)()()( 2

 ji ji y y f t  f t  f   

 ji

 L

 ji

 L

dydy y yt  f F  00

22 )()(  

This relates the total mean square fluctuating force to the sectional force 

Page 26: 03Lect9BluffBodyAero

8/3/2019 03Lect9BluffBodyAero

http://slidepdf.com/reader/full/03lect9bluffbodyaero 26/29

Basic bluff-body aerodynamics

•  Total fluctuating force on a slender body :

Introduce a new variable (yi - y j) :

Special case (1) - full correlation, (yi-y j) = 1 :

fluctuating forces treated like static forces

mean square fluctuating force is proportional to the correlation length -

applicable to slender towers 

)yd(y)yρ(ydyf F  ji

yL

y-

 ji

L

0

 j

22

 j

 j

222 L(t)f F

Special case (2) - low correlation, correlation length l is much less than L :

l2)yd(y)yρ(y)yd(y)yρ(y  ji

-

 ji ji

yL

y-

 ji

 j

 j

lL.2(t)f F22

Page 27: 03Lect9BluffBodyAero

8/3/2019 03Lect9BluffBodyAero

http://slidepdf.com/reader/full/03lect9bluffbodyaero 27/29

Basic bluff-body aerodynamics

•  Total fluctuating force on a slender body :

Symmetric about diagonal since (y j-yi) = (yi-y j ). Along the diagonal,

the height is 1.0

The double integral : is represented by the

volume under the graph :

 ji

L

0

 ji

L

0

dydy)yρ(y

On lines parallel to the diagonal, height is constant 

0

0.5

1

1

S1

yi 

y j 

Page 28: 03Lect9BluffBodyAero

8/3/2019 03Lect9BluffBodyAero

http://slidepdf.com/reader/full/03lect9bluffbodyaero 28/29

Basic bluff-body aerodynamics

•  Total fluctuating force on a slender body :

Consider the contribution from the slice as shown :

Length of slice = (L-z)2

z/ 2 

z / 2 

yi-y j=0 

yi-y j= z 

y j 

yi 

Volume under slice = (z)(L-z)22

δz

Total volume = L

0dzz)ρ(z)(L2

L

0

22 dzz)ρ(z)(L2.f F

(reduced to single integral)

Page 29: 03Lect9BluffBodyAero

8/3/2019 03Lect9BluffBodyAero

http://slidepdf.com/reader/full/03lect9bluffbodyaero 29/29

 

End of Lecture 9

John Holmes225-405-3789 [email protected]