technical data -...

27
air conditioning systems EEDEN09-203 technical data Air-cooled selection procedure

Transcript of technical data -...

air conditioning systems

EEDEN09-203

technical data

Air-cooled selection procedure

Air-cooled selection procedure

EEDEN09-203

air conditioning systems

technical data

• VRV® Systems • Air-cooled selection procedure 1

• Air-cooled selection procedure

1 Selection procedure VRV®III-C system based on heating load . 2Indoor unit selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2Outdoor unit selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2Actual performance data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Selection example based on heating load . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Capacity correction ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5VRV®III-C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Integrated heating capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Refnet pipe systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 Example of Refnet piping layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6 Refrigerant pipe selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21VRV®III-C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Piping thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

TABLE OF CONTENTSII Air-cooled selection procedure

• Air-cooled selection procedure

• VRV® Systems • Air cooled selection procedure2

3

1 Selection procedure VRV®III-C system based on heating load1 - 1 Indoor unit selection

Enter indoor unit capacity tables at given indoor and outdoor temperature.

Select the unit that the capacity is the nearest to and higher than the given load.

NOTE

1 Individual indoor unit capacity is subject to change by the combination. Actual capacity has to be calculated according to the combination by using outdoor units capacity table.

1 - 2 Outdoor unit selection

Allowable combinations are indicated in indoor unit combination total capacity index table.

In general, oudoor units can be selected as follows though the location of the unit, zoning and usage of the rooms should be considered.

The indoor and outdoor unit combination is determined that the sum of indoor unit capacity index is nearest to and smaller than the capacity index at 100 % combination ratio of each outdoor unit. Up to 32 indoor units can be connected to one outdoor unit. It is recommended to choose a larger outdoor unit if the installation space is large enough.

If the combination ratio is higher than 100 %, the indoor unit selection will have to be reviewed by using actual capacity of each indoor unit.

Indoor unit combination total capacity index table

Indoor unit capacity index

Outdoor unit Indoor unit combination ratio130 % 120 % 110 % 100 % 90 % 80 % 70% 60 % 50 %

RTSYQ10PY1 325 300 275 250 225 200 175 150 125RTSYQ14PY1 455 420 385 350 315 280 245 210 175RTSYQ16PY1 520 480 440 400 360 320 280 240 200RTSYQ20PY1 650 600 550 500 450 400 350 300 250

Model 20 25 32 40 50 63 71 80 100 125 200 250Capacity index 20 25 31.25 40 50 62.5 71 80 100 125 200 250

• VRV® Systems • Air cooled selection procedure 3

• Air-cooled selection procedure

3

1 Selection procedure VRV®III-C system based on heating load1 - 3 Actual performance data

Use outdoor unit capacity tables

Determine the correct table according to the outdoor unit model and combination ratio.

Enter the table at given indoor and outdoor temperature and find the outdoor capacity and power input. The individual indoor unit capacity (power input) can be calculated as follows:

ICA = OCA x INXTNX

ICA: Individual indoor unit capacity (power input)OCA: Outdoor unit capacity (power input)INX: Individual indoor unit capacity indexTNX: Total capacity index

Then, correct the indoor unit capacity according to the piping length.If the corrected capacity is smaller than the load, the size of indoor unit has to be increased. Repeat the same selection procedure.

1 - 4 Selection example based on heating load1 Given

• Design conditionheating: indoor 20°CWB, outdoor -9.5°CDB, -10.0°CWB

• heating load

• Power supply: 3-phase 380V/50Hz

2 Indoor unit selection

Select indoor type: duct, cassette, floor standing, ...

We select the roundflow cassette (FXFQ-P)

Select indoor unit size using indoor capacity tables.

Conditions: indoor 20°CWB, outdoor -9.5°CDB, -10.0°CWBSelection results are as follows:

• Calculate total indoor unit capacity index: 2 x 25 + 1 x 31.25 + 2 x 40 + 2 x 50 + 1 x 62.5 = 323.75

3 Outdoor unit selection

Select outdoor unit type: Heat Recovery, Heat Pump, ...

Here we select VRV®III-C

Total capacity index of indoor units = 323.75

Select outdoor unit where total capacity index is 375 close to 100% connection ratio.

Calculate actual connection ratio:

RTSQ10P: 250 at 100 % -> 323.75 / 250 = 129.5%

RTSQ14P: 350 at 100 % -> 323.75 / 350 = 92.5 %.

Because of the high heating capacity of the cold region VRV®, we can make a selection close to 130% connection ratio.

Calculate outdoor capacity.

RTSQ10P at 130% at design conditions: 28.4

RTSQ10P at 120% at design conditions: 28.3

Interpolate:

28.3 ? 28.4

300 323.75 325

28.3 + (28.4 - 28.3) / (325-300) x (323.75-300) = 28.395

Room A B C D E F G HLoad (kW) 2.2 2.1 5.5 4.0 3.5 2.6 3.5 4.2

Room A B C D E F G HLoad (kW) 2.2 2.1 5.5 4.0 3.5 2.6 3.5 4.2Unit size 25 25 63 50 40 32 40 50Capacity 2.4 2.4 6.1 4.8 3.8 3.1 3.8 4.8

• Air-cooled selection procedure

• VRV® Systems • Air cooled selection procedure4

3

1 Selection procedure VRV®III-C system based on heating load1 - 4 Selection example based on heating load

4 Correction factors

For refrigerant piping:

Check graphs in the next chapter of this databook.

For this example we assume a correction factor of 1.

For defrost factor (only in heating):

The capacity tables in the databook do not take account the reduction in capacity when frost has accumulated or while the defrosting operation is in progress. The integrated heating capacity (which takes these factors into account) can be calculated by multiplying the capacity from the capacity tables with the defrost factor.

For this example with an outdoor temperature of -10°C, the defrost factor is 1.

actual outdoor capacity = outdoor unit capacity x refrigerant piping correction factor x defrost factor

actual indoor capacity = outdoor capacity x refrigerant piping correction factor x defrost factor x indoor unit index/total capacity index

actual outdoor capacity = 28.395 x 1 x 1 = 28.395

Calculate actual indoor capacity. If the delivered capacity is not satisfactory a larger sized indoor unit needs to be selected. Than the calculation needs to be done again.

total load unit cap. Index outdoor unit capacity actual indoor unit capacityA 2.2 25 25

28.395

2.19B 2.1 25 25 2.19C 5.5 63 62.5 5.48D 4 50 50 4.39E 3.5 40 40 3.51F 2.6 32 31.25 2.74G 3.5 40 40 3.51H 4.2 50 50 4.39

27.6 323.75

• VRV® Systems • Air cooled selection procedure 5

• Air-cooled selection procedure

3

2 Capacity correction ratio2 - 1 VRV®III-C

RTSYQ10PY1

• Rate of change in cooling capacity • Rate of change in heating capacity

3D060819

NOTES

1 These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.

Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.

2 With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.

3 Method of calculating A/C (cooling / heating) capacity:

The maximum A/C capacity of the system will be either the total A/C capacity of the indoor units obtained from capacity characteristics table or the maximum A/C capacity of outdoor

units as mentioned below, wichever smaller.

Calculating A/C capacity of outdoor units

• Condition: Indoor unit combination ratio does not exceed 100%

Maximum A/C capacity of outdoor units = A/C capacity of outdoor units obtained from capacity characteristic table at the 100% combination

x Capacity change rate due to piping length to the farthest indoor unit

• Condition: Indoor unit combination ratio exceeds 100%

Maximum A/C capacity of outdoor units = A/C capacity of outdoor units obtained from capacity characteristic table at the combination

x Capacity change rate due to piping length to the farthest indoor unit

4 When overall equivalent pipe length is 90m or more, the diameter of the main gas and liquid pipes (outdoor unit-branch sections) must be increased. (Consider the equivalent pipe length of

function unit as 6mm)

Diameter of above case

❈If available on the site, use this size. Otherwise, not increased.

5 Read cooling/heating capacity rate of change in the above figures based on the following equivalent length.

Overall equivalent length =

(Equivalent length to main pipe) x correction factor + (equivalent length after branching)

Choose a correction factor from the following table.

When cooling capacity is calcurated: gas pipe size

When heating capacity is calcurated: liquid pipe size.

In the above case

(Cooling) Overall equivalent length = 80mx0.5+40m=80m

(Heating) Overall equivalent length = 80mx0.2+40m=56m

The rete of change in cooling capacity when Hp=0m is thus approximatly 0.87

heating capacity when Hp=0m is thus approximatly 1.0

EXPLANATION OF SYMBOLS

Hp : Level difference (m) between indoor and outdoor units where indoor unit in inferior position

HM : Level difference (m) between indoor and outdoor units where indoor unit in superior position

L : Equivalent pipe length (m)

α : Rete of change in cooling/heating capacity

[Diameter of the main pipes (standard size)]

[Temper grade and thickness]

Model gas liquid

RTSYQ10PY1(E)ø 25.4 ❈ ø 12.7

Rate of change

(object piping)

correction factor

standard size Size increase

Cooling (gas pipe) 1.0 0.5

Heating (liquid pipe) 1.0 0.7

Model gas liquid

RTSYQ10PY1 (E) ø 22.2 ø 9.5

Temper grade 0 Type 1/2H Type

Outer diameter ø 9.5 ø 12.7 ø 22.2 ø 25.4

Minimum wall thickness 0.80 0.80 0.80 0.88

Overall equivalent pipe length

Outdoor

unit

Function

unitBranch

Indoor unit

Equivalent length Equivalent length

Outdoor

unit

Indoor unit

BranchGas pipe: size increase

liquid pipe: size increaseFunction

unit

• Air-cooled selection procedure

• VRV® Systems • Air cooled selection procedure6

3

2 Capacity correction ratio2 - 1 VRV®III-C

RTSYQ14PY1

• Rate of change in cooling capacity • Rate of change in heating capacity

3D060820

NOTES

1 These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.

Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.

2 With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.

3 Method of calculating A/C (cooling / heating) capacity:

The maximum A/C capacity of the system will be either the total A/C capacity of the indoor units obtained from capacity characteristics table or the maximum A/C capacity of outdoor

units as mentioned below, wichever smaller.

Calculating A/C capacity of outdoor units

• Condition: Indoor unit combination ratio does not exceed 100%

Maximum A/C capacity of outdoor units = A/C capacity of outdoor units obtained from capacity characteristic table at the 100% combination

x Capacity change rate due to piping length to the farthest indoor unit

• Condition: Indoor unit combination ratio exceeds 100%

Maximum A/C capacity of outdoor units = A/C capacity of outdoor units obtained from capacity characteristic table at the combination

x Capacity change rate due to piping length to the farthest indoor unit

4 When overall equivalent pipe length is 90m or more, the diameter of the main gas and liquid pipes (outdoor unit-branch sections) must be increased. (Consider the equivalent pipe length of

function unit as 6mm)

Diameter of above case

5 Read cooling/heating capacity rate of change in the above figures based on the following equivalent length.

Overall equivalent length =

(Equivalent length to main pipe) x correction factor + (equivalent length after branching)

Choose a correction factor from the following table.

When cooling capacity is calcurated: gas pipe size

When heating capacity is calcurated: liquid pipe size.

In the above case

(Cooling) Overall equivalent length = 80mx1.0+40m=120m

(Heating) Overall equivalent length = 80mx0.3+40m=64m

The rete of change in cooling capacity when Hp=0m is thus approximatly 0.88

heating capacity when Hp=0m is thus approximatly 1.0

EXPLANATION OF SYMBOLS

Hp : Level difference (m) between indoor and outdoor units where indoor unit in inferior position

HM : Level difference (m) between indoor and outdoor units where indoor unit in superior position

L : Equivalent pipe length (m)

α : Rete of change in cooling/heating capacity

[Diameter of the main pipes (standard size)]

[Temper grade and thickness]

Model gas liquid

RTSYQ14PY1(E) not increased ø 15.9

Rate of change

(object piping)

correction factor

standard size Size increase

Cooling (gas pipe) 1.0 /

Heating (liquid pipe) 1.0 0.3

Model gas liquid

RTSYQ14PY1 (E) ø 28.6 ø 12.7

Temper grade 0 Type 1/2H Type

Outer diameter ø 12.7 ø 15.9 ø 28.6

Minimum wall thickness 0.80 0.99 0.99

Overall equivalent pipe length

Outdoor

unit

Function

unitBranch

Indoor unit

Equivalent length Equivalent length

Outdoor

unit

Indoor unit

BranchGas pipe: size increase

liquid pipe: size increaseFunction

unit

• VRV® Systems • Air cooled selection procedure 7

• Air-cooled selection procedure

3

2 Capacity correction ratio2 - 1 VRV®III-C

RTSYQ16PY1

• Rate of change in cooling capacity • Rate of change in heating capacity

3D060821

NOTES

1 These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.

Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.

2 With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.

3 Method of calculating A/C (cooling / heating) capacity:

The maximum A/C capacity of the system will be either the total A/C capacity of the indoor units obtained from capacity characteristics table or the maximum A/C capacity of outdoor

units as mentioned below, wichever smaller.

Calculating A/C capacity of outdoor units

• Condition: Indoor unit combination ratio does not exceed 100%

Maximum A/C capacity of outdoor units = A/C capacity of outdoor units obtained from capacity characteristic table at the 100% combination

x Capacity change rate due to piping length to the farthest indoor unit

• Condition: Indoor unit combination ratio exceeds 100%

Maximum A/C capacity of outdoor units = A/C capacity of outdoor units obtained from capacity characteristic table at the combination

x Capacity change rate due to piping length to the farthest indoor unit

4 When overall equivalent pipe length is 90m or more, the diameter of the main gas and liquid pipes (outdoor unit-branch sections) must be increased. (Consider the equivalent pipe length of

function unit as 6m)

Diameter of above case

❈If available on the site, use this size. Otherwise, not increased.

5 Read cooling/heating capacity rate of change in the above figures based on the following equivalent length.

Overall equivalent length =

(Equivalent length to main pipe) x correction factor + (equivalent length after branching)

Choose a correction factor from the following table.

When cooling capacity is calcurated: gas pipe size

When heating capacity is calcurated: liquid pipe size.

In the above case

(Cooling) Overall equivalent length = 80mx0.5+40m=80m

(Heating) Overall equivalent length = 80mx0.3+40m=64m

The rete of change in cooling capacity when Hp=0m is thus approximatly 0.88

heating capacity when Hp=0m is thus approximatly 1.0

EXPLANATION OF SYMBOLS

Hp : Level difference (m) between indoor and outdoor units where indoor unit in inferior position

HM : Level difference (m) between indoor and outdoor units where indoor unit in superior position

L : Equivalent pipe length (m)

α : Rete of change in cooling/heating capacity

[Diameter of the main pipes (standard size)]

[Temper grade and thickness]

Model gas liquid

RTSYQ16PY1(E) ø 31.8 ❈ ø 15.9

Rate of change

(object piping)

correction factor

standard size Size increase

Cooling (gas pipe) 1.0 0.5

Heating (liquid pipe) 1.0 0.3

Model gas liquid

RTSYQ16PY1 (E) ø 28.6 ø 12.7

Temper grade 0 Type 1/2H Type

Outer diameter ø 12.7 ø 15.9 ø 28.6 ø 31.8

Minimum wall thickness 0.80 0.99 0.99 1.10

Overall equivalent pipe length

Outdoor

unit

Function

unitBranch

Indoor unit

Equivalent length Equivalent length

Outdoor

unit

Indoor unit

BranchGas pipe: size increase

liquid pipe: size increaseFunction

unit

• Air-cooled selection procedure

• VRV® Systems • Air cooled selection procedure8

3

2 Capacity correction ratio2 - 1 VRV®III-C

RTSYQ20PY1

• Rate of change in cooling capacity • Rate of change in heating capacity

3D060822

NOTES

1 These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.

Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.

2 With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.

3 Method of calculating A/C (cooling / heating) capacity:

The maximum A/C capacity of the system will be either the total A/C capacity of the indoor units obtained from capacity characteristics table or the maximum A/C capacity of outdoor

units as mentioned below, wichever smaller.

Calculating A/C capacity of outdoor units

• Condition: Indoor unit combination ratio does not exceed 100%

Maximum A/C capacity of outdoor units = A/C capacity of outdoor units obtained from capacity characteristic table at the 100% combination

x Capacity change rate due to piping length to the farthest indoor unit

• Condition: Indoor unit combination ratio exceeds 100%

Maximum A/C capacity of outdoor units = A/C capacity of outdoor units obtained from capacity characteristic table at the combination

x Capacity change rate due to piping length to the farthest indoor unit

4 When overall equivalent pipe length is 90m or more, the diameter of the main gas and liquid pipes (outdoor unit-branch sections) must be increased. (Consider the equivalent pipe length of

function unit as 6m)

Diameter of above case

❈If available on the site, use this size. Otherwise, not increased.

5 Read cooling/heating capacity rate of change in the above figures based on the following equivalent length.

Overall equivalent length =

(Equivalent length to main pipe) x correction factor + (equivalent length after branching)

Choose a correction factor from the following table.

When cooling capacity is calcurated: gas pipe size

When heating capacity is calcurated: liquid pipe size.

In the above case

(Cooling) Overall equivalent length = 80mx0.5+40m=80m

(Heating) Overall equivalent length = 80mx0.4+40m=72m

The rete of change in cooling capacity when Hp=0m is thus approximatly 0.88

heating capacity when Hp=0m is thus approximatly 1.0

EXPLANATION OF SYMBOLS

Hp : Level difference (m) between indoor and outdoor units where indoor unit in inferior position

HM : Level difference (m) between indoor and outdoor units where indoor unit in superior position

L : Equivalent pipe length (m)

α : Rete of change in cooling/heating capacity

[Diameter of the main pipes (standard size)]

[Temper grade and thickness]

Model gas liquid

RTSYQ20PY1(E) ø 31.8 ❈ ø 19.1

Rate of change

(object piping)

correction factor

standard size Size increase

Cooling (gas pipe) 1.0 0.5

Heating (liquid pipe) 1.0 0.4

Model gas liquid

RTSYQ20PY1 (E) ø 28.6 ø 15.9

Temper grade 0 Type 1/2H Type

Outer diameter ø 15.9 ø 19.1 ø 28.6 ø 31.8

Minimum wall thickness 0.99 0.80 0.99 1.10

Branch

Overall equivalent pipe length

Outdoor

branchFunction

unit

Indoor unit

Equivalent length Equivalent length

Outdoor

unit

Indoor unit

BranchGas pipe: size increase

liquid pipe: size increaseFunction

unit

Outdoor

unit

• VRV® Systems • Air cooled selection procedure 9

• Air-cooled selection procedure

3

3 Integrated heating capacity

RTSYQ-P

INTEGRATED HEATING CAPACITY COEFFICIENT

The heating capacity tables do not take account of the reduction in capacity, when frost has accumulated or while the defrosting operation is in progress.

The capacity values, which take these factors into account, in other words, the integrated heating capacity values, can be calculated as follows:

Formula:

Integrated heating capacity = A

Value given in table of capacity characteristics = B

Integrated correction factor for frost accumulation = C

A = B x C

Integrating correction factor for finding integrated heating capacity

3TW27232-7

NOTE

1 The figure shows that the integrated heating capacity expresses the integrated capacity for a single cycle (from defrost operation to defrost

operation) in terms of time.

Please note that, when there is an accumulation of snow against the outside surface of the outdoor unit heat exchanger, there will always be a

temporary reduction in capacity, although this will of course vary in degree in accordance with a number of other factors, such as the outdoor

temperature (°CDB), relative humidity (RH) and the amount of frosting which occurs.

Outdoor Temperature° CDB (° CWB) -7 (-7.6) or less -5 (-5.6) -3 (-3.7) 0 (-0.7) 3 (2.2) 5 7 (6.0)

Correction factor defrost 0.95 0.93 0.88 0.85 0.86 0.90 1.00

Defrosting operationDefrosting operation

1 cycle

-

+

0

He

atin

g c

ap

acity

Time

• Air-cooled selection procedure

• VRV® Systems • Air cooled selection procedure10

3

4 Refnet pipe systems

1TW25799-4C

Liquid side junction Discharge gas side junction Suction gas side junction

I.D.J9.52

I.D.J12.70

I.D.J12.70I.D.J19.10

I.D.J10

I.D.J12.70

I.D.J15.90

I.D.J9.52

I.D.J15.90

I.D.J12.70

I.D.J12.70

I.D.J6.35

I.D.J6.35

I.D.J9.52

I.D.J12.70

I.D.J9.52 I.D.J6.35

I.D.J9.52

I.D.J6.35

I.D.J9.52

I.D.J6.35

I.D.J9.52

I.D.J15.90

I.D.J9.52I.D.J12.70

I.D.J12.70

I.D.J12.70

I.D.J9.52

I.D.J15.90

I.D.J12.70

I.D.J12.70

I.D.J15.90I.D.J22.20

I.D.J15.90 I.D.J12.70

I.D.J19.10

I.D.J15.90

I.D.J12.70

I.D.J19.10

I.D.J19.10

I.D.J12.70

I.D.J19.10I.D.J12.70

I.D.J9.52

I.D.J15.90

I.D.J15.90

I.D.J15.90

I.D.J15.90

I.D.J12.70

I.D.J6.35

I.D.J19.10

I.D.J9.52

I.D.J6.35I.D.J9.52

I.D.J9.52

I.D.J6.35

I.D.J9.52

I.D.J12.70

I.D.J6.35

I.D.J9.52

I.D.J9.52

I.D.J12.70

I.D.J15.90

I.D.J12.70

I.D.J31.80

I.D.J19.10I.D.J15.90

I.D.J25.40

I.D.J22.20I.D.J15.90

I.D.J12.70

I.D.J19.10I.D.J31.80 I.D.J28.60

I.D.J25.40

I.D.J38.10

I.D.J25.40

I.D.J12.70I.D.J15.90

I.D.J31.80

I.D.J19.10

I.D.J31.80

I.D.J25.40

I.D.J44.50

I.D.J25.40

I.D.J19.10 I.D.J15.90

I.D.J15.90

I.D.J31.80

I.D.J12.70

I.D.J19.10

I.D.J15.90

I.D.J22.20

I.D.J15.90

I.D.J12.70

I.D.J15.90

I.D.J12.70

I.D.J15.90I.D.J12.70

I.D.J15.90

I.D.J25.40

I.D.J38.10

I.D.J28.60

I.D.J25.40 I.D.J19.10I.D.J15.90

I.D.J38.10

I.D.J15.90

I.D.J25.40

I.D.J31.80

I.D.J31.80

I.D.J38.10

I.D.J44.50

I.D.J25.40

I.D.J31.80

I.D.J12.70

I.D.J31.80

I.D.J15.90

I.D.J12.70

I.D.J25.40

I.D.J19.10I.D.J19.10

I.D.J22.20

I.D.J9.52

I.D.J31.80

I.D.J12.70

I.D.J28.60

I.D.J29.10 I.D.J15.90

I.D.J19.10

I.D.J15.90

I.D.J12.70

I.D.J19.10

I.D.J19.10

I.D.J15.90

I.D.J25.40

I.D.J25.40

I.D.J25.40

I.D.J15.90

I.D.J12.70

I.D.J38.10

I.D.J19.10

I.D.J15.90

I.D.J31.80

I.D.J25.40

I.D.J25.40

I.D.J12.70

I.D.J15.90

I.D.J15.90

I.D.J28.60

I.D.J31.80I.D.J25.40

I.D.J25.40

I.D.J19.10

I.D.J25.40

I.D.J19.10

I.D.J12.70

I.D.J15.90

I.D.J31.80

I.D.J22.20

I.D.J9.52

I.D.J28.60

I.D.J38.10

I.D.J15.90

I.D.J22.20

I.D.J38.10

I.D.J12.70

I.D.J31.80

I.D.J25.40

I.D.J19.10

O.D.J12.70I.D.J15.90

O.D.J19.10

I.D.J6.35

I.D.J6.35

Closed pipes

KHRQ

23M

29T9

KHRQ

23M

20T8

KHRP

23M

64T8

KHRP

23M

33T8

KHRQ

22M

75T8

KHRQ

22M

64T8

KHRQ

22M

20TA

8KH

RP22

M75

T8KH

RP22

M64

T8KH

RQ22

M29

T9KH

RP23

M75

T8KH

RQ58

T7KH

RQ23

M75

T8KH

RQ23

M64

T8

I.D.J15.90

I.D.J15.90I.D.J19.10 I.D.J22.20

I.D.J19.10I.D.J15.90

I.D.J19.10

I.D.J15.90

I.D.J09.52

I.D.J19.10

I.D.J6.35I.D.J9.52I.D.J12.70

I.D.J15.90I.D.J12.70

I.D.J12.70

I.D.J15.90

I.D.J19.10I.D.J22.20

I.D.J15.90I.D.J19.10

I.D.J9.52

I.D.J6.35I.D.J9.52I.D.J12.70

I.D.J15.90I.D.J15.90

I.D.J12.70

I.D.J12.70

I.D.J12.70I.D.J15.90

I.D.J19.10

I.D.J15.90 I.D.J12.70

I.D.J22.20I.D.J15.90

I.D.J19.10

I.D.J9.52

I.D.J12.70 I.D.J9.52

I.D.J9.52

I.D.J19.10

O.D.J6.35

O.D.J15.90

O.D.J9.52 O.D.J12.70

I.D.J28.60

I.D.J25.40

I.D.J28.60

I.D.J12.70I.D.J15.90I.D.J19.10

I.D.J19.10 I.D.J15.90

I.D.J9.52I.D.J6.35

I.D.J12.70 I.D.J9.52

I.D.J15.90 I.D.J19.10

I.D.J15.90I.D.J12.70

I.D.J9.52

I.D.J12.70

I.D.J19.10

I.D.J12.70I.D.J15.90

I.D.J9.52I.D.J12.70I.D.J15.90

I.D.J25.40 I.D.J22.20

I.D.J19.10

I.D.J19.10

I.D.J15.90

I.D.J12.70I.D.J15.90I.D.J19.10

I.D.J25.40

I.D.J28.60I.D.J31.80I.D.J25.40

I.D.J19.10

I.D.J15.90

I.D.J19.10

I.D.J19.10

I.D.J15.90

I.D.J19.10

I.D.J12.70

I.D.J15.90I.D.J19.10

I.D.J12.70

I.D.J25.40

I.D.J15.90I.D.J19.10

I.D.J28.60I.D.J31.80

I.D.J25.40

I.D.J28.60 I.D.J25.40

I.D.J15.90I.D.J19.10I.D.J25.40

I.D.J31.80I.D.J31.80I.D.J38.10

I.D.J15.90

I.D.J19.10

I.D.J15.90

• VRV® Systems • Air cooled selection procedure 11

• Air-cooled selection procedure

3

4 Refnet pipe systems

1TW25799-4C

Liquid side header Discharge gas side header Suction gas side header

I.D.J6.35 (6x)I.D.J6.35 (2x)

I.D.J15.90

I.D.J9.52 (6x)

I.D.J15.90

I.D.J9.52 (6x)

I.D.J15.90

I.D.J6.35 (6x)I.D.J6.35 (6x)

I.D.J15.90

I.D.J9.52 (8x)

I.D.J19.10I.D.J19.10

I.D.J15.90

I.D.J6.35 (6x)I.D.J9.52 (6x)I.D.J6.35 (2x)

I.D.J15.90

I.D.J9.52 (6x)I.D.J6.35 (6x)

I.D.J15.90

I.D.J6.35 (2x)

I.D.J15.90

I.D.J19.10

I.D.J9.52 (8x)

I.D.J19.10

I.D.J9.52 (3x)I.D.J15.90

I.D.J9.52 I.D.J12.70

I.D.J6.35 (3x)

I.D.J9.52 (3x)

I.D.J12.70I.D.J9.52

I.D.J15.90

I.D.J9.52

I.D.J12.70

I.D.J15.90I.D.J9.52 (3x)

I.D.J6.35 (3x)

I.D.J6.35 (3x)

I.D.J9.52 (3x)

I.D.J28.60

I.D.J12.70O.D.J15.90

I.D.J12.70

I.D.J6.35 (3x)

I.D.J9.52

I.D.J9.52 (2x)

I.D.J12.70 (3x)

I.D.J12.70 (3x)

I.D.J19.10

I.D.J9.52 (3x)

I.D.J25.40I.D.J22.20

I.D.J15.90 (3x)

I.D.J12.70 (3x)

I.D.J9.52 (3x)

I.D.J12.70 (3x)I.D.J9.52 (3x)

I.D.J22.20

I.D.J9.52 (3x)

I.D.J15.90 (3x)

I.D.J25.40

I.D.J19.10

I.D.J15.90 (3x)I.D.J12.70 (3x)

I.D.J15.90 (3x)I.D.J12.70 (3x)

I.D.J25.40

I.D.J9.52 (2x)

I.D.J19.10 (3x)

I.D.J28.60

I.D.J31.80

I.D.J12.70 (2x)

O.D.J12.70

O.D.J25.40

I.D.J22.20

I.D.J31.80

O.D.J19.10

I.D.J12.70 (3x)

I.D.J12.70 (5x)

I.D.J31.80

I.D.J15.90

I.D.J19.10

I.D.J12.70 (2x)I.D.J15.90 (2x)

I.D.J15.90 (3x)I.D.J12.70 (3x)I.D.J15.90 (3x)

I.D.J15.90 (2x)

I.D.J19.10

I.D.J25.40

I.D.J22.20

I.D.J15.90

I.D.J12.70

I.D.J28.60

I.D.J12.70 (2x)

I.D.J15.90

I.D.J12.70

I.D.J19.10 (6x)I.D.J15.90 (6x)

I.D.J38.10

I.D.J12.70 (2x)

I.D.J19.10 (3x)

I.D.J19.10

I.D.J31.80

I.D.J15.90 (2x)I.D.J15.90

I.D.J19.10

I.D.J19.10 (3x)

I.D.J25.40

I.D.J22

I.D.J12.70 (5x)

I.D.J31.80

I.D.J28.60

I.D.J15.90 (6x)

I.D.J12.70 (3x)

I.D.J31.80

I.D.J12.70 (2x)I.D.J15.90 (3x)

I.D.J12.70 (2x)

I.D.J15.90 (2x)

I.D.J12.70I.D.J15.90 (2x)

I.D.J38.10

I.D.J19.10 (6x)

I.D.J15.90 (3x)

I.D.J28.60

I.D.J12.70

I.D.J19.10 (2x)

I.D.J25.40

I.D.J19.10

I.D.J15.90

I.D.J15.90

I.D.J12.70 (2x)

I.D.J19.10

I.D.J12.70 (3x)

I.D.J12.70 (3x)

O.D.J31.80

O.D.J19.10 I.D.J22.20

O.D.J12.70

I.D.J15.90

I.D.J19.10

O.D.J25.40

I.D.J6.35

KHRQ

127H

8KH

RP12

7HB8

KHRQ

250H

8KH

RQ23

M75

H8KH

RQ23

M64

H8KH

RQ23

M29

H8KH

RQ22

M75

H8KH

RQ22

M64

H8KH

RQ22

M29

H8

O.D.J9.52

I.D.J19.10O.D.J15.90

O.D.J9.52 I.D.J12.70

I.D.J12.70O.D.J15.90

I.D.J28.60

O.D.J19.10 I.D.J15.90 I.D.J12.70

O.D.J22.20 I.D.J28.60

I.D.J34.95

O.D.J9.52 I.D.J12.70

I.D.J25.40

I.D.J38.10

I.D.J6.35I.D.J9.52

O.D.J12.70

O.D.J25.4 I.D.J19.10 I.D.J15.90 I.D.J12.70

O.D.J12.70

Redu

cers

-Exp

ande

rsKH

RQ58

H7

I.D.J9.52

I.D.J15.90

I.D.J9.52

O.D.J6.35 I.D.J9.52

I.D.J41.28O.D.J31.80

I.D.J15.90 (2x)

I.D.J19.10 (2x)I.D.J28.60

I.D.J25.40

I.D.J9.52 (3x) I.D.J12.70 (3x)

I.D.J19.10I.D.J15.90

I.D.J12.70

I.D.J15.90

I.D.J41.28O.D.J38.10

• Air-cooled selection procedure

• VRV® Systems • Air cooled selection procedure12

3

4 Refnet pipe systems

4TW27239-1

Gas-s

ide ju

nction

BHFQ22P1007 BHFQ22P1517

ID Ø3

1.8ID

Ø28.6

ID Ø2

5.4ID

Ø22.2

ID Ø1

9.1

Liquid

-side

junct

ionRe

ducer

sIns

ulatio

n tub

efor

gas p

ipefor

liquid

pipe

for liq

uid pi

pefor

gas p

ipe

ID Ø2

8.6 ID Ø2

5.4

ID Ø3

1.8ID

Ø38.1

ID Ø2

5.4

ID Ø2

8.6 ID Ø3

1.8

ID Ø3

1.8ID

Ø28.6

ID Ø2

5.4

ID Ø2

2.2ID

Ø19.1

ID Ø2

8.6 ID Ø2

5.4ID

Ø15.9

ID Ø1

9.1

ID Ø1

5.9

ID Ø1

2.7 ID Ø9

.5

ID Ø1

5.9 ID Ø1

9.1ID

Ø19.1

ID Ø1

5.9

ID Ø2

2.2

ID Ø1

2.7ID

Ø9.5

ID Ø1

9.1ID Ø1

5.9

ID Ø1

5.9

ID Ø2

2.2

ID Ø3

8.1ID

Ø19.1

ID Ø1

9.1

ID Ø2

5.4ID

Ø25.4

OD Ø

25.4

OD Ø

31.8

OD Ø

25.4

ID Ø2

8.6ID

Ø28.6

ID Ø2

2.2ID

Ø22.2

ID Ø1

9.1ID

Ø19.1

ID Ø2

5.4ID

Ø25.4

OD Ø

25.4

OD Ø

25.4

(2x)

(2x)

(2x)

(2x)

(2x)

(2x)

(2x)

ID Ø2

8.6ID

Ø28.6

ID Ø2

8.6

ID Ø3

1.8

OD Ø

31.8

ID Ø2

2.2ID

Ø22.2

ID Ø4

1.3

OD Ø

31.8

OD Ø

38.1

ID Ø4

1.3ID

Ø31.8

OD Ø

31.8

OD Ø

38.1

OD Ø

28.6

ID Ø2

8.6ID

Ø22.2

ID Ø2

5.4

OD Ø

28.6

OD Ø

19.1

OD Ø

25.4

ID Ø9

.5ID

Ø9.5

ID Ø1

2.7

OD Ø

12.7

OD Ø

31.8

ID Ø1

2.7

ID Ø4

1.3

ID Ø3

4.9

ID Ø1

9.1

ID Ø1

5.9

OD Ø

38.1

OD Ø

15.9

OD Ø

15.9

OD Ø

31.8

OD Ø

15.9

ID Ø3

4.9ID

Ø9.5

ID Ø9

.5

ID Ø1

2.7ID

Ø12.7

OD Ø

12.7

OD Ø

15.9

ID Ø1

5.9

OD Ø

19.1

ID Ø1

5.9

OD Ø

12.7

ID Ø1

5.9

• VRV® Systems • Air cooled selection procedure 13

• Air-cooled selection procedure

3

4 Refnet pipe systemsS

UC

TIO

N G

AS

SID

E J

UN

CTI

ON

DIS

CH

AR

GE

GA

S S

IDE

JU

NC

TIO

NLI

QU

ID S

IDE

JU

NC

TIO

NJO

INT

FOR

OIL

PIP

EFO

R S

UC

TIO

N G

AS

PIP

EFO

R D

ISC

HA

RG

E G

AS

PIP

EFO

R L

IQU

ID P

IPE

RE

DU

CE

RS

/ E

XPA

ND

ER

S

2TW25799-6

• Air-cooled selection procedure

• VRV® Systems • Air cooled selection procedure14

3

4 Refnet pipe systems

2TW29119-1

Gas

side

junc

tion

Liqu

idsid

eju

nctio

nFo

rgas

pipe

Forl

iqui

dpi

pe

Redu

cers

I.D.J

25.4

I.D.J

22.2

I.D.J

28.6

I.D.J

31.8

I.D.J

25.4

I.D.J

22.2

I.D.J

28.6

I.D.J

19.1

I.D.J

22.2

I.D.J

25.4

I.D.J

19.1

I.D.J

22.2

I.D.J

19.1

I.D.J

22.2

I.D.J

25.4

I.D.J

28.6

I.D.J

19.1

I.D.J

22.2

I.D.J

25.4

I.D.J

19.1

O.D.J

25.4

I.D.J

12.7

O.D.J

25.4

O.D.J

15.9

I.D.J

22.2

I.D.J

9.5

I.D.J

19.1

I.D.J

25.4

I.D.J

22.2

O.D.J

25.4

I.D.J

34.9

I.D.J

25.4

I.D.J

28.6

I.D.J

19.1

I.D.J

15.9

I.D.J

28.6

I.D.J

31.8

I.D.J

19.1

I.D.J

22.2

I.D.J

19.1

I.D.J

38.1

I.D.J

31.8

I.D.J

25.4

I.D.J

25.4

I.D.J

25.4

I.D.J

19.1

I.D.J

31.8

I.D.J

25.4

I.D.J

19.1

I.D.J

22.2

I.D.J

28.6

I.D.J

31.8

I.D.J

28.6

I.D.J

28.6

I.D.J

28.6

I.D.J

25.4

I.D.J

31.8

I.D.J

28.6

I.D.J

22.2

O.D.J

31.8

O.D.J

31.8

I.D.J

28.6

O.D.J

25.4

I.D.J

28.6

I.D.J

12.7

O.D.J

15.9

I.D.J

9.5

BHFQ23P1357BHFQ23P907

Insu

latio

ntu

be

I.D.J

28.6

I.D.J

25.4

O.D.J

12.7

I.D.J

25.4

I.D.J

15.9

I.D.J

22.2

I.D.J

15.9

I.D.J

19.1I.D

.J15

.9

O.D.J

9.5

I.D.J

25.4

O.D.J

25.4

O.D.J

25.4

I.D.J

19.1

I.D.J

19.1

Disc

harg

ega

ssid

eju

nctio

nFo

rdisc

harg

ega

spi

peFo

rliq

uid

pipe

Join

tfor

pres

sure

equa

lizat

ion

pipe

Forg

aspi

peFo

rpre

ssur

eeq

ualiz

atio

npi

pe

I.D.J

25.4

I.D.J

28.6

I.D.J

15.9

O.D.J

25.4

O.D.J

31.8

I.D.J

25.4

I.D.J

28.6

I.D.J

25.4

I.D.J

22.2

I.D.J

28.6

I.D.J

25.4

I.D.J

22.2

I.D.J

19.1

I.D.J

15.9

I.D.J

19.1

I.D.J

12.7

I.D.J

9.5

I.D.J

19.1

I.D.J

22.2

I.D.J

25.4

I.D.J

28.6

O.D.J

25.4

I.D.J

34.9

I.D.J

41.3

O.D.J

38.1

I.D.J

19.1

I.D.J

22.2

O.D.J

25.4

• VRV® Systems • Air cooled selection procedure 15

• Air-cooled selection procedure

3

4 Refnet pipe systems

1TW29479-1

Liquid side junction Discharge gas side junction Suction gas side junction

I.D.J6I.D.J10

I.D.J12 I.D.J10

I.D.J10 I.D.J6

I.D.J12 I.D.J10

I.D.J10

I.D.J10 I.D.J6

I.D.J6

I.D.J12 I.D.J10

I.D.J12 I.D.J16I.D.J16

I.D.J6I.D.J10I.D.J12

I.D.J12I.D.J16I.D.J20

I.D.J20

I.D.J12I.D.J16

I.D.J16

I.D.J20 I.D.J22

I.D.J10 I.D.J6

I.D.J12 I.D.J10

I.D.J10 I.D.J6

I.D.J10 I.D.J6

I.D.J6I.D.J10

I.D.J12 I.D.J10

I.D.J10I.D.J12

I.D.J6

I.D.J16I.D.J12 I.D.J16

I.D.J12

I.D.J12I.D.J16

I.D.J20 I.D.J22I.D.J20

I.D.J16 I.D.J12

I.D.J6

I.D.J6I.D.J10

I.D.J10

I.D.J12 I.D.J10

I.D.J10

I.D.J20

I.D.J16

I.D.J10I.D.J12

I.D.J16

I.D.J6I.D.J10I.D.J12

I.D.J16I.D.J12

I.D.J16I.D.J12

I.D.J10I.D.J12

I.D.J16

I.D.J20I.D.J12

I.D.J16I.D.J20

I.D.J12

I.D.J10I.D.J12I.D.J16

I.D.J16I.D.J20

I.D.J22I.D.J26I.D.J20

I.D.J16I.D.J20

I.D.J12I.D.J16

I.D.J26

I.D.J20

I.D.J26

I.D.J28I.D.J32

I.D.J12I.D.J16

I.D.J16

I.D.J16

I.D.J20 I.D.J22I.D.J20

I.D.J12

I.D.J10I.D.J12I.D.J16

I.D.J20

I.D.J26 I.D.J22I.D.J20

I.D.J16

I.D.J16I.D.J20

I.D.J26

I.D.J12I.D.J16I.D.J20

I.D.J32

I.D.J26

I.D.J28

I.D.J38 I.D.J32

I.D.J28 I.D.J26

I.D.J16

I.D.J32

I.D.J26 I.D.J20

I.D.J12

I.D.J16

I.D.J16

I.D.J20 I.D.J22I.D.J20

I.D.J12I.D.J16

I.D.J20

I.D.J10I.D.J12I.D.J16

I.D.J26 I.D.J22

I.D.J20

I.D.J16I.D.J20

I.D.J26

I.D.J12I.D.J16I.D.J20

I.D.J32 I.D.J28

I.D.J26

I.D.J28 I.D.J26

I.D.J32

I.D.J16I.D.J20I.D.J26

I.D.J38 I.D.J32

I.D.J16

I.D.J12I.D.J16

I.D.J16

I.D.J16

I.D.J20

O.D.J12I.D.J10

O.D.J20

O.D.J6

O.D.J16

Closed pipes

KHRQ

M58

T7KH

RQM

23M

75T8

KHRQ

M23

M64

T8KH

RQM

23M

29T8

KHRQ

M23

M20

T8KH

RQM

22M

75T8

KHRQ

M22

M64

T8KH

RQM

22M

29T8

KHRQ

M22

M20

T8

• Air-cooled selection procedure

• VRV® Systems • Air cooled selection procedure16

3

4 Refnet pipe systems

1TW29479-1

Liquid side header Discharge gas side header Suction gas side header

I.D.J6 (6x)I.D.J6 (2x)

I.D.J16

I.D.J10 (6x)

I.D.J16

I.D.J10 (6x)

I.D.J16

I.D.J6 (2x)I.D.J6 (6x)

I.D.J16

I.D.J10 (8x)

I.D.J20I.D.J20

I.D.J16

I.D.J6 (6x)I.D.J10 (6x)I.D.J6 (2x)

I.D.J16

I.D.J10 (6x)I.D.J6 (6x)

I.D.J16

I.D.J6 (2x)

I.D.J16

I.D.J20

I.D.J10 (8x)

I.D.J20

I.D.J10 (3x)I.D.J16

I.D.J10 I.D.J12

I.D.J6 (3x)

I.D.J10 (3x)

I.D.J12I.D.J10

I.D.J16

I.D.J10

I.D.J12

I.D.J16I.D.J10 (3x)

I.D.J6 (3x)

I.D.J10I.D.J12

I.D.J6

I.D.J28O.D.J26

O.D.J16

I.D.J6 (3x)

I.D.J10

I.D.J10 (2x)

I.D.J12 (3x)

I.D.J12 (3x)

I.D.J20

I.D.J10 (3x)

I.D.J26I.D.J22

I.D.J16 (3x)

I.D.J12 (3x)

I.D.J10 (3x)

I.D.J12 (3x)I.D.J10 (3x)

I.D.J22

I.D.J10 (3x)

I.D.J16 (3x)I.D.J26

I.D.J20

I.D.J16 (3x)I.D.J12 (3x)

I.D.J16 (3x)I.D.J12 (3x)

I.D.J26

I.D.J10 (2x)

I.D.J20 (3x)

I.D.J28

I.D.J32

I.D.J12 (2x)

I.D.J12

I.D.J26

I.D.J22

I.D.J32

I.D.J20

I.D.J12 (3x)

I.D.J12 (5x)

I.D.J32

I.D.J16

I.D.J20

I.D.J12 (2x)I.D.J16 (2x)

I.D.J16 (3x)I.D.J12 (3x)I.D.J16 (3x)

I.D.J16 (2x)

I.D.J20

I.D.J26

I.D.J22

I.D.J16

I.D.J12

I.D.J28

I.D.J12 (2x)

I.D.J16

I.D.J12

I.D.J20 (6x)I.D.J16 (6x)

I.D.J38

I.D.J12 (2x)

I.D.J20 (3x)

I.D.J20

I.D.J32

I.D.J16 (2x)I.D.J16

I.D.J20

I.D.J20 (3x)

I.D.J26

I.D.J22

I.D.J12 (5x)

I.D.J32

I.D.J28

I.D.J16 (6x)

I.D.J12 (3x)

I.D.J32

I.D.J12 (2x)I.D.J16 (3x)

I.D.J12 (2x)

I.D.J16 (2x)

I.D.J12I.D.J16 (2x)

I.D.J38

I.D.J20 (6x)

I.D.J16 (3x)

I.D.J26

I.D.J10 (3x)

I.D.J20 (2x)

I.D.J16I.D.J20

I.D.J16

I.D.J12 (3x)

I.D.J12

I.D.J16

I.D.J12 (3x)

I.D.J12 (3x)

O.D.J32

O.D.J20 I.D.J22

O.D.J6

I.D.J12

I.D.J10

O.D.J10

I.D.J12

KHRQ

M58

H7KH

RQM

127H

8KH

RQM

250H

8KH

RQM

23M

75H8

KHRQ

M23

M64

H8KH

RQM

23M

29H8

KHRQ

M22

M75

H8KH

RQM

22M

64H8

KHRQ

M22

M29

H8

O.D.J16

I.D.J28O.D.J22

O.D.J12 I.D.J20

I.D.J20O.D.J16

I.D.J28

I.D.J20 I.D.J16 I.D.J12

I.D.J32 I.D.J35 I.D.J42

I.D.J12 I.D.J16

I.D.J26

I.D.J38

I.D.J6I.D.J10O.D.J12

O.D.J26 I.D.J20 I.D.J16 I.D.J12

O.D.J10

Redu

cers

-Exp

ande

rs

• VRV® Systems • Air cooled selection procedure 17

• Air-cooled selection procedure

3

4 Refnet pipe systems

2TW29659-1

Gas

-sid

eju

nctio

nLi

quid

side

junc

tion

Forg

aspi

peFo

rliq

uid

pipe

Redu

cers

I.D.J

22I.D

.J20

I.D.J

32

I.D.J

28I.D

.J26

I.D.J

28

I.D.J

22

I.D.J

16

I.D.J

16

I.D.J

22

I.D.J

20

I.D.J

10I.D

.J12

I.D.J

20

I.D.J

22

I.D.J

26

I.D.J

28

I.D.J

42

O.D.J

32

I.D.J

35

I.D.J

20

O.D.J

19.1

I.D.J

22

O.D.J

32

O.D.J

22.2

I.D.J

28

O.D.J

28.6

I.D.J

16

O.D.J

9.5

I.D.J

10

O.D.J

16

I.D.J

10

I.D.J

12

O.D.J

16

I.D.J

12

O.D.J

22.2

I.D.J

22

I.D.J

20

O.D.J

19.1

O.D.J

12

O.D.J

26

I.D.J

42I.D

.J32

O.D.J

26

I.D.J

28

I.D.J

26

I.D.J

28

I.D.J

20

I.D.J

32

I.D.J

22I.D

.J20

I.D.J

26

I.D.J

38I.D

.J32

I.D.J

26

I.D.J

20

I.D.J

16

I.D.J

16

I.D.J

16I.D

.J20

I.D.J

10I.D

.J12

I.D.J

28I.D

.J32

I.D.J

28I.D

.J28

I.D.J

26

I.D. J

26I.D

.J32

I.D.J

26

I.D.J

28

O.D.J

20

O.D.J

32

O.D.J

32

I.D.J

35

O.D.J

32

I.D.J

42

I.D.J

38

O.D.J

32

I.D.J

28

O.D.J

28.6

I.D.J

16

O.D.J

12

I.D.J

10I.D

.J10

I.D.J

12

I.D.J

20

O.D.J

16

I.D.J

10

O.D.J

9.5

BHFQM22P1517ABHFQM22P1007A

Insu

latio

ntu

beG

asLi

quid

I.D.J

22I.D

.J20

O.D.J

26

I.D.J

16

I.D.J

20

I.D.J

22

I.D.J

26

O.D.J

28

I.D.J

20

I.D.J

22

I.D.J

26

I.D.J

28

O.D.J

26

I.D.J

38

O.D.J

32

I.D.J

22

O.D.J

28

O.D.J

28O.

D.J

38

I.D.J

10

I.D.J

12

O.D.J

12.7

I.D.J

16

O.D.J

15.9

I.D.J

12

O.D.J

16

I.D.J

16

O.D.J

12

I.D.J

16

O.D.J

20

I.D.J

12

O.D.J

12.7

I.D.J

16

O.D.J

15.9

• Air-cooled selection procedure

• VRV® Systems • Air cooled selection procedure18

3

4 Refnet pipe systems

2TW29679-1

Suct

ion

gas

side

junc

tion

Disc

harg

ega

ssid

eju

nctio

nLi

quid

side

junc

tion

Fors

uctio

nga

spi

peFo

rdisc

harg

ega

spi

peFo

rliq

uid

pipe

Parts

foro

ilpi

peRe

duce

rs-E

xpan

ders

I.D.J

25.40

I.D.J

32

I.D.J

28I.D

.J20

I.D.J

22

I.D.J

28I.D

.J26

I.D.J

25.40

I.D.J

22 I.D.J

26I.D

.J28

I.D.J

16

I.D.J

20I.D

.J22

I.D.J

15.90

I.D.J

22I.D

.J20

I.D.J

16I.D

.J10

I.D.J

12

I.D.J

19.10

I.D.J

25.40

I.D.J

28.60

I.D.J

22.20

O.D.J

25.40

I.D.J

35O.

D.J

32

I.D.J

19.10

I.D.J

25.40

O.D.J

25.40

I.D.J

28.60

I.D.J

22.20

I.D.J

10I.D

.J12

O.D.J

15.90

I.D.J

15.90

I.D.J

19.10

I.D.J

22.20

O.D.J

25.40

I.D.J

22.20

I.D.J

19.10

I.D.J

15.90

I.D.J

22I.D

.J20

I.D.J

16

I.D.J

22I.D

.J20

I.D.J

16I.D

.J22

I.D.J

20I.D

.J16

I.D.J

15.90

I.D.J

19.10

I.D.J

22.20

O.D.J

25.40

I.D.J

15.90

I.D.J

20I.D

.J16

I.D.J

22I.D

.J20

I.D.J

22I.D

.J26

I.D.J

28

I.D.J

15.90

I.D.J

32I.D

.J28

I.D.J

25.40

I.D. J

32I.D

.J28

I.D.J

32

I.D.J

38

I.D.J

25.40 I.D

.J25

.40

I.D.J

22 I.D.J

26I.D

.J28

I.D.J

20I.D

.J22

I.D.J

25.40

I.D.J

32

I.D.J

28I.D

.J20

I.D.J

22

I.D.J

28I.D

.J26

I.D.J

20I.D

.J16

I.D.J

10I.D

.J12

O.D.J

32I.D

.J35

I.D.J

42O.

D.J

38

I.D.J

22.20

I.D.J

19.10

I.D.J

22I.D

.J20

I.D.J

10 I.D.J

12

O.D.J

15.90

I.D.J

22I.D

.J20

I.D.J

22I.D

.J20

I.D.J

6

O.D.J

6.35

Redu

cer

Join

t

BHFQM23M1357ABHFQM23M907A

• VRV® Systems • Air cooled selection procedure 19

• Air-cooled selection procedure

3

4 Refnet pipe systems

GA

S S

IDE

JU

NC

TIO

ND

ISC

HA

RG

E G

AS

SID

E J

UN

CTI

ON

LIQ

UID

SID

E J

UN

CTI

ON

FOR

GA

S P

IPE

FOR

DIS

CH

AR

GE

GA

S P

IPE

MM

-INC

H R

ED

UC

ER

SFO

R LI

QUI

D PI

PE

RE

DU

CE

RS

JOIN

T FO

R PR

ESSU

REEQ

UALI

ZATI

ON

PIPE

FOR

GAS

PIP

EFO

R PR

ESSU

REEQ

UALI

ZATI

ON

PIPE

INS

ULA

TIO

N T

UB

E

FOR

LIQ

UID

PIPE

1TW29119-2

• Air-cooled selection procedure

• VRV® Systems • Air cooled selection procedure20

3

5 Example of Refnet piping layoutsType of fitting Sample systems

Distrib

ution

by R

EFNE

T join

tsDis

tributi

on by

REFN

ET he

ader

Distrib

ution

by RE

FNET

joint

s and

head

ers

Outdoor unit Outdoor unit Outdoor unit Outdoor unit

REFNET joint REFNET joint REFNET jointREFNET joint

Indoor unitIndoor unit

Indoor unit Indoor unit

Cooling only

Cooling only

Cooling only

Cooling only

Cooling only

Simultaneous control of cooling/heating

Simultaneous control of cooling/heating

Outdoor unit Outdoor unit

REFNET header (8 branch fitting)

REFNET header (8 branch fitting)

REFNET header (8 branch fitting)

Indoor unit

Indoor unit

Indoor unit

Can be added

Can be added

Simultaneous control of

cooling/heating

Cooling only

Cooling onlyCan be added

Outdoor unit

REFNET joint

Indoor unit

REFNET header (8 branch fitting)

Simultaneous control of cooling/heatingCan be added

Outdoor unit

Simultaneous control of cooling/heating

Indoor unitREFNET header (8 branch fitting)

Can be added

Cooling only

• VRV® Systems • Air cooled selection procedure 21

• Air-cooled selection procedure

3

6 Refrigerant pipe selection6 - 1 VRV®III-C

1 ~

8 1

~ 8

1 ~

8

1 ~

8 1

~ 8

1 ~

8

(A, B

)a

bj

k

H2

de

fg

hi

12

34

56

78

c

H4

H1

(A~

G)

H4c

de

fg

h

ij

km

np

q

H2

H1

12

34

56

7

8

H3

ra

bs

H4

a

b

H4

H1

12

34

56

78

H2

dc

ef

gh

ij

ra

s

b

H3

AB

CD

EF

G

(A~

G)

ab

cd

ef

gh

ij

km

np

q

H2

H1

12

34

56

7

8

H4

AB

CD

EF

G

AB

H2

78

(A, B

)

k

de

fg

hi

12

34

56

c

H4

H1

j

H3

ra

b

sA

B

H1

12

34

56

78

H2

dc

ef

gh

ij

sr

a

RE

FN

ET

he

ad

er

RE

FN

ET

he

ad

er

Fu

nctio

n u

nit

Fu

nction

un

it

: In

do

or

un

it

: O

utd

oo

r u

nit

: O

utd

oo

r u

nit

Bra

nc

h w

ith

RE

FN

ET

hea

de

rB

ran

ch

wit

h R

EF

NE

T jo

int

an

d h

ead

er

: O

utd

oo

r un

itF

un

ction

un

it

: In

do

or

un

it

RE

FN

ET

jo

int

RE

FN

ET

h

ea

der

Ou

tdo

or

un

itF

unctio

n u

nit

RE

FN

ET

join

t

RE

FN

ET

he

ad

er

: In

do

or

un

it

Outd

oo

r u

nit

Fun

ction

un

it

RE

FN

ET

join

t

: In

do

or

unit

: In

do

or

unit

RE

FN

ET

join

t

Outd

oo

r u

nit

Fun

ctio

n u

nit

Bra

nch

wit

h R

EF

NE

T jo

int

Sin

gle

o

utd

oo

rs

ys

tem

Mu

lti

ou

tdo

or

sys

tem

Ma

xim

um

all

ow

ab

le

len

gth

All

ow

ab

le

he

igh

td

iffe

ren

ce

Betw

ee

n o

utd

oo

r un

it (

*2)

and

ind

oor

unit

Betw

een o

utd

oor

unit

and funct

ion u

nit

Betw

een o

utd

oor

unit

and o

utd

oor

unit

Multi

connect

ion p

ipin

g k

it

Betw

een o

utd

oor

and in

door

units

Betw

een in

door

and in

door

units

Betw

een o

utd

oor

and o

utd

oor

units

Betw

een o

utd

oor

unit

and funct

ion u

nit

Allo

wa

ble

len

gth

aft

er

the

bra

nc

h

Actu

al pip

e

len

gth

Eq

uiv

ale

nt

len

gth

Tota

l ext

entio

n le

ngth

Diff

eren

ce in

hei

ght

Diff

eren

ce in

hei

ght

Diff

eren

ce in

hei

ght

Diff

eren

ce in

hei

ght

Actu

al an

d

equ

iva

lent

len

gth

Pip

e len

gth

be

twee

n o

utd

oo

r un

it (

*2)

an

d in

do

or

un

it <

165

m

Diffe

ren

ce

in

he

igh

t b

etw

ee

n o

utd

oo

r un

it a

nd in

do

or

un

it (

H1

) <

50m

(M

ax 4

0m

if th

e o

utd

oo

r un

it is b

elo

w)

Diffe

ren

ce

in

he

igh

t b

etw

ee

n in

do

or

un

its (

H2)

<1

5m

Diffe

ren

ce

in

he

igh

t b

etw

ee

n o

utd

oo

r un

its(H

3)

<5m

Diffe

rence

in h

eig

ht b

etw

een

ou

tdo

or

un

it a

nd f

un

ction

un

it (

H4

) <

1m

Act

ual p

ipe le

ngth

fro

m first

refr

igera

nt bra

nch

kit

(eith

er

RE

FN

ET

join

t or

RE

FN

ET

header)

to in

door

unit

< 4

0m

(N

ote

2)

Exa

mp

le 8

:

c +

d +

e +

f +

g +

h +

q <

Exa

mple

6

: c +

i <

40m

, 8

: j +

<

40m

Actu

al pip

e len

gth

fro

m o

utd

oo

r u

nit t

o f

un

ctio

n u

nit,

tha

t fr

om

first

ou

tdo

or

unit m

ulti co

nn

ectio

n p

ipin

g k

it to

ou

tdo

or

unit

< 1

0m

Eq

uiv

ale

nt

pip

e len

gth

fro

m o

utd

oor

unit t

o f

unctio

n u

nit,

tha

t fr

om

first

ou

tdo

or

un

it m

ulti co

nn

ectio

n p

ipin

g k

it to

ou

tdo

or

unit <

13

m

Exa

mple

8

: j

<4

0m

Exa

mp

le

8

: a +

b +

c +

d +

e +

f +

g +

h +

q <

165

mE

xam

ple

6

: a

+ b

+ c

+ i <

16

5m

,

Tota

l pip

ing le

ng

th f

rom

ou

tdo

or

un

it (

*2)

to a

ll in

do

or

un

it <

500

m

: O

utd

oor

un

it

Fu

nctio

n u

nit

(*1

) “

Ind

ica

te t

he

Ou

tdoo

r u

nit m

ulti

co

nn

ectio

n p

ipin

g k

it.

(*2

) In

ca

se o

f m

ulti ou

tdo

or

syste

m, re

-rea

d “

outd

oor

un

it”

to “

Outd

oor

un

it m

ulti co

nn

ectio

n

pip

ing

kit”

as s

ee

n fro

m t

he

in

do

or

unit.

Eq

uvale

nt p

ipe

le

ng

th b

etw

ee

n o

utd

oo

r un

it (

*2)

an

d in

do

or

un

it <

190

m (

No

te 1

)

(Assum

e e

qiv

ale

nt

pip

e len

gth

of

RE

FN

ET

jo

int to

be

0.5

m, th

at

of

RE

FN

ET

hea

der

to b

e 1

m,

tha

t o

f fu

nctio

n u

nit t

o b

e 6

m f

or

ca

lcula

tio

n p

urp

oses)

a <

10m

(Eq

uiv

ale

nt

leng

th <

13

m)

r < 1

0m

(Eq

uiv

ale

nt

leng

th <

13

m)

s <

10

m(E

quiv

ale

nt

leng

th <

13

m)

Exa

mple

8

: a

+ b

+ j <

165

m8

: a

+ b

+ j +

<

165

m

Actu

al P

ipe

L

eng

th

• Air-cooled selection procedure

• VRV® Systems • Air cooled selection procedure22

3

6 Refrigerant pipe selection6 - 1 VRV®III-C

Ou

tdo

or

un

it m

ult

i co

nn

ecti

on

pip

ing

kit

an

d R

efr

igera

nt

bra

nch

kit

sele

cti

on

Ho

w t

o s

ele

ct

the

RE

FN

ET

join

t•

Wh

en

usin

g R

EF

NE

T jo

int

at th

e f

irst

bra

nch c

oun

ted

fro

m t

he

ou

tdo

or

unit s

ide,c

hoo

se f

rom

th

e fo

llow

ing tab

le in

acco

rdan

ce w

ith

th

e o

utd

oo

r syste

m c

apacity t

ype

. (E

xa

mp

le : R

EF

NE

T

join

t A

)

•C

hoo

se t

he

RE

FN

ET

join

ts o

the

r th

an t

he

fir

st b

ranch

fro

m th

e f

ollo

win

g ta

ble

in

accord

ance

w

ith

th

e t

ota

l ca

pa

city ind

ex o

f a

ll th

e ind

oor

units c

on

ne

cte

d b

elo

w th

e R

EF

NE

T jo

int.

Ho

w t

o s

ele

ct

the

RE

FN

ET

he

ad

er

•C

ho

ose

fro

m the

fo

llow

ing ta

ble

in

acco

rdan

ce w

ith

th

e tota

l ca

pacity in

de

x o

f all

the

ind

oo

r un

its c

onn

ecte

d b

elo

w t

he

RE

FN

ET

hea

der.

•2

50

typ

e ind

oo

r u

nit c

an

no

t b

e c

on

ne

cte

d b

elo

w t

he R

EF

NE

T h

ead

er.

Ho

w t

o s

ele

ct

the

outd

oor

un

it m

ulti co

nn

ectio

n p

ipin

g k

it(T

his

is r

eq

uir

ed

whe

n t

he

syste

m is m

ulti ou

tdoo

r u

nit s

yste

m.)

•C

ho

ose

fro

m t

he

follo

win

g tab

le in a

ccord

ance

with t

he

nu

mb

er

of o

utd

oo

r un

its.

•Re

frig

era

nt b

ranch

kits c

an o

nly

be u

se

d w

ith R

410

A.

•Whe

n m

ulti ou

tdo

or

syste

m a

re insta

lled

, b

e s

ure

to

u

se t

he s

pe

cia

l sep

era

tely

sold

Ou

tdo

or

unit m

ulti

co

nn

ectio

n p

ipin

g k

it. (B

HF

P3

0A

56)

(For

how

to

se

lect th

e p

rop

er

kit, fo

llow

th

e tab

le a

t ri

gh

t.)

Exa

mp

le for

indo

or

un

its

con

ne

cte

d d

ow

nstr

eam

Exa

mple

RE

FN

ET

join

t C

: Indoor

units

3 +

4 +

5 +

6 +

7 +

8

Exa

mp

le R

EF

NE

T join

t B

: I

nd

oo

r u

nits 7

+

8

Exa

mp

le R

EF

NE

T h

ead

er

: In

do

or

units

1

+

2

+

3

+

4

+

5

+

6E

xa

mp

le R

EF

NE

T h

ea

de

r :

Ind

oo

r u

nits 1 +

2

+

3

+

4

+

5 +

6

+

7

+

8

Pip

e s

ize

se

lec

tio

nP

ipin

g b

etw

een

ou

tdoo

r u

nit (

*2)

an

d r

efr

ige

ran

t b

ranch k

it (

part

A)

•C

hoo

se f

rom

the

fo

llow

ing ta

ble

in

acco

rdan

ce w

ith

th

e o

utd

oo

r un

it s

yste

m c

apacity t

ype

.(U

nit:m

m)

Pip

ing b

etw

een

ou

tdoo

r u

nit m

ulti co

nn

ectio

n p

ipin

g k

it a

nd

ou

tdo

or

unit (

pa

rt B

)•

Ch

oo

se f

rom

the

fo

llow

ing ta

ble

in

acco

rdan

ce w

ith

th

e c

apa

city typ

e o

f th

e o

utd

oor

unit

con

necte

d(U

nit:m

m)

Pip

ing

be

twe

en r

efr

ige

rant

bra

nch

kits

•C

ho

ose

fro

m t

he

follo

win

g tab

le in a

ccord

ance

with t

he

to

tal ca

pacity t

ype

of

all

the

ind

oo

r un

its c

onn

ecte

d d

ow

nstr

eam

.•

Do

no

t le

t th

e c

on

ne

ction

pip

ing e

xcee

d t

he

ma

in r

efr

igera

nt p

ipin

g s

ize

(P

art

A).

If

the p

ipin

g s

ize s

ele

cte

d f

rom

th

e f

ollo

win

g ta

ble

exce

eds t

he

pip

ing s

ize

of

part

A,

decid

e th

e p

ipin

g s

ize in

eith

er

of

the

fo

llow

ing m

eth

ods.

(1)R

ed

uce

th

e s

ize

of

the

con

ne

ction

pip

ing t

o th

e p

ipin

g s

ize o

f pa

rt A

.(2

)Rep

lace

th

e p

ipin

g o

f pa

rt A

with

pip

ing

tha

t is

a s

ize

larg

er

(se

e the

ta

ble

in N

ote

1

) so t

hat

it w

ill b

e t

he

sam

e a

s the

siz

e o

f th

e c

onn

ectio

n p

ipin

g.

(Unit:m

m)

Pip

ing

be

twe

en r

efr

ige

rant

bra

nch

kit,

and

in

do

or

un

it•

Ma

tch t

o th

e s

ize

of

the

co

nne

ction

pip

ing o

n t

he

ind

oor

unit.

Eq

ua

lize

r p

ipe

(pa

rt D

) (m

ulti o

utd

oo

r u

nit s

yste

m o

nly

)(U

nit:m

m)

Th

e t

hic

kne

ss o

f th

e p

ipes in

th

e tab

le s

ho

ws th

e

req

uir

em

en

ts o

f Japan

ea

se H

igh

Pre

ssu

re G

as

Co

ntr

oll

low

. (A

s o

f Ja

n.2

00

3)

the t

hic

kn

ess a

nd

ma

teri

al sh

all

be s

ele

cte

d in

a

ccord

ance

with lo

cal co

de.

In c

ase o

f sin

gle

outd

oo

r un

it s

yste

m

In c

ase o

f m

ulti ou

tdoo

r u

nit s

yste

m

Te

mpe

r g

rade

an

d w

all

thic

kne

ss f

or

pip

es

(Te

mpe

r g

rade

, O

typ

e a

nd

1/2

H t

yp

e in

dic

ate

th

e m

ate

rial ty

pe

sp

ecifie

d in

JIS

H 3

30

0.)

Ou

tdoo

r syste

m c

apacity t

ype

Re

frig

era

nt b

ranch

kit n

am

e

10H

P t

ype

KH

RP

26

A3

3T

14~

20

HP

typ

eK

HR

P26

A7

2T

Ind

oo

r u

nit t

ota

l ca

pa

city in

dex

Refr

ige

rant

bra

nch k

it n

am

e

x <

20

0K

HR

P2

6A

22T

20

0 <

x <

29

0K

HR

P2

6A

33T

29

0 <

x <

64

0K

HR

P2

6A

72T

Ind

oo

r u

nit t

ota

l ca

pa

city in

dex

Refr

ige

ran

t bra

nch

kit n

am

e

x <

20

0K

HR

P2

6M

22

H o

r K

HR

P26

A33

H

200

< x

< 2

90

KH

RP

26M

33

H

290

< x

<64

0K

HR

P2

6M

72

H

640

< x

KH

RP

26M

73

H +

KH

RP

26M

73

HP

Num

be

r of

outd

oor

un

itC

onn

ectin

g p

ipin

g k

it n

am

e

2 u

nits

BH

FP

30A

P56

Ou

tdoo

r syste

m

capa

city typ

e

Pip

ing s

ize

(O

. D

.)

Ga

s p

ipe

Liq

uid

pip

e

10

HP

typ

22.2

Ø9

.5

14

, 1

6H

P t

ype

Ø2

8.6

Ø1

2.7

20

HP

typ

15.9

Ou

tdoo

r syste

m

capa

city typ

e

Pip

ing s

ize

(O

. D

.)

Ga

s p

ipe

Liq

uid

pip

e

RT

SP

8 typ

22.2

Ø9

.5

RT

SP

8 typ

28.6

Ø1

2.7

Ind

oo

r ca

pacity in

de

xP

ipin

g s

ize (

O.

D.)

Gas p

ipe

Liq

uid

pip

e

x <

150

Ø1

5.9

Ø9

.5 1

50

< x

< 2

00

Ø1

9.1

200

< x

< 2

90

Ø2

2.2

290

< x

< 4

20

Ø2

8.6

Ø12

.7

420

< x

< 6

40

Ø15

.9

Ind

oo

r u

nit c

apacity

type

Pip

ing

siz

e (

O.

D.)

Gas p

ipe

Liq

uid

pip

e

20

•25

•32

•40

•50 t

ype

Ø1

2.7

Ø6

.4

63•8

0•1

00

•125

typ

15

.9

Ø9

.52

00

typ

19

.1

250

typ

22

.2

Pip

ing s

ize

(O

. D

.)Ø

19

.1

Fu

nctio

n u

nit

Pip

ing b

etw

ee

n o

utd

oor

unit a

nd

re

frig

era

nt

bra

nch

kit (

part

A)

Outd

oor

un

it

Outd

oo

r un

it

Fu

nctio

n u

nit

Pip

ing b

etw

ee

n o

utd

oor

un

it (

*2)

and

refr

ige

rant

bra

nch

kit (

pa

rt A

)

Pip

ing

be

twe

en o

utd

oor

unit a

nd

ou

tdo

or

unit m

ulti con

nectio

n

pip

ing

kit (

pa

rt B

)

Eq

ua

lize

r pip

e (

pa

rt C

)

Cop

pe

r tu

be

O.

D.

Ø6.4

Ø9

.5Ø

12

.7Ø

15

.9Ø

19.1

Ø2

2.2

Ø2

5.4

Ø28

.6Ø

31.8

Ø3

4.9

Ø3

8.1

Ø41

.3

Tem

pe

r gra

de

O t

ype

1/2

H t

ype

Wa

ll th

ickn

ess

(Min

. re

quir

em

en

t)0

.80

0.8

00.8

00.9

90

.80

0.8

00.8

80.9

91

.10

1.2

11.3

21.4

3

• VRV® Systems • Air cooled selection procedure 23

• Air-cooled selection procedure

3

6 Refrigerant pipe selection6 - 1 VRV®III-C

8

c+

d+

e+

f+g

+h

+q

≤ 9

0 m

a+

b+

2+

2+

2+

f×2

+g

×2

+h

×2

+i+

j+k

+ +

m+

n+

p+

q≤

500

m

i, j..

.....

p, q

≤ 4

0 m

(a+

b+

c+

d+

e+

f+g

+h

+q

)-(a

+b

+i)

≤ 40

m

φ 9.

5 →

φ12

.7φ1

2.7

→ φ

15.9

φ15.

9 →

φ19

.1φ1

9.1

→ φ

22.2

φ22.

2 →

φ25

.4*

φ28.

6 →

φ31

.8*

φ34.

9 →

φ38

.1*

a

b

ij

km

np

cd

ef

hq

gA

BC

DE

FG

12

34

56

78

(A~

G)

R =

φ22.

2 φ 15.

9

φ9.5

φ19.

1 φ12.

7

φ6.4

0.37 0.

18

0.05

9

0.26 0.

12

0.02

2

R =

40

× 0

.18

+ 2

5 ×

0.1

2 +

50

× 0

.059

+ 8

0 ×

0.0

22 =

14.

91

a : φ

15.9

× 1

0mb

: φ15

.9 ×

30m

c : φ

12.7

× 2

0md

: φ6.

4 ×

10m

e : φ

6.4

× 1

0mf

: φ6.

4 ×

20m

g : φ

6.4

× 2

0mh

: φ6.

4 ×

10m

i : φ

6.4

× 1

0mj

: φ9.

5 ×

20m

k : φ

9.5

× 1

0m:φ

9.5

× 1

0m

r : φ

12.7

× 5

ms

: φ9.

5 ×

10m

a, b

c, r

j, k,

, s

d~i

14.9

kg

RTS

YQ10

PY1

RTS

YQ14

PY1

RTS

YQ16

PY1

RTS

YQ20

PY1

1.3k

g

2.3k

g

φ9.5

→ φ

12.7

φ12.

7 →

φ15

.9

φ15.

9 →

φ19

.1

φ22.

2 →

φ25

.4 (

*)

φ28.

6 →

φ31

.8 (

*)

Ma

in p

ipes

Ro

un

d o

ff in

un

its o

f 0.1

k g

: O

utd

oo

r un

it

Re

qu

ire

d C

ond

itio

ns

Exam

ple

for

refr

igera

nt b

ranch

usin

g R

EF

NE

T jo

int a

nd

RE

FN

ET

hea

der

for

the

syste

ms a

nd e

ach

pip

e le

ngth

as s

ho

wn b

elo

w.

Syste

m:

RT

SY

Q2

0P

Y1

Inde

pe

nd

ant

ou

tdo

or

un

it: R

TS

Q8P

Y1,

RT

SQ

12

PY

1

Fu

nctio

n u

nit:

BT

SQ

20P

Y1

Ou

tdo

or

un

it Fu

nctio

n u

nit

Incle

ase

ga

s a

nd

liq

uid

pip

e

siz

e b

oth

.

: In

ca

se o

f sin

gle

outd

oo

r un

it s

yste

m

Syste

m

RT

SY

Q1

0 t

ype

RT

SY

Q1

4 t

ype

RT

SY

Q1

6 t

ype

RT

SY

Q2

0 t

ype

1. It

is n

ecessa

ry to

in

cre

ase

th

e p

ipe

siz

e b

etw

een

the

first b

ranch

kit a

nd t

he

fin

al

bra

nch

kit. (R

edu

cers

must be

pro

cu

red o

n s

ite

) H

ow

eve

r, the

pip

es th

at are

sa

me

p

ipe s

ize

with m

ain

pip

e m

ust

no

t b

e in

cre

ase

d.

Tota

l len

gth

(m)

of li

quid

pip

ing

size

at

Ho

w t

o c

alc

ula

te t

he

ad

dit

ion

al

refr

ige

ran

t to

be

ch

arg

ed

Ad

ditio

nal re

frig

era

nt to

be

ch

arg

ed

: R

(kg

)R

sh

ould

be

rou

nde

d o

ff in

u

nits o

f 0

.1 k

g.

Tota

l len

gth

(m)

of li

quid

pip

ing

size

at

Tota

l len

gth

(m)

of li

quid

pip

ing

size

at

Tota

l len

gth

(m)

of li

quid

pip

ing

size

at

Tota

l len

gth

(m)

of li

quid

pip

ing

size

at

Tota

l len

gth

(m)

of li

quid

pip

ing

size

at

SY

ST

EM

NA

ME

THE

AMO

UN

T O

F R

EFR

IGER

ANT

Gas

Not

incre

ased

Liq

uid

No

te 1

.

Wh

en

th

e e

qu

iva

len

t le

ngth

be

twee

n o

utd

oo

r (*

2)

an

d

ind

oo

r u

nits is 9

0m

or

mo

re,

the

siz

e o

f m

ain

pip

es (

figu

re

on

rig

ht)

mu

st b

e in

cre

ase

d a

ccord

ing

to

th

e r

igh

t ta

ble

. In

doo

r un

it

: In

ca

se

of m

ulti o

utd

oo

r u

nit s

yste

m

Incle

ase

ga

s a

nd liq

uid

pip

e

siz

e b

oth

.

First

refr

igera

nt

bra

nch k

itF

irst

refr

igera

nt

bra

nch k

it

Indo

or

un

it

Main

pip

es

Note

2.

Allo

wa

ble

le

ng

th a

fte

r th

e fir

st re

frig

era

nt

bra

nch k

it t

o in

do

or

un

its is 4

0m

or

less, h

ow

eve

r it c

an

be

exte

nde

d u

p t

o 9

0m

if a

ll th

e f

ollo

win

g c

on

ditio

ns a

re s

atisfied

.

Exa

mp

le D

raw

ing

s (

In c

ase

of

“Bra

nc

h w

ith

RE

FN

ET

jo

int”

)

2. F

or

calc

ula

tion

of T

ota

l e

xte

nsio

n le

ngth

, th

e a

ctu

al le

ngth

of ab

ove

pip

es m

ust b

e

do

ub

led.

(exce

pt m

ain

pip

e a

nd

the

pip

es a

re n

ot

incre

ase

d).

3. In

do

or

un

it to

th

e n

eare

st b

ranch

kit <

40

m

4. T

he d

iffe

rence

be

twee

n

[Outd

oo

r un

it to

th

e fa

rthe

st

ind

oo

r u

nit]

an

d [

Outd

oo

r u

nit t

o t

he

ne

are

st

indo

or

un

it]

< 4

0m

*If

ava

ilable

on t

he

site ,

use

th

is s

ize.

Oth

erw

ise

it ca

n n

ot

be in

cre

ase

d.

: O

utd

oor

unit

Incre

ase t

he

pip

e s

ize o

f c,

d,

e ,

f ,g

, h

The

fa

rth

est

ind

oor

unit

8

The

ne

are

st

indo

or

un

it 1

: F

unctio

n u

nit

:RE

FN

ET

join

t

Ind

oo

r un

it (

1

-

8

)

: In

cre

ase

the

pip

e s

ize

as f

ollo

ws.

*If

ava

ilable

on

the

site

, u

se

th

is s

ize.

Oth

erw

ise,

it c

an

no

t b

e in

cre

ase

d.

FO

R T

HE

SY

ST

EM

• Air-cooled selection procedure

• VRV® Systems • Air cooled selection procedure24

3

6 Refrigerant pipe selection6 - 2 Piping thickness

O : annealed

1/2H : half-hard

For half hard pipes the maximum allowed tensile stress is 61 N/mm2. For this reason the 0.2% proof strength of the half hard pipe shall be minimum 61 N/mm2.

The bending radius is more than or equal to 3 times the diameter of the pipe.

Piping diameter Material Minimum thickness [mm]Ø 6.4 O 0.8Ø 9.5 O 0.8

Ø 12.7 O 0.8Ø 15.9 O 0.99Ø 19.1 1/2H 0.8Ø 22.2 1/2H 0.8Ø 25.4 1/2H 0.88Ø 28.6 1/2H 0.99Ø 31.8 1/2H 1.10Ø 34.9 1/2H 1.21Ø 38.1 1/2H 1.32Ø 41.3 1/2H 1.43

ÉEEDEN09-203^ËÍ

Daikin Europe N.V. is approved by LRQA for its QualityManagement System in accordance with the ISO9001standard. ISO9001 pertains to quality assurance regardingdesign, development, manufacturing as well as to servicesrelated to the product.

Daikin units comply with the European regulations thatguarantee the safety of the product.

EEDE

N09-

203 •

05/20

09 •

Copy

right

Daiki

nTh

e pre

sent

publi

catio

n sup

erse

des E

EDEN

08-2

03Pr

epar

ed in

Belg

ium by

Lann

oo (

www.

lanno

oprin

t.be)

, a co

mpan

y who

se co

ncer

n for

the en

viron

mont

is se

t in th

e EMA

S an

d ISO

1400

1 sys

tems.

Resp

onsib

le Ed

itor:

Daiki

n Eur

ope N

.V., Z

andv

oord

estra

at 30

0, B-

8400

Oos

tende

The present publication is drawn up by way of information only and does notconstitute an offer binding upon Daikin Europe N.V.. Daikin Europe N.V. hascompiled the content of this publication to the best of its knowledge. Noexpress or implied warranty is given for the completeness, accuracy,reliability or fitness for particular purpose of its content and the products andservices presented therein. Specifications are subject to change withoutprior notice. Daikin Europe N.V. explicitly rejects any liability for any direct orindirect damage, in the broadest sense, arising from or related to the useand/or interpretation of this publication. All content is copyrighted by DaikinEurope N.V..

VRV® products are not within the scope of the Euroventcertification programme.

Naamloze VennootschapZandvoordestraat 300B-8400 Oostende, Belgiumwww.daikin.euBE 0412 120 336RPR Oostende

Daikin’s unique position as a manufacturer of airconditioning equipment, compressors andrefrigerants has led to its close involvement inenvironmental issues. For several years Daikin hashad the intension to become a leader in the provisionof products that have limited impact on theenvironment. This challenge demands the eco designand development of a wide range of products and anenergy management system, resulting in energyconservation and a reduction of waste.

ISO14001 assures an effective environmentalmanagement system in order to help protect human healthand the environment from the potential impact of ouractivities, products and services and to assist inmaintaining and improving the quality of the environment.