Week 5 compressed

14
Week 5

description

logbook

Transcript of Week 5 compressed

Page 1: Week 5 compressed

     

Week  5  

Page 2: Week 5 compressed

     

Page 3: Week 5 compressed

Key  Terms  Stud  –  an  upright  piece  of  timber  in  the  wall  of  building.  Nogging  –  the  brickwork  ina  imeber  frame  Lintel  –  A  horizontal  support  across  the  top  of  the  door  or  window.  Axial  Load  –  the  force  acting  along  the  axis  of  an  object.  Buckling  –  the  bending  of  an  object  due  to  compressive  stress,  Seasoned  Timber  –  When  the  moisture  of  the  timber  has  been  removed.  Short  And  Long  Columns      Columns  are  vertical  structural  members  designed  to  transfer  axial  compressive  loads.      All  columns  are  considered  slender  members  and  for  axial  loads,  they  can  be  classified  as  either  the  short  or  long.    Short  columns  

-­‐ Shorter  (length)  -­‐ Thicker  (cross-­‐section)  -­‐ Less  than  12:1    

 Long  columns  

-­‐ Taller  (length)  -­‐ Slimmer  (cross-­‐section)  -­‐ Greater  than  12:1    

 Short  Columns    Columns  are  considered  short  if  the  ratio  of  effective  column  length  to  the  smallest  cross-­‐section  dimension  is  less  than  12:1.  e.g.  3000mm  tall  column  with  a  450mm  x  300mm  will  have  a  ratio  of  10:1      Short  columns  become  shorter  when  a  compressive  load  is  applied  and  then  failed  by  crushing  (shear)  when  the  compressive  strength  is  exceeded.  (Either  by  applying  too  great  a  load  of  if  the  cross-­‐section  is  too  small).  

Long  Columns    Columns  are  considered  long  if  the  ratio  of  effective  column  length  to  the  smallest  cross-­‐section  dimension  is  greater  than  12:1.  E.g.  6000mm  tall  column  with  a  450mm  cross-­‐section  will  have  a  ratio  of  20:1    Long  columns  become  unstable  and  fail  by  buckling.    The  shape  of  the  column  cross-­‐section  determines  the  direction  of  the  bucking.    The  actual  length  of  long  columns  and  how  they  are  fixed  at  the  top  and  bottom  of  the  columns  determines  how  they  will  buckle  and  how  much  force  loads  the  column  can  carry.  

-­‐ The  effective  length  of  the  column  is  changed  because  of  the  different  fixing  methods  the  effective  length  is  measured  between  the  points  of  contraflexure.    

         

SHORT COLUMNS

Columns are considered SHORT if the ratio of effective column length to the smallest cross section dimension is less than 12:1.

For example: a 3000mm tall column with a 450mm x 300mm cross-section will have a ratio of 10:1.

Therefore it would be considered a short column.

SHORT COLUMNS will be structurally adequate if the load applied to the column cross section does not exceed the compressive

strength of the material.

Compressive Strength (Pa) = Load (N) / area (mm2)

SHORT COLUMNS become shorter when a compressive load is applied and then fail by CRUSHING (shear)when the compressive

strength is exceeded (either by applying too great a load or if the cross-section is

too small).

Shear failure of column at the Chemistry Building, Tohoku University, Sendai, JAPAN 2011!http://reidmiddleton.files.wordpress.com/2011/06/chemistry-bldg-colum-shear-failure.jpg

Illustration from CHING ‘Building Construction Illustrated’ p 2.13

Page 4: Week 5 compressed

Walls,  Grid  And  Columns    Walls  enclose  protect  the  interior  from  the  exterior,  moderate  the  climate  for  interior  used  of  occupants,  used  to  filter  out  light,  insulate  from  the  cold  and  heat.      Walls  may  be  the  mayor  structural  component  of  a  buildings  system.  It  may  carry  the  load  from  the  wall  to  the  ground.    Wall  systems  Structural  Frames    

1. Concrete  frames-­‐  commonly  fund  in  cities      

2. Steel  frames  –  industrial  building  3. Timber  frames  (post  and  beam)  

less  common  in  Australia      Stud  Walls  

-­‐ Light  gauge  steel  framing    -­‐ Timber  framing    

     Structural  frames  Concrete  Frames-­‐  typically  uses  a  GRID  of  columns  with  concrete  beams  connecting  the  columns  together.    

-­‐ Beam  is  interconnected  into  the  column  to  make  a  rigid  joint  (moment  joint).  The  reinforcement  of  the  square  column  is  shown.  

-­‐ Circular  columns  have  spiraling  reinforcement  going  down  it.  That  is  also  interconnected  with  a  footing  system.  

Concrete  frame  building  system  needs  to  have  columns  (each)  needs  to  be  strong  enough  to  support  an  area  of  dead/live  loads  above  it.      

 Steel  Frames  -­‐  typically  use  a  GRID  of  steel  columns  connected  to  steel  girders  and  beams.  Frames  needs  to  be  stabilized  by  bracing,  bracing  sheer  walls,  by  making  the  joints  rigid.      Columns  are  known  to  buckle  at  the  weaker,  smaller  dimension  hence  why  they  need  to  be  equal  to  be  more  efficient.    Timber  Frames  (post  and  beam)-­‐  typically  uses  a  grid  of  timber  posts  or  poles  connected  into  timber  beams.  BRACING  of  members  between  bays  or  at  the  corners  of  post/beam  junction  is  required  to  stabilize  the  structure.    This  structure  is  commonly  used  in  traditional  Japanese  but  less  common  in  Australia’s  construction.  Keeping  the  beam  and  column  can  be  done  to  the  same  way  as  steel.  Occasionally  the  joints  might  also  be  made  rigid  with  the  beam  is  connected  to  the  column.    Loading  bearing  walls  

Columns are considered LONG if the ratio of effective column length to the smallest cross section dimension is greater than 12:1.

For example: a 6000mm tall column with a 450mm x 300mm cross-section will have a ratio of 20:1.

Therefore it would be considered a long column.

LONG COLUMNS become unstable and fail by BUCKLING.

The shape of the column cross-section determines the direction of the buckling.

The actual length of LONG COLUMNS and how they are fixed at the top and bottom of the columns determines how they will

buckle and how much load the column can carry.

The EFFECTIVE length of the column is changed because of the different fixing

methods. The effective length is measured between the points of CONTRAFLEXURE.

LONG COLUMNS

Illustration from CHING ‘ Building Construction Illustrated”, 2.13 (2008)

Illustration from CHING ‘ Building Construction Illustrated”, 2.13 (2008)

Page 5: Week 5 compressed

 CONCRETE  load  bearing  walls  can  be  achieved  using  either  in  situ  or  precast  elements.    The  load  bearing  PANELS  may  also  provide  support  for  SPANDEL  PANELS  over  and  link  into  other  structural  elements  (such  as  floor  slabs,  roof  structure  etc.)  Apartment  buildings  are  occasionally  the  wall  themselves,  are  load  bearings.    REINFORCED  MANSONRY  load  bearing  walls  can  be  constructed  from  CORE  FILLED  hollow  concrete  blocks  or  GRANT  FILLED  cavity  masonry.  TRUSS  BEAMS  over  openings  can  be  created  using  special  concrete  blocks,  which  are  filled  with  concrete  to  bond  the  individual  units  together.  After  the  concrete  has  cured,  the  temporary  propping  can  be  removed,  leaving  only  the  appearance  of  the  concrete  block  wall.  Bond  beams  are  used  as  an  alternative  to  steel  or  concrete  LINTELS.    SOLID  MASONRY  load  bearing  walls  can  be  created  with  single  or  multiple  skins  of  concrete  masonry  units  or  clay  bricks.  

The  skins  of  masonry  are  joined  together  using  a  brick  (with  HEADER  showing  in  face  of  wall)  or  with  metal  WALL  TIES  placed  within  the  mortar  bed.    

Solid  walls  could  have  two  skins  of  brick  work  together,  which  could  be  used  in  garages,  or  fences,  or  sub  floor  levels  where  waterproofing  is  so  crucial.  Once  waterproofing  is  necessary,  a  cavity  about  50ml  is  usually  constructed  between  the  two  layers  of  brickwork  and  there  is  flashing  that  allows  water  to  soak  through  the  panel  to  be  taken  outside  the  building.      The  wall  in  the  solid  masonry  wall  can  be  tighten  together  with  a  brick  on  its  side  with  the  header  showing  its  face  or  can  be  tie  together  with  the  ball.    Lintel  are  commonly  used  and  made  out  of  steel.    

 CAVITY  MASONRY  walls  are  typically  formed  from  two  skins  of  masonry.  Advantages  of  this  construction  solution  include:  better  thermal  performance  and  opportunities  for  insulation  within  the  cavity,  better  waterproofing  liability  to  drain  water  from  the  cavity  and  the  opportunity  to  run  services  within  the  wall  cavity.    The  presences  of  a  DAMP  PROOF  COURSE  AND  WEEP  HOLES  in  a  wall  are  indicators  that  the  wall  is  a  cavity  wall  rather  than  a  solid  wall.  The  vertical  water  joint  called  a  ‘perpen’  is  left  open  which  allows  any  water  to  run  outside.  A  line  across  the  wall  would  have  a  damp  proof  course,  which  prevents  any  water  that  is  soak  from  the  ground.    

Page 6: Week 5 compressed

 Stud  Framing    METAL  AND  TIMBER  STUD  FRAMED  walls  use  smaller  sections  of  FRAMING  TIMBER  OR  LIGHT  GAUGE  FRAMING  STEEL  to  meet  the  structural  demands  of  the  construction.  P5.42  The  smaller  sections  mean  that  the  structural  members  are  repeated  at  smaller  intervals  and  require  restraining  along  their  lengths  with  rows  of  

NOGGINGS  to  prevent  the  long  thin  members  from  BUCKLING.    STUD  FRAMING  generally  consists  of  TOP  PLATES,  BOTTOM  PLATES,  VERTICAL  STUFS,  NOGGINGS,  CROSS  BRACING  AND  PLY  BRACING.      In  Australia  in  the  suburbs,  stud  framing  is  commonly  used,  particularly  timber  frame  stud  walls.      The  studs  are  placed  together  where  plaster  board  can  span  from  the…    Horizontal  noggings  are  placed  to  prevent  from  each  stud  from  buckling.  Very  efficient  used  of  material,  some  bracing  is  needed,  and  this  could  be  diagonal  or  steep  bracing.        BRICK  VENEER  CONSTRUCTION    

Combinatory  of  1  skin  of  non-­‐structural  masonry  and  1  skin  of  structural  frame  wall  are  widely  used  in  the  construction  industry.    The  brick  is  connected  to  the  timber  or  steel  structural  system.  The  brick  work  is  a  cladding  system  which  is  tied  to  the  stud  work.  The  roof  loads  are  carried  down  through  the  stud,  through  the  bottom  plates,  onto  the  joist,  onto  the  beamers,  onto  the  pears  and  onto  the  stumps  (if  the  building  has  stumps)  [Effectively  the  brickwork  is  a  non-­‐structural  skin]  This  is  used  on  the  Oval  Pavilion.    FROM  WOOD  TO  TIMBER    

 

Page 7: Week 5 compressed

At  the  centre  of  the  wood  is  the  hearth  udder.  It  is  not  useful  in  constructing;  it  does  not  last  as  long.  The  extra  ring  gets  place  each  year.        Provenance    Early  wood-­‐  rapid  growth  at  beginning  of  growing  season  Late  wood-­‐  slower  growth,  often  limited  by  lack  of  water,  thick  and  small  cells,  darker  color  Growth-­‐  generally  one  ring  per  year/  same  climates  may  have  more  than  one-­‐growth  season  pear  year/  fires  or  disease  may  produce  an  extra  ring      Structural  nature  of  wood  Grain  direction-­‐  determines  the  structural  performance  of  wood.  This  would  be  the  direction,  strength  and  stiffness  of  the  wood    

   The  timber  is  strong  parallel  to  the  grain  and  stiff  parallel  to  the  grain.  

Therefore  if  there  compression  or  tension  on  the  timber,  parallel  to  the  grain,  it  would  be  strong.    The  timber  is  weak  perpendicular  to  grain.  If  a  force  were  applied  to  the  grain,  either  pulling  the  fibre  apart  or  compressing  the  fibre,  it  would  be  weaker.  The  timber  would  not  carry  the  load  effective.    Seasoning  (drying)  Timbers  are  parallel  vessel.  By  moving  the  water  from  the  vessels  and  cells  the  timber  would  be  strengthen.  This  process  is  called  “seasoning”  This  leaves  less  than  15%  of  water  left.  WHY  is  timber  seasoned?  

-­‐ To  adjust  the  moisture  content  so  the  timber  is  appropriate  for  the  intended  use.  

-­‐ Provide  increased  dimensional  stability    

 WHAT  moisture  is  removed  from  the  cell?  

-­‐ Free  moisture  (voids  in  cells)  -­‐ Bound  moisture  (cell  walls)  

 HOW  is  moisture  removed?  Timber  is  generally  seasoned  in  one  of  the  three  ways:  

-­‐ Air  seasoning  (drying)  –  cheap  but  slow  –  6  months  to  2  years  per  50mm  thickness  

-­‐ Kiln  seasoning  (drying)  –  typically  20-­‐40  hours  to  dry  to  –  12%  (very  common)  

-­‐ Solar  Kiln  seasoning  (drying)  –  less  expensive  to  run,  same  energy  cost    

 At  the  beginning  of  the  seasoning  process,  the  first  water  to  leave  is  the  cell.  The  bond  water  is  the  next  section  to  evaporate  off.  This  is  classified  as  

Page 8: Week 5 compressed

seasoned  timber  when  it  is  less  15%  of  its  growing  tree.    Types  Different  woods  have  different  properties.  We  group  them  based  on  their  biological  provenance  land  not  based  on  their  strength  or  density.    Softwoods  The  pines  are  considered  the  softwood.  In  Australia  common  softwoods  include  all  conifer  species:  

-­‐ Radiata  pine    -­‐ Cypress  pine    -­‐ Hoop  pine  -­‐ Douglas  fir    

 Hardwoods  Nature  Australian  hardwoods  include  all  eucalyptus  species:  

-­‐ Victoria  ash  -­‐ Brown  box  -­‐ Spotted  gum  -­‐ Jarrah  -­‐ Tasmanian  oak  -­‐ Balsa  wood  (not  an  eucalypt  nor  

an  Australian  timber  but,  surprisingly,  a  hardwood)    

 Green  sawning  Quarter  sawn  -­‐  growth  rings  parallel  to  short  edge.  (less  common  in  structural  timber)    

ADVANTAGES  -­‐ Brain  grain  shows  on  face  -­‐ Good  …  surface  for  floors,  

furniture  -­‐ Radial  face  preferred  for  coatings  -­‐ Lower  width  shrinkage  on  drying    -­‐ Less  cupping  and  warp  than  

other  cuts    -­‐ Can  be  successfully  

reconditioned    DISADVANTAGES  

-­‐ Slower  seasoning    -­‐ Nailing  on  face  more  prove  to  

splitting      

Back  sawn-­‐  rings  parallel  to  long  edge  of  piece.  (more  common  in  structural  timber)    

ADVANTAGES  -­‐ Season  more  rapidly    -­‐ Less  prove  to  splitting  when  

nailing    -­‐ Wide  sections  possible    -­‐ Few  snots  on  edge  

DISADVANTAGES  -­‐ Shrink  more  access  width  when  

drying    -­‐ More  likely  to  warp  and  cup    -­‐ Collapsed  timber  more  difficult  to  

recondition      Radial  sawn-­‐  face  is  always  a  radial  cut.  This  is  the  most  efficient  used  of  the  timber.  Sometimes  used  for  a  weather  board  cladding  system  for  buildings  and  

Page 9: Week 5 compressed

fences.  Therefore,  there  are  less  waste  but  some  difficulties  with  it.  Stacking  could  be  one  difficulty.  The  structural  properties  aren’t  as  clear  as  a  quarter  and  back  s  awn.    

 ADVANTAGES  

-­‐ Dimensional  stability    -­‐ Less  prove  to  warping,  cupping  

less  wastage  in  milling  DISADVANTAGES  

-­‐ Wedge  shaped  cross  section  -­‐ More  difficult  to  detail  -­‐ More  difficult  to  stack    

 GO  TO  RESHAPING  SECTION    TIMBER  PROPERTIES  AND  CONSIDERATION      

Timber  is  a  living  material.  Both  its  strength  and  weakness.  Express  work  carefully  with  this  material.  They  could  be  furniture  design,  construction  experts,  building  designers,  structural  experts.    Properties  Hardness-­‐  medium-­‐low.  Most  timbers  can  be  reasonably  easily  marked.  Not  as  hard  as  stone.  Fragility-­‐  medium-­‐  low.  Geometry  dependent,  generally  win  not  shatter  or  sreak    Ductility-­‐  low.  Some  timbers  in  their  green  state  can  be  manipulated  into  a  range  of  shapes  (steam  pressured)    Flexibility/  Plasticity-­‐  high.  Varies  depending  on  seasoning,  finishing  (protection)  and  fixing    Density-­‐  extremely  varied  depending  on  timber  type  Conductivity-­‐    poor  conductor  of  heat  and  electricity    Durability/  Life  span-­‐  can  very  durable  if  detailed  correctly.  Varies  depending  on  type,  seasoning,  finishing  (protection)  and  fixing  

Reusability/  recyclability-­‐  very  high-­‐  second  hand  timber  is  very  desirable  Sustainability  and  Carbon  footprint-­‐  very  low  embodied  energy.  Fully  renewable  if  correctly  soured.    Cost-­‐  generally  cost  effective.  Harbor  dependent  for  on-­‐site  work  but  also  seized  to  highly  efficient  factory  based  manufacturing  processes.  (Depends  on  the  country).  Japan  is  commonly  seen  to  use  timber  in  prefabrication  process.            Specifying  and  handling  Timber  is  not  available  for  all  shapes  and  sizes.  Design  detailing  can  and  should  minimize  exposure  to  hazards.  Always  specify  timber  for  a  particular  use/  scenario.  Consider:      Size  

-­‐ Depth  x  breadth    -­‐ Make  sure  size  is  available  before  

specifying    -­‐ Length  (0.3m  increments)  

common  maximum  6m  trees  can  provide  longer  lengths  in  limited  sizes.  

 Strength  grade  

Page 10: Week 5 compressed

Timber  is  rated  by  its  strength.  F  grades  MGP  grading’s  are  commonly  used  to  identify  the  strength  of  particular  timber  elements.  This  is  used  to  determine  the  particular  size  of  timber  for  a  particular  load  bearing.      Moisture  Season  <  15%  (typically  used  in  furniture,  in  flooring  where  there’s  not  many  variation  over  time,  and  harder  timber)    

-­‐ any  timber  >  15%  is  sold  as  unseasoned  

 Species  of  wood-­‐  different  timber  types  provide  variation  in  performance  and  appearance.  Treatment  or  insect  repellent  treatments  will  be  required  Availability-­‐  not  all  timber  types  or  sizes  are  available  in  all  locations      Considerations    Knots-­‐  weak  points  //  cause  slope  of  grain.  Strength  around  the  snot  would  likely  to  be  weaker  compare  to  across  the  grain.  

They  consist  of    -­‐ Arris  knot  -­‐ Centre  knot    -­‐ Edge  knot    

 If  you  look  at  the  timber  at  a  load  bearing  system,  the  timber  would  tend  to  bend  under  its  load.  You  would  want  the  part  of  the  timber  to  be  pulled  apart  in  tension  to  not  have  the  knots.  In  a  normal  beam  situation,  the  top  of  the  timber  that  has  the  bending  would  be  under  compression  while  the  bottom  would  be  under  tension,  the  knot  should  be  at  the  top  of  the  beam.  Load  compressing  on  the  load  would  not  be  a  point  of  weakness  but  you  if  you  are  pulling  against  the  knot,  you  tend  to  find  the  timber  to  break  parallel  with  the  grain.    Durability-­‐  good  practice      Water  related  damage    Fungal  attack  often  occurs  when  moisture  content  of  wood  >  20%  Swelling,  shrinkage  can  cause  cracks        Protection  against  water  

-­‐ Avoid  exposure  (when  possible)  

-­‐ Seal  against  moisture  movement-­‐  paint    

-­‐ Particular  care  needed  with  end  grain-­‐  seal  before  assembly    

-­‐ The  end  can  be  protected  by  detailing,  painting  or  both    

 TIMBER  CAN  BE  DAMAGE    

-­‐ Isolate  timber  from  INSECT  attack  (termites  and  borer  etc)  chemical  barrier/  physical  barriers  between  ground  and  timber  

Protect  timber  from  sunlight  and  heat  -­‐ Direct  sunlight  can  cause  

excessive  dying,  shrinkage    -­‐ Direct  sunlight  breaks  down  

wood/  Cellulose    -­‐ Light  and  color  paints  are  best      

 Other  Hazards  

-­‐ Fire  -­‐ Chemical  exposure    

 ENGINEERED  TIMBER  PRODUCTS    Timber  can  be  engineered  and  manufactured  into  larger  sections.  This  

Page 11: Week 5 compressed

has  a  couple  of  benefits  such  as  it  can  be  used  in  structural  situations  (curve  forms  or  long  spans),  alternative,  it  can  be  used  more  effective.    Solid  products    LVL-­‐  Laminated  Veneer  Lumber    Uses-­‐  Mainly  structural  (beams,  posts,  portal  frames)  Made  from  laminating  thin  sheets  of  timber,  most  laminates  with  grain  aligned  to  longitudinal  direction,  very  deep  and  long  sections  possible,  high  strength.  This  is  where  the  walls  and  roof  section  are  connected  together.      GLULAM-­‐  Glue  Laminated  Timber    Uses-­‐  Mainly  structural  (beams,  posts,  portal  frames)  Made  from  gluing  pieces  of  dressed  sawn  timber  together  to  form  a  deep  member,  most  laminates  with  grain  aligned  to  longitudinal  directions.    CLT-­‐  Cross  Laminated  Timber  Uses-­‐  structural  panels  (horizontal  and  vertical)  Made  by  gluing  and  pressing  thing  laminates  together  to  form  a  sheet,  laminate  grain  laid  in  alternate  

directions  (90o),  provides  strength  in  two  directions  Look  at-­‐  The  forte  building-­‐  Melbourne  Docklands.  This  is  a  relatively  new  product  in  the  market  place  Australia  has  the  tallest  CLT  building,  The  Forte  building.      SHEET  PRODUCTS-­‐  commonly  in  the  construction  industry    Plywood  Uses-­‐  Structural  bracing/  structural  flooring/  formworks/  joinery/  marine  applications.    Made  by  gluing  and  pressing  thin  laminates  together  to  form  a  sheet,  grain  in  laminate  in  alternate  directions  strength  in  two  directions.    There  are  different  qualities  of  plywood,  the  surface  good  be  exposed,  or  uncial  carpet.    MDF-­‐  Medium  density  fiberward      Uses-­‐  non-­‐  structural  applications  (joinery)  Made  by  breaking  down  hardwood  or  softwood  waste  into  wood  fibres,  combining  it  with  wax  and  a  resin  binder  by  applying  high  temperature  

and  pressure.  MDF  is  generally  more  dense  than  plywood.  It  is  even  in  quality.    Clipboard  and  strandboard    Uses-­‐  as  part  of  structural  systems  (e.g.  flooring)/  cladding  finish  Made  by  layering  hardwood  or  softwood  residuals  (chips/  strands)  in  specific  orientations  with  wax  and  a  resin  binder  by  applying  high  temperature  and  pressure,    OTHER  MANUFACTURED  PRODUCTS    The  rationale  to  the  following  set  of  product  lies  in  their  ability  to  use  materials  very  efficiently  and  their  ability  to  accommodate  services  within  their  depth.    I  Beams    Uses-­‐  floor  joists/  rafters  Timber/  LVL  flanges,  plywood/  USB  webs    Lightweight,  suitable  for  medium  span      BOX  BEAMS  Uses-­‐  floor  joists/  rafters    Timber/  LVL  flanges,  two  plywood/  USB  webs    

Page 12: Week 5 compressed

Suitable  for  larger  spans,  stiff,  can  use  decorative  plywood      

Timber  Flanged  steel  web  joists    

Uses-­‐  joists/  rafters    Lightweight,  open  webs  save  access  for  service  webs  by  light  tubes,  solid  rounds,  and  corrugated  sheets  Sometimes  there’s  a  hybrid  use  of  material  where  the  timber  is  joined  together  with  the  steel  structure  be  with  light  tubes  or  solid  rounds.  Sometimes  

this  can  be  a  sheet  material  with  holes  in  it  that  hold  the  two  timber  flanges  together.      GEHRY’S  OWN  HOME  Dr  Hannah  Lewi    Frank  Gehry’s  house  

-­‐ Famous  architect    -­‐ House  in  Santa  Monica  in  Los  

Angeles    -­‐ The  new  house  was  the  wrapping  

and  the  old  house  was  the  core    -­‐ This  house  shows  a  lot  about  

contemporary  architecture    -­‐ Everyday  materials,  wrapping,  

collisions  and  fragments,  under  construction    

 Everyday  Material  

-­‐ Worked  from  1970-­‐1980,  in  Los  Angeles    

-­‐ Quote:  ‘I  get  my  inspiration  from  the  streets.  I  am  more  of  a  street  fishier  than  a  exam  scholar’  

-­‐ Worked  hands  on,  on  everyday  materials  from  the  street.  Most  controversially  materials  such  as  chain  links  for  fencing,  metal  sheet,  cardboard  in  furniture.  These  found  on  the  streets.  These  

materials  are  lightweight,  they  throw  away  and  sort  of  ticky  tacky.  

-­‐ Materials  are  found  objects,  that  has  been  discarded  by  conventional  traditional  Architecture  

   Wrapping  

-­‐ The  favourite  materials  of  his  used,  normally  came  from  the  things  which  wrap  other  more  precious  objects.  These  are  used  in  packaging.  EG.  Gene  things  in  with  chain  links,  use  plywood  for  form  work,  for  concrete,  we  box  things  in  with  cardboard  

-­‐ Wrapping  building  with  lightweight  material  was  partly  an  exploration  what  local  construction  method  might  be  able  to  do.  In  Los  Angeles,  trot  dominantly  known  as  ‘stick  frames’  or  ‘stucks’  or  ‘stud  frames’  which  timber  construction  that  clad  with  light  weight  material.  

Page 13: Week 5 compressed

-­‐ Quote:  ‘I  had  a  funny  idea  that  you  could  made  architecture  that  you  could  bump  into  before  you  would  realize  it  was  architecture.  Obviously  I  have  not  been  able  to  do  that…  I’d  love  to’.    

 Collusions  and  fragments  

-­‐ Collapse  or  design  idea  adding  together  material  and  forms  rather  than  subtracting  by  using  the  rule  of  symmetry.  This  was  a  popular  notion  at  the  time  in  the  70’s  in  architecture.  It  can  be  clearly  seen  in  Gehry’s  models  and  drawing  and  translated  into  his  work  also  shared  a  great  friendship  with  American  sculptors,  explored  ideas  of  unexpected  geometry.  Generated  ideas  of  the  colliders  together  and  adding  together  of  shapes.  

-­‐ Took  about  a  month  to  design  a  window  that  wasted  all  his  money  

-­‐ You  can  see  how  forms  twist  and  burst  through  and  expose  the  structure.  The  skin  is  peeled  off  

and  replaced  with  a  lightweight  wrapping.  

 Under  Construction  

-­‐ This  building  reminded  him  of  unfinished  or  incompleteness    

-­‐ He  worked  on  a  seemingly  conventional  old  house  that  is  made  out  of  timber,  plasterboard  and  clad  stick  frames  

-­‐ He  added  and  removed  bits  to  make  it  seem  unfinished  which  holds  the  possibilities  of  change  

-­‐ He  thought  about  adding  clipboards  and  painting  it  pink  to  submerge  into  the  old  house    

-­‐ The  house  was  humorous  and  very  much  reflected  the  chaos  of  family  life.  It  can  be  seen  by  the  interior  of  the  house  

-­‐ Quote:  ‘I  deliberately  de-­‐sophisticate  elements  of  my  work.  I  would  rather  call  it  undersign?’  

-­‐ The  house  caused  a  lot  of  complaints.  The  neighborhood  

-­‐ wanted  to  sue  him  and  send  him  to  jail  for  visually  disturbing  the  peace  

-­‐ He  disrupted  a  lot  of  convention  on  what  a  house  should  be.  Reorganizing  the  room  differently  to  where  it  should  be.  He  said  that  the  dining  room  in  the  drive  way    

-­‐ It  took  many  years  for  Gehry  to  recover  from  this  incident  over  this  house    

-­‐ The  house  has  been  declaimed  a  historie  monument.  This  meant  that  it  was  finally  finished.  

-­‐ Over  years,  this  started  inspiring  many  architects  award  the  world  in  the  1990’s  

-­‐ It  has  been  described  as  cheapscape  architecture  because  the  material  it  uses.  

       

Page 14: Week 5 compressed

Activity