Vanni Vipp2010

41
Visual cortex: one for all and all for one Simo Vanni, MD PhD Vision systems physiology group Brain Research Unit, Low Temperature Laboratory Aalto University School of Science and Technology

Transcript of Vanni Vipp2010

Page 1: Vanni Vipp2010

Visual cortex: one for all and all for one

Simo Vanni, MD PhDVision systems physiology group

Brain Research Unit, Low Temperature LaboratoryAalto University

School of Science and Technology

Page 2: Vanni Vipp2010

What is common to subjective experience, visual perception, and neural

activation?

Statistics of individual visual environment

Page 3: Vanni Vipp2010

Sensory and motor areas in human brain

Van Essen (2003) in Visual Neurosciences

27 %

7 % 7 %

8 %

Page 4: Vanni Vipp2010

Felleman & Van Essen, Cerebral Cortex 1 (1991) 1-47

Page 5: Vanni Vipp2010

Felleman & Van Essen, Cerebral Cortex 1 (1991) 1-47

Page 6: Vanni Vipp2010

Mapping of visual cortex

Courtesy of Linda Henriksson

Page 7: Vanni Vipp2010

Visual information

Correlated featuresSparse coding

Independent representations

Page 8: Vanni Vipp2010

Visual information

Correlated featuresSparse coding

Independent representations

Page 9: Vanni Vipp2010
Page 10: Vanni Vipp2010

Pixel intensity correlations

Dis

tanc

eDistance

Distance (pixels)

Cor

rela

tion

From: Hyvärinen et al. (2009) Natural Image Statistics : A Probabilistic Approach to Early Computational Vision. London: Springer.

Page 11: Vanni Vipp2010

From the eye to the brain Retina

Thalamus

Cerebral, cortex

Page 12: Vanni Vipp2010

Correlated phases at multiple scales

Henriksson, Hyvärinen & Vanni. J Neurosci 29 (2009) 14342-14351

Page 13: Vanni Vipp2010

Sensitivity to correlated phase

Henriksson, Hyvärinen & Vanni. J Neurosci 29 (2009) 14342-14351

Page 14: Vanni Vipp2010

Orientation correlations

Geissler et al., Vision Research 41 (2001) 711–724

Page 15: Vanni Vipp2010

A neuron learns to be selective

Dyan & Abbot: Theoretical Neuroscience (2001) MIT Press

Page 16: Vanni Vipp2010

Different tuning functions for orientation

Dyan & Abbot: Theoretical Neuroscience (2001) MIT Press

Neuron 1 Neuron 2 Neuron 3 Neuron 4

Page 17: Vanni Vipp2010

Multiple systems on top of each other

Hübener ym, J Neurosci 17 (1997) 9270-9284

Ocular dominance and orientation Spatial frequency and orientation

Page 18: Vanni Vipp2010

What is a visual object…

Page 19: Vanni Vipp2010

http://members.lycos.nl/amazingart/E/20.html

Page 20: Vanni Vipp2010

Visual information is the regularities of co-occurence, ”statistics”, of our

environment

Page 21: Vanni Vipp2010

Visual information

Correlated featuresSparse coding

Independent representations

Page 22: Vanni Vipp2010

What is sparse coding

• Many units are inactive, while few units are strongly active (population sparseness)

• A single unit has on average low activity, with occasional bursts at high frequency (lifetime sparseness)

• Mean energy consumption down• Computational benefits

Page 23: Vanni Vipp2010

Sparse coding

Vinje & Gallant, Science 287 (2000) 1273-1276

Page 24: Vanni Vipp2010

Sparse coding of different tuning functions in the primary visual cortex

Position

Eye (stereo image)

Spatial frequency (scale)

Orientation

Direction and speed of motion

Wavelength (color)

Courtesy of Aapo Hyvärinen

Page 25: Vanni Vipp2010
Page 26: Vanni Vipp2010
Page 27: Vanni Vipp2010

Visual information

Correlated featuresSparse coding

Independent representations

Page 28: Vanni Vipp2010

Context supports perception

Page 29: Vanni Vipp2010

Context distorts perception

Page 30: Vanni Vipp2010

Area tuning function

Varying size of drifting gratings

Courtesy of Lauri Nurminen and Markku Kilpeläinen

Page 31: Vanni Vipp2010

Angelucci & Bressloff, Prog Brain Res 154 (2006) 93 – 120

Receptive field

Page 32: Vanni Vipp2010

A block model of surround interaction

Schwabe et al. J Neurosci 26 (2006) 9117-9129

Afferent input

Low-level area

High-level area

Page 33: Vanni Vipp2010

Subtractive normalization model applied to non-linear interactions in the human

cortex

What visual information has to do with surround modulation?

Page 34: Vanni Vipp2010

Stimuli

Vanni & Rosenström, in preparation

Page 35: Vanni Vipp2010

Centre response covaries with the surround response

Vanni & Rosenström, in preparation

VOIcentre

Page 36: Vanni Vipp2010

Active voxels for centre are suppressed during simultaneous presentation

Vanni & Rosenström, in preparation

VOIcentre

Page 37: Vanni Vipp2010

Suppression (red) is surrounded by facilitation (blue)

Vanni & Rosenström, in preparation

Page 38: Vanni Vipp2010

Efficient coding

Response to stimulus A, A’

Res

pons

e to

sti

mul

us B

, B’

A’ = A – dBB’ = B – dA

Barlow, H., and Földiák, P. (1989). In: The computing neuron. R. Durbin, et al., eds. (Boston, Addison-Wesley Longman Publishing Co., Inc), pp. 54-72.

Page 39: Vanni Vipp2010

Independence, decorrelation

• Effective use of narrow dynamic range (surround modulation) and limited time (adaptation)

• More explicit causal factors• Implemented by Hebbian and anti-Hebbian

learning rules

Barlow, H., and Földiák, P. (1989). In: The computing neuron. R. Durbin, et al., eds. (Boston, Addison-Wesley Longman Publishing Co., Inc), pp. 54-72.

Page 40: Vanni Vipp2010

A hypothesis of the visual brain

• Our brain learns a hierarchical model of our visual environment

• Each neuron in the model is sensitive to a set of correlated features in the environment

• Population of neurons in this model form a sparse representation by relatively independent units

• The tuning functions may be the most informative dimensions of visual environment

Page 41: Vanni Vipp2010

Collaborators

• Aalto UniversityLinda HenrikssonLauri NurminenTom Rosenström

• University of HelsinkiJarmo HurriAapo HyvärinenMarkku KilpeläinenPentti Laurinen

• ANU, CanberraAndrew James