Tempo AI - Designing AI Interfaces

of 20/20
Designing AI Interfaces Raj Singh CEO Tempo AI, Inc. 510-282-4229 (M) [email protected] @mobileraj
  • date post

    23-Jan-2018
  • Category

    Technology

  • view

    411
  • download

    8

Embed Size (px)

Transcript of Tempo AI - Designing AI Interfaces

  • DesigningAIInterfaces

    RajSinghCEOTempoAI,Inc.

    510-282-4229(M)[email protected]@mobileraj

  • Itisthescienceandengineeringofmakingintelligentmachines,especiallyintelligentcomputerprograms. Itisrelatedtothesimilartaskofusingcomputerstounderstandhumanintelligence,butAIdoesnothavetoconfineitselftomethodsthatarebiologicallyobservable.

    Itpasses theTuringtest.

    Thestudyanddevelopmentofintelligentagents.

    Softwarethatlearnsandcompletestasksforyou.

    WhatIsAI?

  • 3

    Raj:WhatisAI?Nephew:Itsrobotsandshit

    AndthenthereisHollywoodsdefinition:

  • 4RecommendationEngines- ImplicitandExplicitLearning

    AIHasBeenOmnipresent

  • 5ButthepuristssayWatsonisdumb!

    ManyhavesaidWatsonwasthefirstmainstreamdemonstrationofAI

  • Anticipatory:Predictyournextwantoraction

    Smart:GivemeonlytheinformationIneed

    Assistant:Completetasksforme

    Ihaveasmartphonebutitsnotsmart!

    ButWhatIsMobileAI

  • 7

    DesigninganAI-AssistedUXIsNotEasy

    Designing95%UIYoudontknowifyourrecommendations arerightorwrong

    Whatifthesuggestionwaswrong?Certainappsarealotmoreforgiving

    Howdoestheusertrainthesystem?Mostsurveythattheywilltrainbutfewactuallydo.

    Howdoyougetthedata?AIsuffersfromfalsestarts.

    Allthataside,anticipatoryUIdesignisthenextfrontier!

  • SomeExamples(RecommendationEngines)

    Pandora FourSquare LinkedIn

  • Doesthisbotheryou?

    AnotherExample(RecommendationEngine)

    Itdoesbecausetheserecommendationshaverightandwronganswers.

  • Flipboard vs Zite

    ExtensiveML

    LittletoNoML

  • Suggestions indicatesintelligence Recommendations slightlylowerbarthansuggestions Searched/Results lessintelligent

    RecommendationLanguageMatters

    TempoSearchedMeetingLocations

  • Howdoyoudeterminethebalance? Usertestingdoesntalwayswork Constrainthedomain Segment theusersviacohortanalysis Whatistherightnumber ofsegments? TheMorebuttoncanbeyourbestfriend Infinitescroll Trainthesystem Tempousertestingindicatedlessthan3%wouldtrain

    Thumbsup/down, ratingsvs implicitlearning?

    BalanceofNoisevs Precision

    PrismaticNewsTraining

  • 13

    Siriisentertainingbutbeingunconstrainedkilledtheirengagement

  • Itwouldannoyyouless Youknowwhatyoucanaskanddo Yousettheexpectations

    ExamplesAutomatedsupportsystemsTellMe /Free411SalesforceVoiceAccess

    ConstrainingCanSetExpectations

    Lexee AppVoiceCommandsforSalesforce

  • Animationsworkmosteffectively Butifittakestoolong, ithinders theUX Speedofapplicationdirectlycorrelatedtoretentionrate 15searchresultsvs 10searchresults(Google SearchResults)

    InTempo,wenumberedtheresults Searchenginesusedtonumbertheirresultsaswell

    IndicatingIntelligence

    NumberedResultstoIndicateSmarts

  • Falsestartsareverycommon Introducerecommendations andanticipatoryactionsthrough use

    Keepon-boardingaslight-weightaspossible Toomuchtimebetweenon-boardingandfirst-usewillcauseproblems

    Canyoucollectdataasyougoalong First3-Dayusagewillbeheavyexperimentationtoseewhatthesystemdoes SiriusersexperimentbyaskingalotofQs

    Tempouserscreate10sofmtgs inthefirstfewdays

    AINeedsData

    Sosh Setup

  • BeingAnticipatory

    Anticipatewithoutthenoise Pushnotificationsdriverepeatusagebutifnoisyresultinbounced users

    NotifyingyouwhentoleaveinTempo Wewantedtobeveryanticipatorybutwerenot95%yet

    Falsenotifications resultinangstandalostuser

  • 18

    ItsJustBeginning!

    FourSquare GoogleNow Prisimatic

    Bigdatatosuggestplacestoexplore

    Searchhistorytobecomemoreanticipatory

    Machinelearningtosuggestrelevantnews

  • Recommendationsworkbestwhentheusercanttellwhatsrightorwrong.

    Bespecificwithyourlanguagebecauseithelpssetexpectations Bettertoundersellandover-deliver Userswillwanttotrainthesystembutfewwilldoit.Beconsciousthattrainingmaycreateanaversereaction

    Cold-startsarecommon;needtohaveacompellingcaseandintegratetheuserdataover-time

    Useclustering/segmentationtoimprovethecold-start(egchooseyourinterests)

    Besensitiveaboutnotificationsandtrackengagementtomachinelearnonyournotifications

    UnderstandthatwhatyoumaythinkofasAI,theuserthinksisdumb(andvice-versa);incorporateanimationsorothertoindicateAI

    Summarizing

  • Whatdoessmartmeanineverycoreapp?

    RajSinghCEOTempoAI,Inc.

    510-282-4229(M)[email protected]@mobileraj