SymFun 3.1: Documentationww3.haverford.edu/math/cgreene/symfun/symfun31-doc.pdfSymFun 3.1:...

40
SymFun 3.1: Documentation Summer 2004: Created by Curtis Greene, Julien Colvin, Ben Fineman Summer 2009: Updates by Curtis Greene, Rengyi Xu Summer 2010: Updates by Ian Burnette Summer 2012: Updates by Curtis Greene Introduction This is a Mathematica package designed to support various manipulations of symmetric functions, with an emphasis on combinatorial applications. It is loosely modeled after John Stembridge's highly successful Maple package ("SF"), but it is somewhat less ambitious: currently it implements only the standard basis conversions and a few other operations such as the Littlewood-Richardson rule. We assume familiarity with the basic theory of symmetric functions, e.g. Macdonald' s Symmetric Functions and Hall Polynomials or Stanley' s EC2. Using the Package Find the package (symfun31.m), open it, and click the button labeled "Run Package". Alternatively, load the package using the command << symfun31.m In order for the latter method to work, the package must be in a location recognized by Mathematica's $Path variable, for example, "C:\\Program Files\\Wolfram Research\\Mathematica\\7.0\\AddOns\\ExtraPackages" Overview: Conventions, Notation, and Basic Operations Basic families of symmetric functions (elementary, homogeneous, monomial, power sum, and Schur) may be defined in several ways. The following are expressions that are "atomic", i.e., they are unevaluated by Mathemat- ica and hence treated as indeterminates: e@4D,h@5D,p@3D,m@3,2,1D,s@3,2,1D The first three combine to give monomials in the obvious way, e.g., e@3De@1D^2, h@4Dh@2Dh@1D,p@3Dp@2Dp@1D These are the standard forms for the elementary, homogenous, and power-sum symmetric function. Expressions of the form e@83,1,1<D,h@84,2,1<D,p@83,2,1<D are evaluated by Mathematica, and give equivalent e, h, and p-functions in the above monomial form. Appending “x” to the function name and including an “n” parameter yields an evaluation in n variables x[1],

Transcript of SymFun 3.1: Documentationww3.haverford.edu/math/cgreene/symfun/symfun31-doc.pdfSymFun 3.1:...

Page 1: SymFun 3.1: Documentationww3.haverford.edu/math/cgreene/symfun/symfun31-doc.pdfSymFun 3.1: Documentation Summer 2004: Created by Curtis Greene, Julien Colvin, Ben Fineman Summer 2009:

SymFun 3.1: Documentation

Summer 2004: Created by Curtis Greene, Julien Colvin, Ben FinemanSummer 2009: Updates by Curtis Greene, Rengyi XuSummer 2010: Updates by Ian BurnetteSummer 2012: Updates by Curtis Greene

IntroductionThis is a Mathematica package designed to support various manipulations of symmetric functions, with anemphasis on combinatorial applications. It is loosely modeled after John Stembridge's highly successful Maplepackage ("SF"), but it is somewhat less ambitious: currently it implements only the standard basis conversions anda few other operations such as the Littlewood-Richardson rule.

We assume familiarity with the basic theory of symmetric functions, e.g. Macdonald' s Symmetric Functions andHall Polynomials or Stanley' s EC2.

Using the PackageFind the package (symfun31.m), open it, and click the button labeled "Run Package". Alternatively, load thepackage using the command

<< symfun31.m

In order for the latter method to work, the package must be in a location recognized by Mathematica's $Pathvariable, for example,

"C:\\Program Files\\Wolfram Research\\Mathematica\\7.0\\AddOns\\ExtraPackages"

Overview: Conventions, Notation, and Basic OperationsBasic families of symmetric functions (elementary, homogeneous, monomial, power sum, and Schur) may bedefined in several ways. The following are expressions that are "atomic", i.e., they are unevaluated by Mathemat-ica and hence treated as indeterminates:

e@4D,h@5D,p@3D,m@3,2,1D,s@3,2,1D

The first three combine to give monomials in the obvious way, e.g.,

e@3De@1D^2, h@4Dh@2Dh@1D,p@3Dp@2Dp@1D

These are the standard forms for the elementary, homogenous, and power-sum symmetric function. Expressionsof the form

e@83,1,1<D, h@84,2,1<D, p@83,2,1<D

are evaluated by Mathematica, and give equivalent e, h, and p-functions in the above monomial form.

Appending “x” to the function name and including an “n” parameter yields an evaluation in n variables x[1],x[2],...,x[n], for example,

Page 2: SymFun 3.1: Documentationww3.haverford.edu/math/cgreene/symfun/symfun31-doc.pdfSymFun 3.1: Documentation Summer 2004: Created by Curtis Greene, Julien Colvin, Ben Fineman Summer 2009:

Appending “x” to the function name and including an “n” parameter yields an evaluation in n variables x[1],x[2],...,x[n], for example,

ex@83, 1, 1<, 3D

x@1D3 x@2D x@3D + 2 x@1D2 x@2D2 x@3D + x@1D x@2D3 x@3D +

2 x@1D2 x@2D x@3D2+ 2 x@1D x@2D2 x@3D2

+ x@1D x@2D x@3D3

px@83, 1, 1<, 3D

x@1D5+ 2 x@1D4 x@2D + x@1D3 x@2D2

+ x@1D2 x@2D3+ 2 x@1D x@2D4

+ x@2D5+ 2 x@1D4 x@3D +

2 x@1D3 x@2D x@3D + 2 x@1D x@2D3 x@3D + 2 x@2D4 x@3D + x@1D3 x@3D2+ x@2D3 x@3D2

+

x@1D2 x@3D3+ 2 x@1D x@2D x@3D3

+ x@2D2 x@3D3+ 2 x@1D x@3D4

+ 2 x@2D x@3D4+ x@3D5

The same result can be obtained using "conversion" commands (described fully later in this document), e.g.

EToX@e@83, 1, 1<D, 3D

x@1D3 x@2D x@3D + 2 x@1D2 x@2D2 x@3D + x@1D x@2D3 x@3D +

2 x@1D2 x@2D x@3D2+ 2 x@1D x@2D2 x@3D2

+ x@1D x@2D x@3D3

or

EToX@e@3D e@1D^2, 3D

x@1D3 x@2D x@3D + 2 x@1D2 x@2D2 x@3D + x@1D x@2D3 x@3D +

2 x@1D2 x@2D x@3D2+ 2 x@1D x@2D2 x@3D2

+ x@1D x@2D x@3D3

Conversions are available between all pairs of families, e.g.,

EToS@e@3D e@1D^2D

s@2, 2, 1D + s@3, 1, 1D + 2 s@2, 1, 1, 1D + s@1, 1, 1, 1, 1D

EToP@e@3D e@1D^2D

p@1D5

6-

1

2p@1D3 p@2D +

1

3p@1D2 p@3D

Certain other algebraic operations are computed automatically. For example, products of atomic expressionsinvolving the Schur functions are automatically evaluated using the Littlewood-Richardson rule.

s@3, 2, 1D s@2, 1D

s@3, 3, 3D + 2 s@4, 3, 2D + s@4, 4, 1D + s@5, 2, 2D + s@5, 3, 1D +

s@3, 2, 2, 2D + 2 s@3, 3, 2, 1D + 2 s@4, 2, 2, 1D + 2 s@4, 3, 1, 1D +

s@5, 2, 1, 1D + s@3, 2, 2, 1, 1D + s@3, 3, 1, 1, 1D + s@4, 2, 1, 1, 1D

Basic Commands: Entering and Manipulating Symmetric Functions� H: definitions

h@<Λ>D

Expands in terms of h[1],h[2],h[3],...

h@83, 3, 2<D

h@2D h@3D2

hx@<lambda>,<n>D

Returns h[Λ] expanded in terms of x[1],x[2],...x[n] .

2 symfun31-doc.nb

Page 3: SymFun 3.1: Documentationww3.haverford.edu/math/cgreene/symfun/symfun31-doc.pdfSymFun 3.1: Documentation Summer 2004: Created by Curtis Greene, Julien Colvin, Ben Fineman Summer 2009:

hx@82<, 3D

x@1D2+ x@1D x@2D + x@2D2

+ x@1D x@3D + x@2D x@3D + x@3D2

hx@83, 2<, 2D

x@1D5+ 2 x@1D4 x@2D + 3 x@1D3 x@2D2

+ 3 x@1D2 x@2D3+ 2 x@1D x@2D4

+ x@2D5

he@<n>D

Expands h[n] directly into the e’s. This syntax works for the "primitive" h, e, and p functions, i.e. they can beconverted directly to the others.

he@5D

e@1D5- 4 e@1D3 e@2D + 3 e@1D e@2D2

+ 3 e@1D2 e@3D - 2 e@2D e@3D - 2 e@1D e@4D + e@5D

hp@5D

p@1D5

120+

1

12p@1D3 p@2D +

1

8p@1D p@2D2

+

1

6p@1D2 p@3D +

1

6p@2D p@3D +

1

4p@1D p@4D +

p@5D5

HList@<n>D

Returns list of all h[Λ]'s of degree n, expressed as monomials in h[1],h[2],... (Useful in some technical situations.)

HList@5D

9h@5D, h@1D h@4D, h@2D h@3D, h@1D2 h@3D, h@1D h@2D2, h@1D3 h@2D, h@1D5=

HList@<n>, <k>D

Returns list of all h[Λ]'s of degree n and Length(Λ)£k, expressed as monomials in h[1],h[2],...

HList@5, 2D

8h@5D, h@1D h@4D, h@2D h@3D<

HList2@<n>, <k>D

Returns list of all h[Λ]'s of degree n and Λ[[1]]£k, expressed as monomials in h[1],h[2],...

HList2@5, 2D

9h@1D h@2D2, h@1D3 h@2D, h@1D5=

� E: definitions

e@<Λ>D

Expands in terms of e[1],e[2],e[3],...

e@83, 2, 2, 1<D

e@1D e@2D2 e@3D

ex@<Λ>, <n>D

Returns e[Λ] expanded in terms of x[1],x[2],...,x[n] . Similar construction works for e, p, and h.

ex@83, 2<, 3D

x@1D2 x@2D2 x@3D + x@1D2 x@2D x@3D2+ x@1D x@2D2 x@3D2

eh@<n>D

Returns e[n] expressed in terms of h[1],h[2],.... . Similar construction works for e, p, and h.

symfun31-doc.nb 3

Page 4: SymFun 3.1: Documentationww3.haverford.edu/math/cgreene/symfun/symfun31-doc.pdfSymFun 3.1: Documentation Summer 2004: Created by Curtis Greene, Julien Colvin, Ben Fineman Summer 2009:

eh@5D

h@1D5- 4 h@1D3 h@2D + 3 h@1D h@2D2

+ 3 h@1D2 h@3D - 2 h@2D h@3D - 2 h@1D h@4D + h@5D

ep@5D

p@1D5

120-

1

12p@1D3 p@2D +

1

8p@1D p@2D2

+

1

6p@1D2 p@3D -

1

6p@2D p@3D -

1

4p@1D p@4D +

p@5D5

EList@<n>D

Returns list of all e[lambda]'s of degree n, expressed as monomials in e[1],e[2],... (Useful in some technicalsituations.)

EList@6D

9e@6D, e@1D e@5D, e@2D e@4D, e@1D2 e@4D, e@3D2,

e@1D e@2D e@3D, e@1D3 e@3D, e@2D3, e@1D2 e@2D2, e@1D4 e@2D, e@1D6=

EList@<n>, <k>D

Returns list of all e[lambda]'s of degree n and lambda[[1]]£k, expressed as monomials in e[1],e[2],...

EList@6, 2D

9e@1D6, e@1D4 e@2D, e@1D2 e@2D2, e@2D3=

� M: definitions

m@<Λ>D

Converts m[{Λ1,Λ2,...}] notation into m[Λ1,Λ2,...]. Useful for mapping m onto a list of partitions.

m@83, 2, 1<D

m@3, 2, 1D

monomial@<exponentlist>D

Returns a single monomial of type <exponentlist>.

monomial@82, 4, 3, 1<D

x@1D2 x@2D4 x@3D3 x@4D

mx@<Λ>, <n>D

Returns m[Λ] expanded in terms of x[1],x[2],...,x[n].

mx@83, 2, 1<, 3D

x@1D3 x@2D2 x@3D + x@1D2 x@2D3 x@3D + x@1D3 x@2D x@3D2+

x@1D x@2D3 x@3D2+ x@1D2 x@2D x@3D3

+ x@1D x@2D2 x@3D3

MList@<n>D

Returns list of all m[Λ]'s of degree n. (Useful in some technical situations.)

MList@4D

8m@4D, m@3, 1D, m@2, 2D, m@2, 1, 1D, m@1, 1, 1, 1D<

MList@<n>, <k>D

Returns list of all m[Λ]'s of degree n with Length(Λ)£k

4 symfun31-doc.nb

Page 5: SymFun 3.1: Documentationww3.haverford.edu/math/cgreene/symfun/symfun31-doc.pdfSymFun 3.1: Documentation Summer 2004: Created by Curtis Greene, Julien Colvin, Ben Fineman Summer 2009:

MList@4, 3D

8m@4D, m@3, 1D, m@2, 2D, m@2, 1, 1D<

� P: definitions

p@<Λ>D

Expands in terms of p[1],p[2],p[3],...

p@83, 2, 2, 1<D

p@1D p@2D2 p@3D

px@<Λ>,<n>D

Returns p[lambda] expanded in terms of x[1],x[2],...,x[n].

px@83, 2, 2, 1<, 2D

x@1D8+ x@1D7 x@2D + 2 x@1D6 x@2D2

+ 3 x@1D5 x@2D3+

2 x@1D4 x@2D4+ 3 x@1D3 x@2D5

+ 2 x@1D2 x@2D6+ x@1D x@2D7

+ x@2D8

px@84<, 6D

x@1D4+ x@2D4

+ x@3D4+ x@4D4

+ x@5D4+ x@6D4

pe@<n>D

Returns p[n] expanded in terms of e[1],e[2],... Similar construction works for p, e, and h.

pe@4D

e@1D4- 4 e@1D2 e@2D + 2 e@2D2

+ 4 e@1D e@3D - 4 e@4D

ph@4D

-h@1D4+ 4 h@1D2 h@2D - 2 h@2D2

- 4 h@1D h@3D + 4 h@4D

PList@<n>D

Returns list of all p[Λ]'s of degree n,expressed as monomials in p[1],p[2],... (Useful in some technical situations.)

PList@5D

9p@5D, p@1D p@4D, p@2D p@3D, p@1D2 p@3D, p@1D p@2D2, p@1D3 p@2D, p@1D5=

PList@<n>, <k>D

Returns list of all p[Λ]'s of degree n, and Length[Λ]£k, expressed as monomials in p[1],p[2],...

PList@5, 2D

8p@5D, p@1D p@4D, p@2D p@3D<

� S: definitions

s@<Λ>D

Converts s[{Λ1,Λ2,...}] notation into s[Λ1,Λ2,...]. Useful for mapping m onto a list of partitions.

s@84, 2, 1, 1<D

s@4, 2, 1, 1D

sx@<Λ>,<n>D

Returns s[Λ] expanded in terms of x[1],x[2],...x[n] .

symfun31-doc.nb 5

Page 6: SymFun 3.1: Documentationww3.haverford.edu/math/cgreene/symfun/symfun31-doc.pdfSymFun 3.1: Documentation Summer 2004: Created by Curtis Greene, Julien Colvin, Ben Fineman Summer 2009:

sx@84, 2, 1<, 3D

x@1D4 x@2D2 x@3D + x@1D3 x@2D3 x@3D + x@1D2 x@2D4 x@3D + x@1D4 x@2D x@3D2+

2 x@1D3 x@2D2 x@3D2+ 2 x@1D2 x@2D3 x@3D2

+ x@1D x@2D4 x@3D2+ x@1D3 x@2D x@3D3

+

2 x@1D2 x@2D2 x@3D3+ x@1D x@2D3 x@3D3

+ x@1D2 x@2D x@3D4+ x@1D x@2D2 x@3D4

sh@<Λ>D

Returns s[Λ] in terms of a linear combination of h[1], h[2], ... . Also works if argument is a sequence, or a singleinteger.

sh@84, 2, 1<Dsh@4, 2, 1Dsh@4D

h@1D h@2D h@4D - h@3D h@4D - h@1D2 h@5D + h@1D h@6D

h@1D h@2D h@4D - h@3D h@4D - h@1D2 h@5D + h@1D h@6Dh@4D

se@<Λ>D

Returns s[Λ] in terms of a linear combination of e[1], e[2], ... Also works if argument is a sequence, or a singleinteger.

se@84, 2, 1<Dse@4, 2, 1Dse@4D

e@1D2 e@2D e@3D - e@2D2 e@3D - e@1D e@3D2-

e@1D3 e@4D + e@1D e@2D e@4D + e@3D e@4D + e@1D2 e@5D - e@1D e@6D

e@1D2 e@2D e@3D - e@2D2 e@3D - e@1D e@3D2-

e@1D3 e@4D + e@1D e@2D e@4D + e@3D e@4D + e@1D2 e@5D - e@1D e@6D

e@1D4- 3 e@1D2 e@2D + e@2D2

+ 2 e@1D e@3D - e@4D

SList@<n>D

Returns list of all s[Λ]'s of degree n. (Useful in some technical situations.)

SList@7D

8s@7D, s@6, 1D, s@5, 2D, s@5, 1, 1D, s@4, 3D, s@4, 2, 1D,

s@4, 1, 1, 1D, s@3, 3, 1D, s@3, 2, 2D, s@3, 2, 1, 1D, s@3, 1, 1, 1, 1D,

s@2, 2, 2, 1D, s@2, 2, 1, 1, 1D, s@2, 1, 1, 1, 1, 1D, s@1, 1, 1, 1, 1, 1, 1D<SList@<n>, <k>D

Returns list of all s[Λ]'s of degree n with Length(Λ)£k

SList@7, 3D

8s@7D, s@6, 1D, s@5, 2D, s@5, 1, 1D, s@4, 3D, s@4, 2, 1D, s@3, 3, 1D, s@3, 2, 2D<

Basic Commands: Partitions, Degrees, Coefficients, Etc.� Partitions

ConjugateP@<Λ>D

6 symfun31-doc.nb

Page 7: SymFun 3.1: Documentationww3.haverford.edu/math/cgreene/symfun/symfun31-doc.pdfSymFun 3.1: Documentation Summer 2004: Created by Curtis Greene, Julien Colvin, Ben Fineman Summer 2009:

Computes the conjugate of a partition Λ.

ConjugateP@84, 2, 1, 1, 1, 1, 1, 1<D

88, 2, 1, 1<

Partitions@<n>,@ Rows® r,Columns®cDD

Returns a list of partitions of n with £ r parts and largest part b c. Either, both, or none of the options is possible.(Extension of Combinatorica's Partition command.)

Partitions@7, Rows ® 3D

887<, 86, 1<, 85, 2<, 85, 1, 1<, 84, 3<, 84, 2, 1<, 83, 3, 1<, 83, 2, 2<<

Partitions@7, Columns ® 3D

883, 3, 1<, 83, 2, 2<, 83, 2, 1, 1<, 83, 1, 1, 1, 1<,

82, 2, 2, 1<, 82, 2, 1, 1, 1<, 82, 1, 1, 1, 1, 1<, 81, 1, 1, 1, 1, 1, 1<<Partitions@7, Rows ® 3, Columns ® 3D

883, 3, 1<, 83, 2, 2<<

� Degrees in a polynomial

MonDegrees@<f>,<variable list>D

Returns a sorted list of all of the total degrees of monomials (in the listed variables) appearing in f.

f = Product@1 - x@iD^2, 8i, 1, 3<D �� Expand

MonDegrees@f, 8x@1D, x@2D, x@3D<D

1 - x@1D2- x@2D2

+ x@1D2 x@2D2- x@3D2

+ x@1D2 x@3D2+ x@2D2 x@3D2

- x@1D2 x@2D2 x@3D2

86, 4, 2, 0<

MonDegrees@1 + x + y^2 + x y^3 + z^5, 8x, y, z<DMonDegrees@1 + x + y^2 + x y^3 + z^5, 8y, z<DMonDegrees@1 + x + y^2 + x y^3 + z^5, 8z<D85, 4, 2, 1, 0<

85, 3, 2, 0<

85, 0<

XDegrees@<f>D

Returns a sorted list of all of the degrees of in x (assumed) appearing in f. Useful when the number of variables isunknown.

XDegrees@x@1D x@2D^2 x@3D - 43 x@3424D + 321 x@40D^329 x@47D^32 x@412DD

8362, 4, 1<

XDegrees@1 + x@1D + x@1D x@2DD

82, 1, 0<

SDegrees@<f>D

Returns a sorted list of all of the degrees of s's appearing in f (assuming f is expressed in terms of s's).

SDegrees@6 * s@4, 3, 2, 1D + s@3, 1, 1DD

810, 5<

symfun31-doc.nb 7

Page 8: SymFun 3.1: Documentationww3.haverford.edu/math/cgreene/symfun/symfun31-doc.pdfSymFun 3.1: Documentation Summer 2004: Created by Curtis Greene, Julien Colvin, Ben Fineman Summer 2009:

SDegrees@9 + 6 s@4, 3, 2, 1D + s@3, 1, 1DDSDegrees@6 s@4, 3, 2, 1D + s@3, 1, 1D + x + 9D810, 5, 0<

810, 5, 0, x<

MDegrees@<f>D

Returns a sorted list of all of the degrees of m's appearing in f (assuming f is expressed in terms of m's).

MDegrees@5 * m@4, 2D - 4 m@1D - 7 m@2, 2, 2, 2DD

88, 6, 1<

EDegrees@<f>D

Returns a sorted list of all of the degrees of e's appearing in f (assuming f is expressed in terms of e's).

EDegrees@6 e@4D^4 e@2D e@1D^3 + e@4DD

821, 4<

HDegrees@<f>D

Returns a sorted list of all of the degrees of h's appearing in f (assuming f is expressed in terms of h's).

HDegrees@h@4D h@2D h@1D^2 - 4 h@3DD

88, 3<

PDegrees@<f>D

Returns a sorted list of all of the degrees of p's appearing in f (assuming f is expressed in terms of p's).

PDegrees@p@4D p@2D p@1D^2 - 4 p@3DD

88, 3<

� Coefficients

GetCoefficients@<f>, <variable list>D

Returns a list of the coefficients in f of the variables in <variable list>. The expression f should be a polynomial insubscripted variables, e.g., x[i]'s, h[Λ]'s, s[Λ],etc. If a monomial in f divides another monomial, only the formercoefficient is returned.

SList@5DGetCoefficients@s@3, 2D - 6 s@3, 1, 1D + 93 s@2, 1, 1, 1D - s@5D, SList@5DD8s@5D, s@4, 1D, s@3, 2D, s@3, 1, 1D, s@2, 2, 1D, s@2, 1, 1, 1D, s@1, 1, 1, 1, 1D<

8-1, 0, 1, -6, 0, 93, 0<

g = 7 e@2D^2 e@1D - e@4D e@2D e@1D - 6 e@3D^2 e@1D -

2 e@4D e@1D + 200 e@1D^5 - 3 e@7D - 81 e@2D e@1D^5 + 8 e@5D;

GetCoefficients@g, EList@5DDGetCoefficients@g, EList@7DDGetCoefficients@g, EList@3DD88, -2, 0, 0, 7, 0, 200<

8-3, 0, 0, 0, 0, -1, 0, -6, 0, 0, 0, 0, 0, -81, 0<

80, 0, 0<

GetCoefficients@g^3 �� Expand, EList@21DD

8 symfun31-doc.nb

Page 9: SymFun 3.1: Documentationww3.haverford.edu/math/cgreene/symfun/symfun31-doc.pdfSymFun 3.1: Documentation Summer 2004: Created by Curtis Greene, Julien Colvin, Ben Fineman Summer 2009:

� Symmetry tests, symmetrization

SymmetricQ@<f>,<z>,<n>D

Tests whether a polynomial in variables z[1],z[2],...,z[n] is symmetric.

SymmetricQ@Hx@1D + x@2D + x@3D + x@4D + x@5DL^10, x, 5D

True

SymmetricQ@Hx@1D + x@2D + x@3D + x@4D + x@5DL^10, x, 6D

False

Symmetrize@<f>,<x>,<n>D

Computes ÚΣ f Σ over all permutations Σ of x[1],x[2],...,x[n].

f = x@1D^2 + x@2D^2 ;

Symmetrize@f, x, 5DSymmetricQ@%, x, 5D

48 x@1D2+ 48 x@2D2

+ 48 x@3D2+ 48 x@4D2

+ 48 x@5D2

True

� Restrict number of variables

Restrict@<f>,<n>, <opts>D

Takes the symmetric function f and returns the equivalent function when the underlying x-version is restricted to nvariables.

This example takes a function in the h - basis, converts it to the s - basis, then restricts the number of variables to3, eliminating the s - terms with more than 3 parts.

f = h@1D^6 - 3 h@3D^2 + h@2D^3 - 5 h@5D h@1Dr1 = HToS@fDr1 = Restrict@r1, 3D

h@1D6+ h@2D3

- 3 h@3D2- 5 h@1D h@5D

-6 s@6D + 3 s@3, 3D + 9 s@4, 2D - s@5, 1D + 6 s@2, 2, 2D + 18 s@3, 2, 1D + 11 s@4, 1, 1D +

9 s@2, 2, 1, 1D + 10 s@3, 1, 1, 1D + 5 s@2, 1, 1, 1, 1D + s@1, 1, 1, 1, 1, 1D-6 s@6D + 3 s@3, 3D + 9 s@4, 2D - s@5, 1D + 6 s@2, 2, 2D + 18 s@3, 2, 1D + 11 s@4, 1, 1D

The same result could have been obtained directly using the HToS conversion command with the option Vars ->3.

r2 = HToS@f, Vars ® 3Dr1 � r2

-6 s@6D + 3 s@3, 3D + 9 s@4, 2D - s@5, 1D + 6 s@2, 2, 2D + 18 s@3, 2, 1D + 11 s@4, 1, 1D

True

Note that the results may be complex in the case of the h - and p - bases. In the other cases, the command operatesmore simply on individual monomials.

f = h@6DRestrict@f, 4Dh@6D

-h@1D6+ 3 h@1D4 h@2D - h@2D3

- 2 h@1D3 h@3D - 2 h@1D h@2D h@3D + h@3D2+ h@1D2 h@4D + 2 h@2D h@4D

symfun31-doc.nb 9

Page 10: SymFun 3.1: Documentationww3.haverford.edu/math/cgreene/symfun/symfun31-doc.pdfSymFun 3.1: Documentation Summer 2004: Created by Curtis Greene, Julien Colvin, Ben Fineman Summer 2009:

f = p@6DRestrict@f, 4Dp@6D

-

1

24p@1D6

+

3

8p@1D4 p@2D -

3

8p@1D2 p@2D2

-

p@2D3

8-

2

3p@1D3 p@3D +

p@3D2

3+

3

4p@1D2 p@4D +

3

4p@2D p@4D

Input to the Restrict command can be a function expressed using more than one basis. The Bases option allowsthe user to specify which bases the variable-restriction gets applied to. (Admittedly, this is not likely to be veryuseful!).

fmixed = e@4D e@2D + p@3D^2 + p@5D + x@1D x@2D x@3D + x@1D x@2D x@4D +

x@1D x@3D x@4D + x@2D x@3D x@4D + 4 m@2, 2D + s@3, 1, 1, 1, 1, 1, 1, 1, 1D - h@7DRestrict@fmixed, 3DRestrict@fmixed, 3, Bases ® 8E, P, X<D

e@2D e@4D - h@7D + 4 m@2, 2D + p@3D2+ p@5D + s@3, 1, 1, 1, 1, 1, 1, 1, 1D +

x@1D x@2D x@3D + x@1D x@2D x@4D + x@1D x@3D x@4D + x@2D x@3D x@4D

-h@1D3 h@2D2+ 2 h@1D h@2D3

- 2 h@1D4 h@3D + 6 h@1D2 h@2D h@3D - 3 h@2D2 h@3D - 3 h@1D h@3D2+

4 m@2, 2D +

p@1D5

6-

5

6p@1D3 p@2D +

5

6p@1D2 p@3D +

5

6p@2D p@3D + p@3D2

+ x@1D x@2D x@3D

-h@7D + 4 m@2, 2D +

p@1D5

6-

5

6p@1D3 p@2D +

5

6p@1D2 p@3D +

5

6p@2D p@3D + p@3D2

+ s@3, 1, 1, 1, 1, 1, 1, 1, 1D + x@1D x@2D x@3D

Matrices� JTH, JTE : Jacobi-Trudi Matrices

JTH@<Λ>D

Gives Jacobi-Trudi Matrix in h-functions, whose determinant equals s[Λ].

JTH@83, 2, 1, 1<D �� MatrixForm

Det@%D �� HToS

h@3D h@4D h@5D h@6Dh@1D h@2D h@3D h@4D

0 1 h@1D h@2D0 0 1 h@1D

s@3, 2, 1, 1D

JTE@<Λ>D

Gives Jacobi-Trudi Matrix in e-functions, whose determinant equals s[Λ].

10 symfun31-doc.nb

Page 11: SymFun 3.1: Documentationww3.haverford.edu/math/cgreene/symfun/symfun31-doc.pdfSymFun 3.1: Documentation Summer 2004: Created by Curtis Greene, Julien Colvin, Ben Fineman Summer 2009:

JTE@83, 2, 1, 1<D �� MatrixForm

Det@%D �� EToS

e@4D e@5D e@6De@1D e@2D e@3D

0 1 e@1Ds@3, 2, 1, 1D

� K, KInv,KStar,KTr : Kostka matrices

K@<n>D

Returns the p(n) × p(n) Kostka matrix

K@4D �� MatrixForm

1 1 1 1 1

0 1 1 2 3

0 0 1 1 2

0 0 0 1 3

0 0 0 0 1

K@<n>, <k>D

Returns the p(n, k) × p(n, k) "restricted" Kostka matrix.

K@6, 3D �� MatrixForm

1 1 1 1 1 1 1

0 1 1 2 1 2 2

0 0 1 1 1 2 3

0 0 0 1 0 1 1

0 0 0 0 1 1 1

0 0 0 0 0 1 2

0 0 0 0 0 0 1

KInv@<n>D

Returns the p(n) × p(n) inverse Kostka matrix

KInv@4D �� MatrixForm

1 -1 0 1 -1

0 1 -1 -1 2

0 0 1 -1 1

0 0 0 1 -3

0 0 0 0 1

KInv@<n>, <k>D

Returns the p(n, k) × p(n, k) inverse "restricted" Kostka matrix

KInv@6, 3D �� MatrixForm

1 -1 0 1 0 0 0

0 1 -1 -1 0 1 0

0 0 1 -1 -1 0 -1

0 0 0 1 0 -1 1

0 0 0 0 1 -1 1

0 0 0 0 0 1 -2

0 0 0 0 0 0 1

KTr@<n>D

symfun31-doc.nb 11

Page 12: SymFun 3.1: Documentationww3.haverford.edu/math/cgreene/symfun/symfun31-doc.pdfSymFun 3.1: Documentation Summer 2004: Created by Curtis Greene, Julien Colvin, Ben Fineman Summer 2009:

Returns the transpose of the p(n) × p(n) Kostka matrix

KTr@4D �� MatrixForm

1 0 0 0 0

1 1 0 0 0

1 1 1 0 0

1 2 1 1 0

1 3 2 3 1

KTr@<n>, <k>D

Returns the transpose of the p(n, k) × p(n, k) "restricted" Kostka matrix

KTr@6, 3D �� MatrixForm

1 0 0 0 0 0 0

1 1 0 0 0 0 0

1 1 1 0 0 0 0

1 2 1 1 0 0 0

1 1 1 0 1 0 0

1 2 2 1 1 1 0

1 2 3 1 1 2 1

KStar@<n>D

Returns the inverse transpose of the p(n) × p(n) Kostka matrix

KStar@4D �� MatrixForm

1 0 0 0 0

-1 1 0 0 0

0 -1 1 0 0

1 -1 -1 1 0

-1 2 1 -3 1

KStar@<n>, <k>D

Returns the inverse transpose of the p(n, k) × p(n, k) "restricted" Kostka matrix

KStar@6, 3D �� MatrixForm

1 0 0 0 0 0 0

-1 1 0 0 0 0 0

0 -1 1 0 0 0 0

1 -1 -1 1 0 0 0

0 0 -1 0 1 0 0

0 1 0 -1 -1 1 0

0 0 -1 1 1 -2 1

12 symfun31-doc.nb

Page 13: SymFun 3.1: Documentationww3.haverford.edu/math/cgreene/symfun/symfun31-doc.pdfSymFun 3.1: Documentation Summer 2004: Created by Curtis Greene, Julien Colvin, Ben Fineman Summer 2009:

� Bigger Examples

K@8D �� MatrixForm

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 2 1 2 3 1 2 2 3 4 2 3 3 4 5 3 4 5 6 7

0 0 1 1 1 2 3 1 2 3 4 6 3 4 5 7 10 6 8 11 15 20

0 0 0 1 0 1 3 0 1 1 3 6 1 3 3 6 10 3 6 10 15 21

0 0 0 0 1 1 1 1 2 2 3 4 3 4 5 7 10 6 9 13 19 28

0 0 0 0 0 1 2 0 1 2 4 8 2 4 6 11 20 8 14 24 40 64

0 0 0 0 0 0 1 0 0 0 1 4 0 1 1 4 10 1 4 10 20 35

0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 3 4 3 4 6 9 14

0 0 0 0 0 0 0 0 1 1 2 3 2 4 5 9 15 7 13 23 40 70

0 0 0 0 0 0 0 0 0 1 1 2 1 1 3 5 10 6 9 16 30 56

0 0 0 0 0 0 0 0 0 0 1 3 0 1 2 6 15 3 9 21 45 90

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 5 0 1 5 15 35

0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 5 3 6 11 21 42

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 3 6 2 5 12 26 56

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 5 3 6 13 30 70

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 0 2 8 24 64

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 6 21

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 5 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 9 28

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 5 20

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

KInv@24, 4D �� MatrixForm �� Timing

KTr@12, 5D

KStar@6D �� MatrixForm

1 0 0 0 0 0 0 0 0 0 0

-1 1 0 0 0 0 0 0 0 0 0

0 -1 1 0 0 0 0 0 0 0 0

1 -1 -1 1 0 0 0 0 0 0 0

0 0 -1 0 1 0 0 0 0 0 0

0 1 0 -1 -1 1 0 0 0 0 0

-1 1 1 -1 1 -2 1 0 0 0 0

0 0 -1 1 1 -2 0 1 0 0 0

0 -1 1 1 0 0 -1 -1 1 0 0

1 -1 -2 1 -1 4 -1 1 -3 1 0

-1 2 2 -3 1 -6 4 -1 6 -5 1

� Chi, ChiInv : Character matrices

Chi@<n>D, Chi2@<n>D

Returns the p(n) × p(n) character matrix.

Chi@4D �� MatrixForm

1 1 1 1 1

-1 0 -1 1 3

0 -1 2 0 2

1 0 -1 -1 3

-1 1 1 -1 1

ChiInv@<n>D, ChiInv2@<n>D

symfun31-doc.nb 13

Page 14: SymFun 3.1: Documentationww3.haverford.edu/math/cgreene/symfun/symfun31-doc.pdfSymFun 3.1: Documentation Summer 2004: Created by Curtis Greene, Julien Colvin, Ben Fineman Summer 2009:

Returns the p(n) × p(n) inverse of the character matrix.

ChiInv@4D �� MatrixForm

1

4-

1

40

1

4-

1

41

30 -

1

30

1

31

8-

1

8

1

4-

1

8

1

81

4

1

40 -

1

4-

1

41

24

1

8

1

12

1

8

1

24

� Bigger Examples

Chi@7D �� MatrixForm �� Timing

:0.094 Second,

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

-1 0 -1 1 -1 0 2 0 -1 1 3 0 2 4 6

0 -1 1 -1 0 0 0 -1 2 0 2 2 2 6 14

1 0 0 0 1 -1 1 0 -1 -1 3 -3 -1 5 15

0 0 -1 -1 1 0 -2 2 -1 1 -1 0 2 4 14

0 1 0 0 -1 1 -1 -1 -1 -1 -1 1 -1 5 35

-1 0 0 0 0 0 0 2 2 0 2 0 -4 0 20

0 0 1 1 -1 -1 -1 0 1 1 -3 -3 1 1 21

0 0 -1 1 1 -1 1 0 1 -1 -3 3 1 -1 21

0 -1 0 0 1 1 1 -1 -1 1 -1 -1 -1 -5 35

1 0 0 0 -1 -1 -1 0 -1 1 3 3 -1 -5 15

0 0 1 -1 -1 0 2 2 -1 -1 -1 0 2 -4 14

0 1 -1 -1 0 0 0 -1 2 0 2 -2 2 -6 14

-1 0 1 1 1 0 -2 0 -1 -1 3 0 2 -4 6

1 -1 -1 1 -1 1 -1 1 1 -1 1 -1 1 -1 1

>

Chi2@7D �� MatrixForm �� Timing

:21.828 Second,

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

-1 0 -1 1 -1 0 2 0 -1 1 3 0 2 4 6

0 -1 1 -1 0 0 0 -1 2 0 2 2 2 6 14

1 0 0 0 1 -1 1 0 -1 -1 3 -3 -1 5 15

0 0 -1 -1 1 0 -2 2 -1 1 -1 0 2 4 14

0 1 0 0 -1 1 -1 -1 -1 -1 -1 1 -1 5 35

-1 0 0 0 0 0 0 2 2 0 2 0 -4 0 20

0 0 1 1 -1 -1 -1 0 1 1 -3 -3 1 1 21

0 0 -1 1 1 -1 1 0 1 -1 -3 3 1 -1 21

0 -1 0 0 1 1 1 -1 -1 1 -1 -1 -1 -5 35

1 0 0 0 -1 -1 -1 0 -1 1 3 3 -1 -5 15

0 0 1 -1 -1 0 2 2 -1 -1 -1 0 2 -4 14

0 1 -1 -1 0 0 0 -1 2 0 2 -2 2 -6 14

-1 0 1 1 1 0 -2 0 -1 -1 3 0 2 -4 6

1 -1 -1 1 -1 1 -1 1 1 -1 1 -1 1 -1 1

>

chi10 = Chi@10D

Det@chi10DApply@Times, Flatten@Partitions@10DDD9 263 795 272 057 860 957 392 207 640 004 657 152 000 000 000

9 263 795 272 057 860 957 392 207 640 004 657 152 000 000 000

This last result illustrates the remarkable result that the determinant of the character matrix of Sn equals theproduct of all of the parts in all of the partitions of n.

14 symfun31-doc.nb

Page 15: SymFun 3.1: Documentationww3.haverford.edu/math/cgreene/symfun/symfun31-doc.pdfSymFun 3.1: Documentation Summer 2004: Created by Curtis Greene, Julien Colvin, Ben Fineman Summer 2009:

This last result illustrates the remarkable result that the determinant of the character matrix of Sn equals theproduct of all of the parts in all of the partitions of n.

� J (transposition matrix), SToEMat, EToSMat, HToH2Mat, H2ToHMat (special matrices for restricted variable situations)

J@<n>D

Returns the p(n) × p(n) "transposition" matrix that takes every partition to its conjugate

J@6D �� MatrixForm

0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0

SToEMat@<n>, <k>D

Returns the p(n, k) × p(n, k) transition matrix from the S basis to the E basis in a situation where the number ofvariables is restricted to k

SToEMat@8, 3D �� MatrixForm

1 -7 15 6 -10 -20 1 12 6 -3

0 1 -5 -1 6 8 -1 -9 -3 3

0 0 1 -1 -3 2 1 3 -2 -1

0 0 0 1 0 -4 0 3 3 -2

0 0 0 0 1 -2 -1 1 2 -1

0 0 0 0 0 1 0 -2 -1 2

0 0 0 0 0 0 1 -3 1 2

0 0 0 0 0 0 0 1 -1 -1

0 0 0 0 0 0 0 0 1 -1

0 0 0 0 0 0 0 0 0 1

EToSMat@<n>, <k>D

Returns the p(n, k) × p(n, k) transition matrix from the E basis to the S basis in a situation where the number ofvariables is restricted to k

EToSMat@8, 3D �� MatrixForm

1 7 20 21 28 64 14 70 56 42

0 1 5 6 9 24 5 30 26 21

0 0 1 1 3 8 2 13 12 11

0 0 0 1 0 4 0 5 6 5

0 0 0 0 1 2 1 6 5 6

0 0 0 0 0 1 0 2 3 3

0 0 0 0 0 0 1 3 2 3

0 0 0 0 0 0 0 1 1 2

0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 1

HToH2Mat@<n>, <k>D

Returns a p(n, k) × p(n, k) matrix that converts from the basis of H-restricted expressed by HList[n,k] to the basisof H-restricted expressed by HList2[n,k]

symfun31-doc.nb 15

Page 16: SymFun 3.1: Documentationww3.haverford.edu/math/cgreene/symfun/symfun31-doc.pdfSymFun 3.1: Documentation Summer 2004: Created by Curtis Greene, Julien Colvin, Ben Fineman Summer 2009:

Returns a p(n, k) × p(n, k) matrix that converts from the basis of H-restricted expressed by HList[n,k] to the basisof H-restricted expressed by HList2[n,k]

HRestrictionRules@5, 2DHToH2Mat@5, 2D �� MatrixForm

H2ToHMat@5, 2D �� MatrixForm

9h@5D ® -2 h@1D3 h@2D + 3 h@1D h@2D2, h@1D h@4D ® -h@1D5+ h@1D3 h@2D + h@1D h@2D2,

h@2D h@3D ® -h@1D3 h@2D + 2 h@1D h@2D2, h@1D2 h@3D ® -h@1D5+ 2 h@1D3 h@2D,

h@1D h@2D2® h@1D h@2D2, h@1D3 h@2D ® h@1D3 h@2D, h@1D5

® h@1D5=

3 -2 0

1 1 -1

2 -1 0

-1 0 2

-2 0 3

-3 -1 5

� Bigger examples

SToEMat@15, 3D �� MatrixForm

1 -14 78 13 -220 -132 330 495 55 -252 -840 -360 84 630 756 84 -8 -168 -

0 1 -12 -1 55 22 -120 -135 -10 126 336 108 -56 -350 -336 -28 7 126

0 0 1 -1 -10 9 36 -18 -9 -56 -28 48 35 105 -42 -21 -6 -69

0 0 0 1 0 -11 0 45 10 0 -84 -72 0 70 168 28 0 -21 -

0 0 0 0 1 -2 -8 15 2 21 -28 -29 -20 -5 90 13 5 30

0 0 0 0 0 1 0 -9 -1 0 28 16 0 -35 -63 -7 0 15

0 0 0 0 0 0 1 -3 1 -6 17 -2 10 -20 -27 4 -4 -6

0 0 0 0 0 0 0 1 -1 0 -7 6 0 15 -3 -6 0 -10

0 0 0 0 0 0 0 0 1 0 0 -8 0 0 21 7 0 0

0 0 0 0 0 0 0 0 0 1 -4 3 -4 15 -6 -3 3 -6

0 0 0 0 0 0 0 0 0 0 1 -2 0 -5 9 2 0 6

0 0 0 0 0 0 0 0 0 0 0 1 0 0 -6 -1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 -5 6 -1 -2 9

0 0 0 0 0 0 0 0 0 0 0 0 0 1 -3 1 0 -3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

� Other matrices: PEMat, PHMat, EPMat, EHMat, HPMat, HEMat

PEMat@<n>D

Gives n × n matrix whose determinant is p[n] in terms of e[1],...,e[n]

16 symfun31-doc.nb

Page 17: SymFun 3.1: Documentationww3.haverford.edu/math/cgreene/symfun/symfun31-doc.pdfSymFun 3.1: Documentation Summer 2004: Created by Curtis Greene, Julien Colvin, Ben Fineman Summer 2009:

PEMat@5D �� MatrixForm

Det@%DEToP@%D

e@1D 1 0 0 0

2 e@2D e@1D 1 0 0

3 e@3D e@2D e@1D 1 0

4 e@4D e@3D e@2D e@1D 1

5 e@5D e@4D e@3D e@2D e@1D

e@1D5- 5 e@1D3 e@2D + 5 e@1D e@2D2

+ 5 e@1D2 e@3D - 5 e@2D e@3D - 5 e@1D e@4D + 5 e@5Dp@5D

PHMat@<n>D

Gives n × n matrix whose determinant is ±p[n] in terms of h[1],...,h[n] (The ± is implemented in the ph function.)

PHMat@5D �� MatrixForm

Det@%DHToP@%D

h@1D 1 0 0 0

2 h@2D h@1D 1 0 0

3 h@3D h@2D h@1D 1 0

4 h@4D h@3D h@2D h@1D 1

5 h@5D h@4D h@3D h@2D h@1D

h@1D5- 5 h@1D3 h@2D + 5 h@1D h@2D2

+ 5 h@1D2 h@3D - 5 h@2D h@3D - 5 h@1D h@4D + 5 h@5Dp@5D

EPMat@<n>D

Gives n × n matrix whose determinant is n!*e[n] in terms of p[1],...,p[n]

EPMat@5D �� MatrixForm

Det@%DPToE@%D

p@1D 1 0 0 0

p@2D p@1D 2 0 0

p@3D p@2D p@1D 3 0

p@4D p@3D p@2D p@1D 4

p@5D p@4D p@3D p@2D p@1D

p@1D5- 10 p@1D3 p@2D + 15 p@1D p@2D2

+ 20 p@1D2 p@3D - 20 p@2D p@3D - 30 p@1D p@4D + 24 p@5D120 e@5D

EHMat@<n>D

Gives n × n matrix whose determinant is e[n] in terms of h[1],...,h[n]

symfun31-doc.nb 17

Page 18: SymFun 3.1: Documentationww3.haverford.edu/math/cgreene/symfun/symfun31-doc.pdfSymFun 3.1: Documentation Summer 2004: Created by Curtis Greene, Julien Colvin, Ben Fineman Summer 2009:

EHMat@5D �� MatrixForm

Det@%DHToE@%D

h@1D h@2D h@3D h@4D h@5D1 h@1D h@2D h@3D h@4D0 1 h@1D h@2D h@3D0 0 1 h@1D h@2D0 0 0 1 h@1D

h@1D5- 4 h@1D3 h@2D + 3 h@1D h@2D2

+ 3 h@1D2 h@3D - 2 h@2D h@3D - 2 h@1D h@4D + h@5De@5D

HPMat@<n>D

Gives n × n matrix whose determinant is n!*h[n] in terms of p[1],...,p[n]

HPMat@5D �� MatrixForm

Det@%DPToH@%D

p@1D -1 0 0 0

p@2D p@1D -2 0 0

p@3D p@2D p@1D -3 0

p@4D p@3D p@2D p@1D -4

p@5D p@4D p@3D p@2D p@1D

p@1D5+ 10 p@1D3 p@2D + 15 p@1D p@2D2

+ 20 p@1D2 p@3D + 20 p@2D p@3D + 30 p@1D p@4D + 24 p@5D120 h@5D

HEMat@<n>D

Gives n × n matrix whose determinant is h[n] in terms of e[1],...,e[n]

HEMat@5D �� MatrixForm

Det@%DEToH@%D

e@1D e@2D e@3D e@4D e@5D1 e@1D e@2D e@3D e@4D0 1 e@1D e@2D e@3D0 0 1 e@1D e@2D0 0 0 1 e@1D

e@1D5- 4 e@1D3 e@2D + 3 e@1D e@2D2

+ 3 e@1D2 e@3D - 2 e@2D e@3D - 2 e@1D e@4D + e@5Dh@5D

Basis Conversions� XTo[HEMPSAll]

� XToM

XToM@<f>D

If f is a symmetric function expressed in terms of x[1],x[2],..., returns f expressed in terms of the m[lambda]'s.(Assumes that f is symmetric but does not test for this.)

18 symfun31-doc.nb

Page 19: SymFun 3.1: Documentationww3.haverford.edu/math/cgreene/symfun/symfun31-doc.pdfSymFun 3.1: Documentation Summer 2004: Created by Curtis Greene, Julien Colvin, Ben Fineman Summer 2009:

XToM@x@1D^3 + 3 x@1D x@2D x@3D + x@3D^3 + x@2D^3D

m@3D + 3 m@1, 1, 1D

NumberOfVars@<f>D

Returns number of x[i] variables in an expression involving x[i]'s.

NumberOfVars@x@1D x@2D + x@3DD

3

NumberOfVars@x@1D^2 + x@2D^2D

2

XToM@x@1D^2 + x@2D^2D

m@2D

XToM@Hx@1D + x@2DL Hx@1D + x@3DL Hx@2D + x@3DLD

m@2, 1D + 2 m@1, 1, 1D

� XTo[Others]

XToB@<f>D

Converts f (expressed in terms of x[i]) into basis B, where B can be H,E,P,S, or "All".

f = Product@x@iD + x@jD, 8i, 1, 3<, 8j, i + 1, 3<Df �� XToH

f �� XToE

f �� XToP

f �� XToS

f �� XToM

Hx@1D + x@2DL Hx@1D + x@3DL Hx@2D + x@3DL

h@1D h@2D - h@3D

e@1D e@2D - e@3D

p@1D3

3-

p@3D3

s@2, 1D

m@2, 1D + 2 m@1, 1, 1D

� STo[HEMPXAll]

� SToH

SToH@<f>,< opts>DOptions@SToHD=8DegreeList®8<, Vars®0<

If f is a symmetric function expressed as a linear combination of s functions, SToH returns the same functionexpressed as a linear combination of the appropriate h functions. Setting the option DegreeList to a list of thedegrees of f saves Mathematica some computation, possibly resulting in faster output. Setting the option Vars tosome positive integer n restricts the number of variables in the problem to n, resulting in the possible elimation ofsome terms in the answer.

symfun31-doc.nb 19

Page 20: SymFun 3.1: Documentationww3.haverford.edu/math/cgreene/symfun/symfun31-doc.pdfSymFun 3.1: Documentation Summer 2004: Created by Curtis Greene, Julien Colvin, Ben Fineman Summer 2009:

SToH@s@4D + 3 s@2, 2DD% �� HToS

3 h@2D2- 3 h@1D h@3D + h@4D

s@4D + 3 s@2, 2D

SToH@s@4D + 3 s@2, 2D, Vars -> 2D

2 h@1D4- 5 h@1D2 h@2D + 4 h@2D2

HToX@% - %%, 2D

0

� Bigger Examples

� SToE

SToE@<f>, <opts>DOptions@SToED=8DegreeList®8<, Vars®0<

If f is a symmetric function expressed as a linear combination of s functions, SToE returns the same functionexpressed as a linear combination of the appropriate e functions. Setting the option DegreeList to a list of thedegrees of f saves Mathematica some computation, possibly resulting in faster output. Setting the option Vars tosome positive integer n restricts the number of variables in the problem to n, resulting in the possible elimation ofsome terms in the answer.

SToE@4 s@4D - 3 s@3, 1D + 2 s@2, 2D - s@1, 1, 1, 1DD% �� EToS

4 e@1D4- 15 e@1D2 e@2D + 9 e@2D2

+ 9 e@1D e@3D - 8 e@4D4 s@4D + 2 s@2, 2D - 3 s@3, 1D - s@1, 1, 1, 1D

SToE@4 s@4D - 3 s@3, 1D + 2 s@2, 2D - s@1, 1, 1, 1D, Vars ® 2D

4 e@1D4- 15 e@1D2 e@2D + 9 e@2D2

EToX@% - %%, 2D

0

� Bigger examples

� SToM

SToM@<f>, <opts>DOptions@SToMD=8DegreeList®8<, Vars®0<

If f is a symmetric function expressed as a linear combination of s functions, SToM returns the same functionexpressed as a linear combination of the appropriate m functions. Setting the option DegreeList to a list of thedegrees of f saves Mathematica some computation, possibly resulting in faster output. Setting the option Vars tosome positive integer n restricts the number of variables in the problem to n, resulting in the possible elimation ofsome terms in the answer.

SToM@3 s@5D - 9 s@4, 1D + s@1, 1, 1, 1, 1DD% �� MToS

3 m@5D - 6 m@3, 2D - 6 m@4, 1D - 15 m@2, 2, 1D - 15 m@3, 1, 1D - 24 m@2, 1, 1, 1D - 32 m@1, 1, 1, 1, 1D

3 s@5D - 9 s@4, 1D + s@1, 1, 1, 1, 1D

20 symfun31-doc.nb

Page 21: SymFun 3.1: Documentationww3.haverford.edu/math/cgreene/symfun/symfun31-doc.pdfSymFun 3.1: Documentation Summer 2004: Created by Curtis Greene, Julien Colvin, Ben Fineman Summer 2009:

SToM@s@3, 2, 1DD% �� MToS

2 m@2, 2, 2D + m@3, 2, 1D + 4 m@2, 2, 1, 1D +

2 m@3, 1, 1, 1D + 8 m@2, 1, 1, 1, 1D + 16 m@1, 1, 1, 1, 1, 1Ds@3, 2, 1D

SToM@s@3, 2, 1D, Vars ® 4D

2 m@2, 2, 2D + m@3, 2, 1D + 4 m@2, 2, 1, 1D + 2 m@3, 1, 1, 1D

� Bigger examples

� SToP

SToP@<f>,<opts>DOptions@SToPD=8DegreeList®8<, Vars®0<

If f is a symmetric function expressed as a linear combination of s functions, SToP returns the same functionexpressed as a linear combination of the appropriate p functions. Setting the option DegreeList to a list of thedegrees of f saves Mathematica some computation, possibly resulting in faster output. Setting the option Vars tosome positive integer n restricts the number of variables in the problem to n, resulting in the possible elimation ofsome terms in the answer.

SToP@2 s@1D + s@3D + 2 s@2, 1D + s@1, 1, 1DD% �� PToS

2 p@1D + p@1D3

2 s@1D + s@3D + 2 s@2, 1D + s@1, 1, 1D

SToP@s@4, 3, 2, 1DD% �� PToS

p@1D10

4725-

1

315p@1D7 p@3D -

1

27p@1D p@3D3

+

1

75p@1D5 p@5D +

1

15p@1D2 p@3D p@5D -

p@5D2

25-

1

21p@1D3 p@7D +

1

21p@3D p@7D

s@4, 3, 2, 1D

SToP@s@4, 3, 2, 1D, Vars ® 4D

p@1D10

1728-

7

288p@1D6 p@2D2

+

1

24p@1D4 p@2D3

-

1

64p@1D2 p@2D4

-

1

144p@1D7 p@3D +

5

48p@1D5 p@2D p@3D -

17

144p@1D3 p@2D2 p@3D +

1

48p@1D p@2D3 p@3D -

7

72p@1D4 p@3D2

+

1

12p@1D2 p@2D p@3D2

-

1

72p@2D2 p@3D2

-

1

27p@1D p@3D3

+

1

144p@1D6 p@4D -

1

12p@1D4 p@2D p@4D +

1

16p@1D2 p@2D2 p@4D +

11

72p@1D3 p@3D p@4D -

1

24p@1D p@2D p@3D p@4D +

1

36p@3D2 p@4D -

1

16p@1D2 p@4D2

symfun31-doc.nb 21

Page 22: SymFun 3.1: Documentationww3.haverford.edu/math/cgreene/symfun/symfun31-doc.pdfSymFun 3.1: Documentation Summer 2004: Created by Curtis Greene, Julien Colvin, Ben Fineman Summer 2009:

PToS@%DPToS@%%, Vars ® 4Ds@4, 3, 2, 1D - s@2, 2, 2, 2, 2D - s@3, 2, 2, 2, 1D + s@3, 3, 2, 1, 1D +

s@4, 2, 2, 1, 1D + s@4, 3, 1, 1, 1D - 2 s@2, 2, 2, 2, 1, 1D + s@3, 3, 1, 1, 1, 1D +

s@4, 2, 1, 1, 1, 1D - 2 s@2, 2, 2, 1, 1, 1, 1D - 2 s@2, 2, 1, 1, 1, 1, 1, 1D -

s@3, 1, 1, 1, 1, 1, 1, 1D - 2 s@2, 1, 1, 1, 1, 1, 1, 1, 1D - s@1, 1, 1, 1, 1, 1, 1, 1, 1, 1Ds@4, 3, 2, 1D

� SToX

SToX@<f>,<vars>D

If f is a symmetric function expressed as a linear combination of s functions, SToX returns the same functionexpressed in variables x[1], ..., x[n].

SToX@2 s@1D + s@3D + 2 s@2, 1D + s@1, 1, 1D, 4DXToS@%D

2 x@1D + x@1D3+ 2 x@2D + 3 x@1D2 x@2D + 3 x@1D x@2D2

+ x@2D3+ 2 x@3D +

3 x@1D2 x@3D + 6 x@1D x@2D x@3D + 3 x@2D2 x@3D + 3 x@1D x@3D2+ 3 x@2D x@3D2

+

x@3D3+ 2 x@4D + 3 x@1D2 x@4D + 6 x@1D x@2D x@4D + 3 x@2D2 x@4D + 6 x@1D x@3D x@4D +

6 x@2D x@3D x@4D + 3 x@3D2 x@4D + 3 x@1D x@4D2+ 3 x@2D x@4D2

+ 3 x@3D x@4D2+ x@4D3

2 s@1D + s@3D + 2 s@2, 1D + s@1, 1, 1D

SToX@s@3, 2, 1D, 3D

x@1D3 x@2D2 x@3D + x@1D2 x@2D3 x@3D + x@1D3 x@2D x@3D2+

2 x@1D2 x@2D2 x@3D2+ x@1D x@2D3 x@3D2

+ x@1D2 x@2D x@3D3+ x@1D x@2D2 x@3D3

SToX@s@4, 3, 2, 1D, 4DXToS@%D

x@1D4 x@2D3 x@3D2 x@4D + x@1D3 x@2D4 x@3D2 x@4D +

x@1D4 x@2D2 x@3D3 x@4D + 2 x@1D3 x@2D3 x@3D3 x@4D + x@1D2 x@2D4 x@3D3 x@4D +

x@1D3 x@2D2 x@3D4 x@4D + x@1D2 x@2D3 x@3D4 x@4D + x@1D4 x@2D3 x@3D x@4D2+

x@1D3 x@2D4 x@3D x@4D2+ 2 x@1D4 x@2D2 x@3D2 x@4D2

+ 4 x@1D3 x@2D3 x@3D2 x@4D2+

2 x@1D2 x@2D4 x@3D2 x@4D2+ x@1D4 x@2D x@3D3 x@4D2

+ 4 x@1D3 x@2D2 x@3D3 x@4D2+

4 x@1D2 x@2D3 x@3D3 x@4D2+ x@1D x@2D4 x@3D3 x@4D2

+ x@1D3 x@2D x@3D4 x@4D2+

2 x@1D2 x@2D2 x@3D4 x@4D2+ x@1D x@2D3 x@3D4 x@4D2

+ x@1D4 x@2D2 x@3D x@4D3+

2 x@1D3 x@2D3 x@3D x@4D3+ x@1D2 x@2D4 x@3D x@4D3

+ x@1D4 x@2D x@3D2 x@4D3+

4 x@1D3 x@2D2 x@3D2 x@4D3+ 4 x@1D2 x@2D3 x@3D2 x@4D3

+ x@1D x@2D4 x@3D2 x@4D3+

2 x@1D3 x@2D x@3D3 x@4D3+ 4 x@1D2 x@2D2 x@3D3 x@4D3

+ 2 x@1D x@2D3 x@3D3 x@4D3+

x@1D2 x@2D x@3D4 x@4D3+ x@1D x@2D2 x@3D4 x@4D3

+ x@1D3 x@2D2 x@3D x@4D4+

x@1D2 x@2D3 x@3D x@4D4+ x@1D3 x@2D x@3D2 x@4D4

+ 2 x@1D2 x@2D2 x@3D2 x@4D4+

x@1D x@2D3 x@3D2 x@4D4+ x@1D2 x@2D x@3D3 x@4D4

+ x@1D x@2D2 x@3D3 x@4D4

s@4, 3, 2, 1D

� SToAll

SToAll@<f>, <opts>DOptions@SToAllD=8Targets®8E,H,P,M, X<, Vars®0<

If f is a symmetric function expressed as a linear combination of s functions, SToAll returns the same functionexpressed as linear combinations of the appropriate functions as specified in Targets. Setting the option Vars tosome positive integer n restricts the number of variables in the problem to n, resulting in the possible elimation ofsome terms in the answer. Note that the X's will only be displayed if Vars is specified.

22 symfun31-doc.nb

Page 23: SymFun 3.1: Documentationww3.haverford.edu/math/cgreene/symfun/symfun31-doc.pdfSymFun 3.1: Documentation Summer 2004: Created by Curtis Greene, Julien Colvin, Ben Fineman Summer 2009:

SToAll@s@3, 2, 1DD �� ColumnForm

s@3, 2, 1De@1D e@2D e@3D - e@3D2

- e@1D2 e@4D + e@1D e@5Dh@1D h@2D h@3D - h@3D2

- h@1D2 h@4D + h@1D h@5Dp@1D6

45-

1

9p@1D3 p@3D -

p@3D2

9+

1

5p@1D p@5D

2 m@2, 2, 2D + m@3, 2, 1D + 4 m@2, 2, 1, 1D + 2 m@3, 1, 1, 1D + 8 m@2, 1, 1, 1, 1D + 16 m@1, 1, 1, 1, 1,

SToAll@s@3, 2, 1D - 2 s@2, 2, 2D, Vars ® 3, Targets ® 8E, M, X<D

9-2 s@2, 2, 2D + s@3, 2, 1D, e@1D e@2D e@3D - 3 e@3D2, m@3, 2, 1D, x@1D3 x@2D2 x@3D +

x@1D2 x@2D3 x@3D + x@1D3 x@2D x@3D2+ x@1D x@2D3 x@3D2

+ x@1D2 x@2D x@3D3+ x@1D x@2D2 x@3D3=

� PTo[HEMSXAll]

� PRestrictionRules

PRestrictionRules@<deg>, <var>D

PRestrictionRules[deg, var] creates a list of rules that express p functions of degree deg in terms of other pfuntions of degree deg when the number of variables is restricted to var. The basis used for this is p[lambda]functions where lambda[[1]]£var (note that this is NOT the same basis generated by PList[deg, var]).

PRestrictionRules@4, 2DPList@4, 2D

:p@4D ® -

1

2p@1D4

+ p@1D2 p@2D +

p@2D2

2, p@1D p@3D ® -

1

2p@1D4

+

3

2p@1D2 p@2D,

p@2D2® p@2D2, p@1D2 p@2D ® p@1D2 p@2D, p@1D4

® p@1D4>

9p@4D, p@1D p@3D, p@2D2=

� PToH

PToH@<f>,< opts>DOptions@PToHD=8DegreeList®8<, Vars®0<

If f is a symmetric function expressed as a linear combination of p functions, PToH returns the same functionexpressed as a linear combination of the appropriate h functions. Setting the option DegreeList to a list of thedegrees of f saves Mathematica some computation, possibly resulting in faster output. Setting the option Vars tosome positive integer n restricts the number of variables in the problem to n, resulting in the possible elimation ofsome terms in the answer.

PToH@p@1D^2 p@4DD% �� HToP

-h@1D6+ 4 h@1D4 h@2D - 2 h@1D2 h@2D2

- 4 h@1D3 h@3D + 4 h@1D2 h@4D

p@1D2 p@4D

Restrict@%, 3DPToH@p@1D^2 p@4D, Vars ® 3D

3 h@1D6- 8 h@1D4 h@2D + 2 h@1D2 h@2D2

+ 4 h@1D3 h@3D

3 h@1D6- 8 h@1D4 h@2D + 2 h@1D2 h@2D2

+ 4 h@1D3 h@3D

symfun31-doc.nb 23

Page 24: SymFun 3.1: Documentationww3.haverford.edu/math/cgreene/symfun/symfun31-doc.pdfSymFun 3.1: Documentation Summer 2004: Created by Curtis Greene, Julien Colvin, Ben Fineman Summer 2009:

Restrict@p@1D^2 p@4D, 3DPToH@%D

p@1D6

6- p@1D4 p@2D +

1

2p@1D2 p@2D2

+

4

3p@1D3 p@3D

3 h@1D6- 8 h@1D4 h@2D + 2 h@1D2 h@2D2

+ 4 h@1D3 h@3D

� PToE

PToE@<f>,< opts>DOptions@PToED=8DegreeList®8<, Vars®0<

If f is a symmetric function expressed as a linear combination of p functions, PToE returns the same functionexpressed as a linear combination of the appropriate e functions. Setting the option DegreeList to a list of thedegrees of f saves Mathematica some computation, possibly resulting in faster output. Setting the option Vars tosome positive integer n restricts the number of variables in the problem to n, resulting in the possible elimation ofsome terms in the answer.

PToE@p@1D^2 p@4DD% �� EToP

e@1D6- 4 e@1D4 e@2D + 2 e@1D2 e@2D2

+ 4 e@1D3 e@3D - 4 e@1D2 e@4D

p@1D2 p@4D

Restrict@%, 3DPToE@p@1D^2 p@4D, Vars ® 3D

e@1D6- 4 e@1D4 e@2D + 2 e@1D2 e@2D2

+ 4 e@1D3 e@3D

e@1D6- 4 e@1D4 e@2D + 2 e@1D2 e@2D2

+ 4 e@1D3 e@3D

� PToM

PToM@<f>,< opts>DOptions@PToMD=8DegreeList®8<, Vars®0<

If f is a symmetric function expressed as a linear combination of p functions, PToM returns the same functionexpressed as a linear combination of the appropriate m functions. Setting the option DegreeList to a list of thedegrees of f saves Mathematica some computation, possibly resulting in faster output. Setting the option Vars tosome positive integer n restricts the number of variables in the problem to n, resulting in the possible elimation ofsome terms in the answer.

PToM@p@3D - 5 p@1D^3D% �� MToP

-4 m@3D - 15 m@2, 1D - 30 m@1, 1, 1D

-5 p@1D3+ p@3D

Restrict@%, 2DPToM@p@3D - 5 p@1D^3, Vars ® 2D

-

11

2p@1D3

+

3

2p@1D p@2D

-4 m@3D - 15 m@2, 1D

24 symfun31-doc.nb

Page 25: SymFun 3.1: Documentationww3.haverford.edu/math/cgreene/symfun/symfun31-doc.pdfSymFun 3.1: Documentation Summer 2004: Created by Curtis Greene, Julien Colvin, Ben Fineman Summer 2009:

PToM@p@4D - 3 p@3D p@1D + 2 p@1D^4DRestrict@%, 3DPToM@p@4D - 3 p@3D p@1D + 2 p@1D^4, Vars ® 3D12 m@2, 2D + 5 m@3, 1D + 24 m@2, 1, 1D + 48 m@1, 1, 1, 1D

12 m@2, 2D + 5 m@3, 1D + 24 m@2, 1, 1D

12 m@2, 2D + 5 m@3, 1D + 24 m@2, 1, 1D

� PToS

PToS@<f>,<options>DOptions@PToSD=8DegreeList®8<, Vars®0<

If f is a symmetric function expressed as a linear combination of p functions, PToS returns the same functionexpressed as a linear combination of the appropriate s functions. Setting the option DegreeList to a list of thedegrees of f saves Mathematica some computation, possibly resulting in faster output. Setting the option Vars tosome positive integer n restricts the number of variables in the problem to n, resulting in the possible elimation ofsome terms in the answer.

PToS@p@1D^3 + 2 p@3DD% �� SToP

3 s@3D + 3 s@1, 1, 1D

p@1D3+ 2 p@3D

PToS@p@1D^3 + 2 p@3D, Vars ® 2D

3 s@3D

� PToX

PToX@<f>,<n>D

If f is a symmetric function expressed as a linear combination of p functions, PToX returns the same functionexpressed in variables x[1], ..., x[n].

PToX@p@2D p@1D^2, 3D% �� XToP

x@1D4+ 2 x@1D3 x@2D + 2 x@1D2 x@2D2

+ 2 x@1D x@2D3+ x@2D4

+ 2 x@1D3 x@3D +

2 x@1D2 x@2D x@3D + 2 x@1D x@2D2 x@3D + 2 x@2D3 x@3D + 2 x@1D2 x@3D2+

2 x@1D x@2D x@3D2+ 2 x@2D2 x@3D2

+ 2 x@1D x@3D3+ 2 x@2D x@3D3

+ x@3D4

p@1D2 p@2D

� PToAll

PToAll@<f>, <opts>DOptions@PToAllD=8Targets®8E,H,S,M, X<, Vars®0<

If f is a symmetric function expressed as a linear combination of p functions, PToAll returns the same functionexpressed as linear combinations of the appropriate functions as specified in Targets. Setting the option Vars tosome positive integer n restricts the number of variables in the problem to n, resulting in the possible elimation ofsome terms in the answer. Note that the X's will only be displayed if Vars is specified.

symfun31-doc.nb 25

Page 26: SymFun 3.1: Documentationww3.haverford.edu/math/cgreene/symfun/symfun31-doc.pdfSymFun 3.1: Documentation Summer 2004: Created by Curtis Greene, Julien Colvin, Ben Fineman Summer 2009:

Sum@p@iD p@jD, 8i, 3<, 8j, 3<D;

PToAll@%D

9p@1D2+ 2 p@1D p@2D + p@2D2

+ 2 p@1D p@3D + 2 p@2D p@3D + p@3D2,

e@1D2+ 2 e@1D3

+ 3 e@1D4+ 2 e@1D5

+ e@1D6- 4 e@1D e@2D - 10 e@1D2 e@2D -

10 e@1D3 e@2D - 6 e@1D4 e@2D + 4 e@2D2+ 12 e@1D e@2D2

+ 9 e@1D2 e@2D2+ 6 e@1D e@3D +

6 e@1D2 e@3D + 6 e@1D3 e@3D - 12 e@2D e@3D - 18 e@1D e@2D e@3D + 9 e@3D2,

h@1D2- 2 h@1D3

+ 3 h@1D4- 2 h@1D5

+ h@1D6+ 4 h@1D h@2D - 10 h@1D2 h@2D +

10 h@1D3 h@2D - 6 h@1D4 h@2D + 4 h@2D2- 12 h@1D h@2D2

+ 9 h@1D2 h@2D2+ 6 h@1D h@3D -

6 h@1D2 h@3D + 6 h@1D3 h@3D + 12 h@2D h@3D - 18 h@1D h@2D h@3D + 9 h@3D2,

s@2D + 2 s@3D + 3 s@4D + 2 s@5D + s@6D + s@1, 1D - s@3, 1D + 2 s@3, 2D + 2 s@3, 3D -

2 s@4, 1D - s@5, 1D - 2 s@1, 1, 1D - s@2, 1, 1D - 2 s@2, 2, 1D + 2 s@2, 2, 2D -

2 s@3, 2, 1D + s@4, 1, 1D + 3 s@1, 1, 1, 1D + 2 s@2, 1, 1, 1D + s@3, 1, 1, 1D -

2 s@1, 1, 1, 1, 1D - s@2, 1, 1, 1, 1D + s@1, 1, 1, 1, 1, 1D, m@2D + 2 m@3D + 3 m@4D +

2 m@5D + m@6D + 2 m@1, 1D + 2 m@2, 1D + 2 m@2, 2D + 2 m@3, 1D + 2 m@3, 2D + 2 m@3, 3D=

Sum@p@iD p@jD, 8i, 3<, 8j, 3<D;

PToAll@%, Vars ® 2, Targets ® 8E, M, X<D

9p@1D2+ 2 p@1D p@2D + p@2D2

+ 2 p@1D p@3D + 2 p@2D p@3D + p@3D2,

e@1D2+ 2 e@1D3

+ 3 e@1D4+ 2 e@1D5

+ e@1D6- 4 e@1D e@2D - 10 e@1D2 e@2D -

10 e@1D3 e@2D - 6 e@1D4 e@2D + 4 e@2D2+ 12 e@1D e@2D2

+ 9 e@1D2 e@2D2,

m@2D + 2 m@3D + 3 m@4D + 2 m@5D + m@6D + 2 m@1, 1D + 2 m@2, 1D + 2 m@2, 2D + 2 m@3, 1D +

2 m@3, 2D + 2 m@3, 3D, x@1D2+ 2 x@1D3

+ 3 x@1D4+ 2 x@1D5

+ x@1D6+ 2 x@1D x@2D +

2 x@1D2 x@2D + 2 x@1D3 x@2D + x@2D2+ 2 x@1D x@2D2

+ 2 x@1D2 x@2D2+ 2 x@1D3 x@2D2

+

2 x@2D3+ 2 x@1D x@2D3

+ 2 x@1D2 x@2D3+ 2 x@1D3 x@2D3

+ 3 x@2D4+ 2 x@2D5

+ x@2D6=

� MTo[HEPSXAll]

� MToH

MToH@<f>, <opts>DOptions@MToHD=8DegreeList®8<, Vars®0<

If f is a symmetric function expressed as a linear combination of m functions, MToH returns the same functionexpressed as a linear combination of the appropriate h functions. Setting the option DegreeList to a list of thedegrees of f saves Mathematica some computation, possibly resulting in faster output. Setting the option Vars tosome positive integer n restricts the number of variables in the problem to n, resulting in the possible elimation ofsome terms in the answer.

MToH@m@1, 1, 1, 1D + 2 m@2, 2D - 3 m@3, 1D + 4 m@4DD% �� HToM

-7 h@1D4+ 26 h@1D2 h@2D - 7 h@2D2

- 31 h@1D h@3D + 23 h@4D4 m@4D + 2 m@2, 2D - 3 m@3, 1D + m@1, 1, 1, 1D

MToH@m@1, 1, 1, 1D + 2 m@2, 2D - 3 m@3, 1D + 4 m@4D, Vars ® 3D% �� HToM

16 h@1D4- 43 h@1D2 h@2D + 16 h@2D2

+ 15 h@1D h@3D4 m@4D + 2 m@2, 2D - 3 m@3, 1D + 24 m@1, 1, 1, 1D

� Bigger Examples

MToH@m@9, 1D + m@4, 3, 3D - 10 m@6, 3D + 14 m@13, 2DD �� Timing

26 symfun31-doc.nb

Page 27: SymFun 3.1: Documentationww3.haverford.edu/math/cgreene/symfun/symfun31-doc.pdfSymFun 3.1: Documentation Summer 2004: Created by Curtis Greene, Julien Colvin, Ben Fineman Summer 2009:

MToH@m@9, 1D + m@4, 3, 3D - 10 m@6, 3D + 14 m@13, 2D, Vars ® 5D �� Timing

936.037, 20 h@1D9- h@1D10

- 28 h@1D15- 180 h@1D7 h@2D + 11 h@1D8 h@2D + 238 h@1D13 h@2D +

540 h@1D5 h@2D2- 43 h@1D6 h@2D2

- 532 h@1D11 h@2D2- 590 h@1D3 h@2D3

+ 68 h@1D4 h@2D3-

700 h@1D9 h@2D3+ 150 h@1D h@2D4

- 34 h@1D2 h@2D4+ 4620 h@1D7 h@2D4

+ 2 h@2D5- 6902 h@1D5 h@2D5

+

3864 h@1D3 h@2D6- 518 h@1D h@2D7

+ 180 h@1D6 h@3D - 11 h@1D7 h@3D - 210 h@1D12 h@3D -

930 h@1D4 h@2D h@3D + 81 h@1D5 h@2D h@3D + 1008 h@1D10 h@2D h@3D + 1170 h@1D2 h@2D2 h@3D -

166 h@1D3 h@2D2 h@3D + 420 h@1D8 h@2D2 h@3D - 150 h@2D3 h@3D + 67 h@1D h@2D3 h@3D -

8638 h@1D6 h@2D3 h@3D + 14 546 h@1D4 h@2D4 h@3D - 7672 h@1D2 h@2D5 h@3D + 518 h@2D6 h@3D +

390 h@1D3 h@3D2- 40 h@1D4 h@3D2

- 476 h@1D9 h@3D2- 720 h@1D h@2D h@3D2

+ 141 h@1D2 h@2D h@3D2+

462 h@1D7 h@2D h@3D2- 33 h@2D2 h@3D2

+ 5068 h@1D5 h@2D2 h@3D2- 9912 h@1D3 h@2D3 h@3D2

+

4732 h@1D h@2D4 h@3D2+ 120 h@3D3

- 42 h@1D h@3D3- 182 h@1D6 h@3D3

- 1442 h@1D4 h@2D h@3D3+

2464 h@1D2 h@2D2 h@3D3- 924 h@2D3 h@3D3

+ 392 h@1D3 h@3D4- 154 h@1D h@2D h@3D4

-

42 h@3D5- 150 h@1D5 h@4D + 5 h@1D6 h@4D + 600 h@1D3 h@2D h@4D - 38 h@1D4 h@2D h@4D +

728 h@1D9 h@2D h@4D - 450 h@1D h@2D2 h@4D + 69 h@1D2 h@2D2 h@4D - 4914 h@1D7 h@2D2 h@4D -

10 h@2D3 h@4D + 10 920 h@1D5 h@2D3 h@4D - 8918 h@1D3 h@2D4 h@4D + 1820 h@1D h@2D5 h@4D -

450 h@1D2 h@3D h@4D + 37 h@1D3 h@3D h@4D - 364 h@1D8 h@3D h@4D + 360 h@2D h@3D h@4D -

117 h@1D h@2D h@3D h@4D + 5572 h@1D6 h@2D h@3D h@4D - 16 282 h@1D4 h@2D2 h@3D h@4D +

13 076 h@1D2 h@2D3 h@3D h@4D - 1456 h@2D4 h@3D h@4D + 45 h@3D2 h@4D - 1540 h@1D5 h@3D2 h@4D +

7896 h@1D3 h@2D h@3D2 h@4D - 5642 h@1D h@2D2 h@3D2 h@4D - 1652 h@1D2 h@3D3 h@4D +

784 h@2D h@3D3 h@4D + 90 h@1D h@4D2- 3 h@1D2 h@4D2

+ 420 h@1D7 h@4D2+ 12 h@2D h@4D2

-

3038 h@1D5 h@2D h@4D2+ 5180 h@1D3 h@2D2 h@4D2

- 1778 h@1D h@2D3 h@4D2+ 1890 h@1D4 h@3D h@4D2

-

4802 h@1D2 h@2D h@3D h@4D2+ 994 h@2D2 h@3D h@4D2

+ 1260 h@1D h@3D2 h@4D2- 588 h@1D3 h@4D3

+

476 h@1D h@2D h@4D3- 210 h@3D h@4D3

+ 150 h@1D4 h@5D - h@1D5 h@5D - 450 h@1D2 h@2D h@5D +

13 h@1D3 h@2D h@5D - 364 h@1D8 h@2D h@5D + 90 h@2D2 h@5D - 18 h@1D h@2D2 h@5D +

2366 h@1D6 h@2D2 h@5D - 4914 h@1D4 h@2D3 h@5D + 3458 h@1D2 h@2D4 h@5D - 364 h@2D5 h@5D +

360 h@1D h@3D h@5D - 15 h@1D2 h@3D h@5D + 21 h@2D h@3D h@5D - 1512 h@1D5 h@2D h@3D h@5D +

4956 h@1D3 h@2D2 h@3D h@5D - 3444 h@1D h@2D3 h@3D h@5D + 28 h@1D4 h@3D2 h@5D -

1344 h@1D2 h@2D h@3D2 h@5D + 686 h@2D2 h@3D2 h@5D + 420 h@1D h@3D3 h@5D - 90 h@4D h@5D +

3 h@1D h@4D h@5D - 420 h@1D6 h@4D h@5D + 2828 h@1D4 h@2D h@4D h@5D - 4158 h@1D2 h@2D2 h@4D h@5D +

784 h@2D3 h@4D h@5D - 1316 h@1D3 h@3D h@4D h@5D + 2632 h@1D h@2D h@3D h@4D h@5D -

630 h@3D2 h@4D h@5D + 868 h@1D2 h@4D2 h@5D - 266 h@2D h@4D2 h@5D - 182 h@1D3 h@2D h@5D2+

364 h@1D h@2D2 h@5D2- 182 h@1D2 h@3D h@5D2

+ 154 h@2D h@3D h@5D2- 210 h@1D h@4D h@5D2

-

70 h@5D3- 150 h@1D3 h@6D + h@1D4 h@6D + 360 h@1D h@2D h@6D - 15 h@1D2 h@2D h@6D + 6 h@2D2 h@6D -

270 h@3D h@6D + 24 h@1D h@3D h@6D - 12 h@4D h@6D + 90 h@1D2 h@7D + 2 h@1D3 h@7D - 90 h@2D h@7D +

12 h@1D h@2D h@7D - 21 h@3D h@7D - 90 h@1D h@8D - 9 h@1D2 h@8D + 90 h@9D + 9 h@1D h@9D=

� MToE

MToE@<f>, <opts>DOptions@MToED=8DegreeList®8<, Vars®0<

If f is a symmetric function expressed as a linear combination of m functions, MToE returns the same functionexpressed as a linear combination of the appropriate e functions. Setting the option DegreeList to a list of thedegrees of f saves Mathematica some computation, possibly resulting in faster output. Setting the option Vars tosome positive integer n restricts the number of variables in the problem to n, resulting in the possible elimation ofsome terms in the answer.

MToE@m@5D - 5 m@4, 1D + m@3, 2D - 2 m@3, 1, 1D + m@2, 2, 1DD% �� EToM

e@1D5- 10 e@1D3 e@2D + 21 e@1D e@2D2

+ 6 e@1D2 e@3D - 26 e@2D e@3D - 6 e@1D e@4D + 20 e@5Dm@5D + m@3, 2D - 5 m@4, 1D + m@2, 2, 1D - 2 m@3, 1, 1D

symfun31-doc.nb 27

Page 28: SymFun 3.1: Documentationww3.haverford.edu/math/cgreene/symfun/symfun31-doc.pdfSymFun 3.1: Documentation Summer 2004: Created by Curtis Greene, Julien Colvin, Ben Fineman Summer 2009:

MToE@m@5D - 5 m@4, 1D + m@3, 2D - 2 m@3, 1, 1D + m@2, 2, 1D, Vars ® 3D

e@1D5- 10 e@1D3 e@2D + 21 e@1D e@2D2

+ 6 e@1D2 e@3D - 26 e@2D e@3D

� Bigger Examples

MToE@m@15D - 3 m@6, 4, 2, 2, 1DD �� Timing

961.641 Second, e@1D15- 15 e@1D13 e@2D + 90 e@1D11 e@2D2

- 275 e@1D9 e@2D3+ 450 e@1D7 e@2D4

-

378 e@1D5 e@2D5+ 140 e@1D3 e@2D6

- 15 e@1D e@2D7+ 15 e@1D12 e@3D - 165 e@1D10 e@2D e@3D +

675 e@1D8 e@2D2 e@3D - 1260 e@1D6 e@2D3 e@3D + 1050 e@1D4 e@2D4 e@3D - 315 e@1D2 e@2D5 e@3D +

15 e@2D6 e@3D + 75 e@1D9 e@3D2- 540 e@1D7 e@2D e@3D2

+ 1260 e@1D5 e@2D2 e@3D2-

1050 e@1D3 e@2D3 e@3D2+ 225 e@1D e@2D4 e@3D2

+ 140 e@1D6 e@3D3- 525 e@1D4 e@2D e@3D3

+

450 e@1D2 e@2D2 e@3D3- 50 e@2D3 e@3D3

+ 75 e@1D3 e@3D4- 75 e@1D e@2D e@3D4

+ 3 e@3D5-

15 e@1D11 e@4D + 150 e@1D9 e@2D e@4D - 540 e@1D7 e@2D2 e@4D + 840 e@1D5 e@2D3 e@4D -

525 e@1D3 e@2D4 e@4D + 90 e@1D e@2D5 e@4D - 135 e@1D8 e@3D e@4D + 840 e@1D6 e@2D e@3D e@4D -

1575 e@1D4 e@2D2 e@3D e@4D + 900 e@1D2 e@2D3 e@3D e@4D - 75 e@2D4 e@3D e@4D -

315 e@1D5 e@3D2 e@4D + 900 e@1D3 e@2D e@3D2 e@4D - 450 e@1D e@2D2 e@3D2 e@4D -

150 e@1D2 e@3D3 e@4D + 60 e@2D e@3D3 e@4D + 60 e@1D7 e@4D2- 315 e@1D5 e@2D e@4D2

+

450 e@1D3 e@2D2 e@4D2- 150 e@1D e@2D3 e@4D2

+ 225 e@1D4 e@3D e@4D2- 450 e@1D2 e@2D e@3D e@4D2

+

90 e@2D2 e@3D e@4D2+ 90 e@1D e@3D2 e@4D2

- 50 e@1D3 e@4D3+ 60 e@1D e@2D e@4D3

-

15 e@3D e@4D3+ 15 e@1D10 e@5D - 135 e@1D8 e@2D e@5D + 420 e@1D6 e@2D2 e@5D -

525 e@1D4 e@2D3 e@5D + 225 e@1D2 e@2D4 e@5D - 15 e@2D5 e@5D + 120 e@1D7 e@3D e@5D -

630 e@1D5 e@2D e@3D e@5D + 900 e@1D3 e@2D2 e@3D e@5D - 300 e@1D e@2D3 e@3D e@5D +

225 e@1D4 e@3D2 e@5D - 450 e@1D2 e@2D e@3D2 e@5D + 90 e@2D2 e@3D2 e@5D + 60 e@1D e@3D3 e@5D -

105 e@1D6 e@4D e@5D + 450 e@1D4 e@2D e@4D e@5D - 453 e@1D2 e@2D2 e@4D e@5D +

66 e@2D3 e@4D e@5D - 294 e@1D3 e@3D e@4D e@5D + 348 e@1D e@2D e@3D e@4D e@5D -

36 e@3D2 e@4D e@5D + 84 e@1D2 e@4D2 e@5D - 51 e@2D e@4D2 e@5D + 45 e@1D5 e@5D2-

147 e@1D3 e@2D e@5D2+ 84 e@1D e@2D2 e@5D2

+ 81 e@1D2 e@3D e@5D2- 33 e@2D e@3D e@5D2

-

9 e@1D e@4D e@5D2- 25 e@5D3

- 15 e@1D9 e@6D + 120 e@1D7 e@2D e@6D - 315 e@1D5 e@2D2 e@6D +

300 e@1D3 e@2D3 e@6D - 75 e@1D e@2D4 e@6D - 105 e@1D6 e@3D e@6D + 450 e@1D4 e@2D e@3D e@6D -

441 e@1D2 e@2D2 e@3D e@6D + 42 e@2D3 e@3D e@6D - 168 e@1D3 e@3D2 e@6D + 216 e@1D e@2D e@3D2 e@6D -

42 e@3D3 e@6D + 90 e@1D5 e@4D e@6D - 306 e@1D3 e@2D e@4D e@6D + 192 e@1D e@2D2 e@4D e@6D +

216 e@1D2 e@3D e@4D e@6D - 96 e@2D e@3D e@4D e@6D - 81 e@1D e@4D2 e@6D - 66 e@1D4 e@5D e@6D +

144 e@1D2 e@2D e@5D e@6D - 21 e@2D2 e@5D e@6D - 120 e@1D e@3D e@5D e@6D + 48 e@4D e@5D e@6D +

21 e@1D3 e@6D2- 27 e@1D e@2D e@6D2

+ 69 e@3D e@6D2+ 15 e@1D8 e@7D - 105 e@1D6 e@2D e@7D +

225 e@1D4 e@2D2 e@7D - 165 e@1D2 e@2D3 e@7D + 45 e@2D4 e@7D + 90 e@1D5 e@3D e@7D -

264 e@1D3 e@2D e@3D e@7D + 108 e@1D e@2D2 e@3D e@7D + 72 e@1D2 e@3D2 e@7D +

24 e@2D e@3D2 e@7D - 102 e@1D4 e@4D e@7D + 258 e@1D2 e@2D e@4D e@7D - 147 e@2D2 e@4D e@7D -

126 e@1D e@3D e@4D e@7D + 87 e@4D2 e@7D + 78 e@1D3 e@5D e@7D - 36 e@1D e@2D e@5D e@7D -

30 e@3D e@5D e@7D - 63 e@1D2 e@6D e@7D - 24 e@2D e@6D e@7D + 42 e@1D e@7D2- 15 e@1D7 e@8D +

90 e@1D5 e@2D e@8D - 135 e@1D3 e@2D2 e@8D + 30 e@1D e@2D3 e@8D - 72 e@1D4 e@3D e@8D +

102 e@1D2 e@2D e@3D e@8D + 51 e@2D2 e@3D e@8D + 12 e@1D e@3D2 e@8D + 84 e@1D3 e@4D e@8D -

48 e@1D e@2D e@4D e@8D - 90 e@3D e@4D e@8D - 117 e@1D2 e@5D e@8D - 18 e@2D e@5D e@8D +

102 e@1D e@6D e@8D + 21 e@7D e@8D + 15 e@1D6 e@9D - 132 e@1D4 e@2D e@9D + 303 e@1D2 e@2D2 e@9D -

129 e@2D3 e@9D + 114 e@1D3 e@3D e@9D - 378 e@1D e@2D e@3D e@9D + 96 e@3D2 e@9D -

153 e@1D2 e@4D e@9D + 324 e@2D e@4D e@9D + 186 e@1D e@5D e@9D - 285 e@6D e@9D + 66 e@1D5 e@10D -

288 e@1D3 e@2D e@10D + 219 e@1D e@2D2 e@10D + 315 e@1D2 e@3D e@10D - 246 e@2D e@3D e@10D -

276 e@1D e@4D e@10D + 225 e@5D e@10D - 66 e@1D4 e@11D + 153 e@1D2 e@2D e@11D +

75 e@2D2 e@11D - 180 e@1D e@3D e@11D - 3 e@4D e@11D + 165 e@1D3 e@12D - 384 e@1D e@2D e@12D +

309 e@3D e@12D - 165 e@1D2 e@13D + 57 e@2D e@13D + 399 e@1D e@14D - 525 e@15D=

28 symfun31-doc.nb

Page 29: SymFun 3.1: Documentationww3.haverford.edu/math/cgreene/symfun/symfun31-doc.pdfSymFun 3.1: Documentation Summer 2004: Created by Curtis Greene, Julien Colvin, Ben Fineman Summer 2009:

MToE@m@15D - 3 m@6, 4, 2, 2, 1D, Vars ® 6D �� Timing

926.094 Second, e@1D15- 15 e@1D13 e@2D + 90 e@1D11 e@2D2

- 275 e@1D9 e@2D3+ 450 e@1D7 e@2D4

-

378 e@1D5 e@2D5+ 140 e@1D3 e@2D6

- 15 e@1D e@2D7+ 15 e@1D12 e@3D - 165 e@1D10 e@2D e@3D +

675 e@1D8 e@2D2 e@3D - 1260 e@1D6 e@2D3 e@3D + 1050 e@1D4 e@2D4 e@3D - 315 e@1D2 e@2D5 e@3D +

15 e@2D6 e@3D + 75 e@1D9 e@3D2- 540 e@1D7 e@2D e@3D2

+ 1260 e@1D5 e@2D2 e@3D2-

1050 e@1D3 e@2D3 e@3D2+ 225 e@1D e@2D4 e@3D2

+ 140 e@1D6 e@3D3- 525 e@1D4 e@2D e@3D3

+

450 e@1D2 e@2D2 e@3D3- 50 e@2D3 e@3D3

+ 75 e@1D3 e@3D4- 75 e@1D e@2D e@3D4

+ 3 e@3D5-

15 e@1D11 e@4D + 150 e@1D9 e@2D e@4D - 540 e@1D7 e@2D2 e@4D + 840 e@1D5 e@2D3 e@4D -

525 e@1D3 e@2D4 e@4D + 90 e@1D e@2D5 e@4D - 135 e@1D8 e@3D e@4D + 840 e@1D6 e@2D e@3D e@4D -

1575 e@1D4 e@2D2 e@3D e@4D + 900 e@1D2 e@2D3 e@3D e@4D - 75 e@2D4 e@3D e@4D -

315 e@1D5 e@3D2 e@4D + 900 e@1D3 e@2D e@3D2 e@4D - 450 e@1D e@2D2 e@3D2 e@4D -

150 e@1D2 e@3D3 e@4D + 60 e@2D e@3D3 e@4D + 60 e@1D7 e@4D2- 315 e@1D5 e@2D e@4D2

+

450 e@1D3 e@2D2 e@4D2- 150 e@1D e@2D3 e@4D2

+ 225 e@1D4 e@3D e@4D2- 450 e@1D2 e@2D e@3D e@4D2

+

90 e@2D2 e@3D e@4D2+ 90 e@1D e@3D2 e@4D2

- 50 e@1D3 e@4D3+ 60 e@1D e@2D e@4D3

-

15 e@3D e@4D3+ 15 e@1D10 e@5D - 135 e@1D8 e@2D e@5D + 420 e@1D6 e@2D2 e@5D -

525 e@1D4 e@2D3 e@5D + 225 e@1D2 e@2D4 e@5D - 15 e@2D5 e@5D + 120 e@1D7 e@3D e@5D -

630 e@1D5 e@2D e@3D e@5D + 900 e@1D3 e@2D2 e@3D e@5D - 300 e@1D e@2D3 e@3D e@5D +

225 e@1D4 e@3D2 e@5D - 450 e@1D2 e@2D e@3D2 e@5D + 90 e@2D2 e@3D2 e@5D + 60 e@1D e@3D3 e@5D -

105 e@1D6 e@4D e@5D + 450 e@1D4 e@2D e@4D e@5D - 453 e@1D2 e@2D2 e@4D e@5D +

66 e@2D3 e@4D e@5D - 294 e@1D3 e@3D e@4D e@5D + 348 e@1D e@2D e@3D e@4D e@5D -

36 e@3D2 e@4D e@5D + 84 e@1D2 e@4D2 e@5D - 51 e@2D e@4D2 e@5D + 45 e@1D5 e@5D2-

147 e@1D3 e@2D e@5D2+ 84 e@1D e@2D2 e@5D2

+ 81 e@1D2 e@3D e@5D2- 33 e@2D e@3D e@5D2

-

9 e@1D e@4D e@5D2- 25 e@5D3

- 15 e@1D9 e@6D + 120 e@1D7 e@2D e@6D - 315 e@1D5 e@2D2 e@6D +

300 e@1D3 e@2D3 e@6D - 75 e@1D e@2D4 e@6D - 105 e@1D6 e@3D e@6D + 450 e@1D4 e@2D e@3D e@6D -

441 e@1D2 e@2D2 e@3D e@6D + 42 e@2D3 e@3D e@6D - 168 e@1D3 e@3D2 e@6D +

216 e@1D e@2D e@3D2 e@6D - 42 e@3D3 e@6D + 90 e@1D5 e@4D e@6D - 306 e@1D3 e@2D e@4D e@6D +

192 e@1D e@2D2 e@4D e@6D + 216 e@1D2 e@3D e@4D e@6D - 96 e@2D e@3D e@4D e@6D -

81 e@1D e@4D2 e@6D - 66 e@1D4 e@5D e@6D + 144 e@1D2 e@2D e@5D e@6D - 21 e@2D2 e@5D e@6D -

120 e@1D e@3D e@5D e@6D + 48 e@4D e@5D e@6D + 21 e@1D3 e@6D2- 27 e@1D e@2D e@6D2

+ 69 e@3D e@6D2=

� MToP

MToP@<f>, <opts>DOptions@MToPD=8DegreeList®8<, Vars®0<

If f is a symmetric function expressed as a linear combination of m functions, MToP returns the same functionexpressed as a linear combination of the appropriate p functions. Setting the option DegreeList to a list of thedegrees of f saves Mathematica some computation, possibly resulting in faster output. Setting the option Vars tosome positive integer n restricts the number of variables in the problem to n, resulting in the possible elimation ofsome terms in the answer.

MToP@m@4, 2, 1D - 3 m@5, 2D + 2 m@3, 2, 2DD% �� PToM

p@2D2 p@3D + p@1D p@2D p@4D - 2 p@3D p@4D - 6 p@2D p@5D - p@1D p@6D + 7 p@7D-3 m@5, 2D + 2 m@3, 2, 2D + m@4, 2, 1D

MToP@m@4, 2, 1D - 3 m@5, 2D + 2 m@3, 2, 2D, Vars ® 3D

p@1D7

9-

7

12p@1D5 p@2D +

2

3p@1D3 p@2D2

+

1

4p@1D p@2D3

+

25

36p@1D4 p@3D -

8

3p@1D2 p@2D p@3D -

11

12p@2D2 p@3D +

22

9p@1D p@3D2

symfun31-doc.nb 29

Page 30: SymFun 3.1: Documentationww3.haverford.edu/math/cgreene/symfun/symfun31-doc.pdfSymFun 3.1: Documentation Summer 2004: Created by Curtis Greene, Julien Colvin, Ben Fineman Summer 2009:

� MToS

MToS@<f>, <opts>DOptions@MToSD=8DegreeList®8<, Vars®0<

If f is a symmetric function expressed as a linear combination of m functions, MToS returns the same functionexpressed as a linear combination of the appropriate s functions. Setting the option DegreeList to a list of thedegrees of f saves Mathematica some computation, possibly resulting in faster output. Setting the option Vars tosome positive integer n restricts the number of variables in the problem to n, resulting in the possible elimation ofsome terms in the answer.

MToS@m@5, 2D - 6 m@3, 1, 1D + 5 m@4, 2, 1, 1D - 9 m@7DD% �� SToM

-9 s@7D - s@4, 3D + s@5, 2D + 9 s@6, 1D + 6 s@2, 2, 1D - 6 s@3, 1, 1D - s@3, 2, 2D +

s@3, 3, 1D - 10 s@5, 1, 1D + 6 s@2, 1, 1, 1D + s@2, 2, 2, 1D + 10 s@2, 2, 2, 2D -

5 s@3, 2, 2, 1D - 5 s@3, 3, 1, 1D + 10 s@4, 1, 1, 1D + 5 s@4, 2, 1, 1D - 18 s@1, 1, 1, 1, 1D -

s@2, 2, 1, 1, 1D - 5 s@2, 2, 2, 1, 1D - 10 s@3, 1, 1, 1, 1D + 10 s@3, 2, 1, 1, 1D -

15 s@4, 1, 1, 1, 1D + 11 s@2, 1, 1, 1, 1, 1D - 5 s@2, 2, 1, 1, 1, 1D + 15 s@3, 1, 1, 1, 1, 1D -

11 s@1, 1, 1, 1, 1, 1, 1D - 30 s@2, 1, 1, 1, 1, 1, 1D + 60 s@1, 1, 1, 1, 1, 1, 1, 1D-9 m@7D + m@5, 2D - 6 m@3, 1, 1D + 5 m@4, 2, 1, 1D

MToS@m@5, 2D - 6 m@3, 1, 1D + 5 m@4, 2, 1, 1D - 9 m@7D, Vars ® 3D

-9 s@7D - s@4, 3D + s@5, 2D + 9 s@6, 1D +

6 s@2, 2, 1D - 6 s@3, 1, 1D - s@3, 2, 2D + s@3, 3, 1D - 10 s@5, 1, 1D

� MToX

MToX@<f>, <n>D

If f is a symmetric function expressed as a linear combination of m functions, MToX returns the same functionexpressed in the variables x[1], ..., x[n].

MToX@m@5, 2D + m@4D, 3D% �� XToM

x@1D4+ x@1D5 x@2D2

+ x@2D4+ x@1D2 x@2D5

+

x@1D5 x@3D2+ x@2D5 x@3D2

+ x@3D4+ x@1D2 x@3D5

+ x@2D2 x@3D5

m@4D + m@5, 2D

� MToAll

MToAll@<f>, <opts>DOptions@MToAllD=8Targets®8E,P,S,H, X<, Vars®0<

If f is a symmetric function expressed as a linear combination of m functions, MToAll returns the same functionexpressed as linear combinations of the appropriate functions as specified in Targets. Setting the option Vars tosome positive integer n restricts the number of variables in the problem to n, resulting in the possible elimation ofsome terms in the answer. Note that the X's will only be displayed if Vars is specified.

MToAll@m@3, 2, 1DD

9m@3, 2, 1D, e@1D e@2D e@3D - 3 e@3D2- 3 e@1D2 e@4D + 4 e@2D e@4D + 7 e@1D e@5D - 12 e@6D,

p@1D p@2D p@3D - p@3D2- p@2D p@4D - p@1D p@5D + 2 p@6D,

-2 s@2, 2, 2D + s@3, 2, 1D - 2 s@3, 1, 1, 1D + 4 s@2, 1, 1, 1, 1D - 6 s@1, 1, 1, 1, 1, 1D,

-6 h@1D6+ 34 h@1D4 h@2D - 48 h@1D2 h@2D2

+ 8 h@2D3- 30 h@1D3 h@3D +

61 h@1D h@2D h@3D - 15 h@3D2+ 21 h@1D2 h@4D - 20 h@2D h@4D - 17 h@1D h@5D + 12 h@6D=

30 symfun31-doc.nb

Page 31: SymFun 3.1: Documentationww3.haverford.edu/math/cgreene/symfun/symfun31-doc.pdfSymFun 3.1: Documentation Summer 2004: Created by Curtis Greene, Julien Colvin, Ben Fineman Summer 2009:

MToAll@m@4, 1, 1D - 2 m@3, 2, 1D, Vars ® 3, Targets ® 8E, S, X<D

9-2 m@3, 2, 1D + m@4, 1, 1D,

e@1D3 e@3D - 5 e@1D e@2D e@3D + 9 e@3D2, 5 s@2, 2, 2D - 3 s@3, 2, 1D + s@4, 1, 1D,

x@1D4 x@2D x@3D - 2 x@1D3 x@2D2 x@3D - 2 x@1D2 x@2D3 x@3D + x@1D x@2D4 x@3D - 2 x@1D3 x@2D x@3D2-

2 x@1D x@2D3 x@3D2- 2 x@1D2 x@2D x@3D3

- 2 x@1D x@2D2 x@3D3+ x@1D x@2D x@3D4=

� ETo[HMPSXAll]

� EToH

EToH@<f>, <opts>DOptions@EToHD=8DegreeList®8<, Vars®0<

If f is a symmetric function expressed as a linear combination of e functions, EToH returns the same functionexpressed as a linear combination of the appropriate h functions. Setting the option DegreeList to a list of thedegrees of f saves Mathematica some computation, possibly resulting in faster output. Setting the option Vars tosome positive integer n restricts the number of variables in the problem to n, resulting in the possible elimation ofsome terms in the answer.

EToH@e@3D e@2D e@1D + e@4D e@2DD% �� HToE

2 h@1D6- 7 h@1D4 h@2D + 6 h@1D2 h@2D2

- h@2D3+

3 h@1D3 h@3D - 3 h@1D h@2D h@3D - h@1D2 h@4D + h@2D h@4De@1D e@2D e@3D + e@2D e@4D

EToH@e@3D e@2D e@1D + e@4D e@2D, Vars ® 4D

2 h@1D6- 7 h@1D4 h@2D + 6 h@1D2 h@2D2

- h@2D3+

3 h@1D3 h@3D - 3 h@1D h@2D h@3D - h@1D2 h@4D + h@2D h@4DEToH@e@3D e@2D e@1D + e@4D e@2D, Vars ® 3D

h@1D6- 3 h@1D4 h@2D + 2 h@1D2 h@2D2

+ h@1D3 h@3D - h@1D h@2D h@3D

Product@1 + e@iD, 8i, 1, 3<D �� Expand

EToH@%D% �� HToE

1 + e@1D + e@2D + e@1D e@2D + e@3D + e@1D e@3D + e@2D e@3D + e@1D e@2D e@3D

1 + h@1D + h@1D2+ 2 h@1D3

+ h@1D4+ h@1D5

+ h@1D6- h@2D - 3 h@1D h@2D -

2 h@1D2 h@2D - 3 h@1D3 h@2D - 3 h@1D4 h@2D + 2 h@1D h@2D2+ 2 h@1D2 h@2D2

+

h@3D + h@1D h@3D + h@1D2 h@3D + h@1D3 h@3D - h@2D h@3D - h@1D h@2D h@3D1 + e@1D + e@2D + e@1D e@2D + e@3D + e@1D e@3D + e@2D e@3D + e@1D e@2D e@3D

� EToM

EToM@<f>, <opts>DOptions@EToMD=8DegreeList®8<, Vars®0<

If f is a symmetric function expressed as a linear combination of e functions, EToM returns the same functionexpressed as a linear combination of the appropriate m functions. Setting the option DegreeList to a list of thedegrees of f saves Mathematica some computation, possibly resulting in faster output. Setting the option Vars tosome positive integer n restricts the number of variables in the problem to n, resulting in the possible elimation ofsome terms in the answer.

symfun31-doc.nb 31

Page 32: SymFun 3.1: Documentationww3.haverford.edu/math/cgreene/symfun/symfun31-doc.pdfSymFun 3.1: Documentation Summer 2004: Created by Curtis Greene, Julien Colvin, Ben Fineman Summer 2009:

Product@1 + e@iD, 8i, 3<D �� Expand

EToM@%D% �� MToE

1 + e@1D + e@2D + e@1D e@2D + e@3D + e@1D e@3D + e@2D e@3D + e@1D e@2D e@3D

1 + m@1D + m@1, 1D + m@2, 1D + 4 m@1, 1, 1D + m@2, 1, 1D + m@2, 2, 1D +

3 m@2, 2, 2D + m@3, 2, 1D + 4 m@1, 1, 1, 1D + 3 m@2, 1, 1, 1D + 8 m@2, 2, 1, 1D +

3 m@3, 1, 1, 1D + 10 m@1, 1, 1, 1, 1D + 22 m@2, 1, 1, 1, 1D + 60 m@1, 1, 1, 1, 1, 1D1 + e@1D + e@2D + e@1D e@2D + e@3D + e@1D e@3D + e@2D e@3D + e@1D e@2D e@3D

Product@1 + e@iD, 8i, 3<D �� Expand

EToM@%, Vars ® 3D1 + e@1D + e@2D + e@1D e@2D + e@3D + e@1D e@3D + e@2D e@3D + e@1D e@2D e@3D

1 + m@1D + m@1, 1D + m@2, 1D + 4 m@1, 1, 1D + m@2, 1, 1D + m@2, 2, 1D + 3 m@2, 2, 2D + m@3, 2, 1D

� EToP

EToP@<f>, <opts>DOptions@EToPD=8DegreeList®8<, Vars®0<

If f is a symmetric function expressed as a linear combination of e functions, EToP returns the same functionexpressed as a linear combination of the appropriate p functions. Setting the option DegreeList to a list of thedegrees of f saves Mathematica some computation, possibly resulting in faster output. Setting the option Vars tosome positive integer n restricts the number of variables in the problem to n, resulting in the possible elimation ofsome terms in the answer.

EToP@e@3D e@2D e@1D - 2 e@2D^2 e@1D^2D% �� PToE

-

5

12p@1D6

+

2

3p@1D4 p@2D -

1

4p@1D2 p@2D2

+

1

6p@1D3 p@3D -

1

6p@1D p@2D p@3D

-2 e@1D2 e@2D2+ e@1D e@2D e@3D

EToP@e@3D e@2D e@1D - 2 e@2D^2 e@1D^2, Vars ® 3D

-

5

12p@1D6

+

2

3p@1D4 p@2D -

1

4p@1D2 p@2D2

+

1

6p@1D3 p@3D -

1

6p@1D p@2D p@3D

EToP@e@3D e@2D e@1D - 2 e@2D^2 e@1D^2, Vars ® 2D

-

1

2p@1D6

+ p@1D4 p@2D -

1

2p@1D2 p@2D2

� EToS

EToS@<f>, <opts>DOptions@EToSD=8DegreeList®8<, Vars®0<

If f is a symmetric function expressed as a linear combination of e functions, EToS returns the same functionexpressed as a linear combination of the appropriate s functions. Setting the option DegreeList to a list of thedegrees of f saves Mathematica some computation, possibly resulting in faster output. Setting the option Vars tosome positive integer n restricts the number of variables in the problem to n, resulting in the possible elimation ofsome terms in the answer.

32 symfun31-doc.nb

Page 33: SymFun 3.1: Documentationww3.haverford.edu/math/cgreene/symfun/symfun31-doc.pdfSymFun 3.1: Documentation Summer 2004: Created by Curtis Greene, Julien Colvin, Ben Fineman Summer 2009:

Sum@e@iD e@jD, 8i, 1, 3<, 8j, 1, 3<DEToS@%D% �� SToE

e@1D2+ 2 e@1D e@2D + e@2D2

+ 2 e@1D e@3D + 2 e@2D e@3D + e@3D2

s@2D + s@1, 1D + 2 s@2, 1D + s@2, 2D + 2 s@1, 1, 1D +

3 s@2, 1, 1D + 2 s@2, 2, 1D + s@2, 2, 2D + 3 s@1, 1, 1, 1D + 2 s@2, 1, 1, 1D +

s@2, 2, 1, 1D + 2 s@1, 1, 1, 1, 1D + s@2, 1, 1, 1, 1D + s@1, 1, 1, 1, 1, 1D

e@1D2+ 2 e@1D e@2D + e@2D2

+ 2 e@1D e@3D + 2 e@2D e@3D + e@3D2

Sum@e@iD e@jD, 8i, 1, 3<, 8j, 1, 3<DEToS@%, Vars ® 3D

e@1D2+ 2 e@1D e@2D + e@2D2

+ 2 e@1D e@3D + 2 e@2D e@3D + e@3D2

s@2D + s@1, 1D + 2 s@2, 1D + s@2, 2D + 2 s@1, 1, 1D + 3 s@2, 1, 1D + 2 s@2, 2, 1D + s@2, 2, 2D

� EToX

EToX@<f>, <n>D

If f is a symmetric function expressed as a linear combination of e functions, EToX returns the same functionexpressed in the variables x[1], ..., x[n].

EToX@e@1D^2 e@2D, 4D% �� XToE

x@1D3 x@2D + 2 x@1D2 x@2D2+ x@1D x@2D3

+ x@1D3 x@3D + 5 x@1D2 x@2D x@3D +

5 x@1D x@2D2 x@3D + x@2D3 x@3D + 2 x@1D2 x@3D2+ 5 x@1D x@2D x@3D2

+ 2 x@2D2 x@3D2+

x@1D x@3D3+ x@2D x@3D3

+ x@1D3 x@4D + 5 x@1D2 x@2D x@4D + 5 x@1D x@2D2 x@4D + x@2D3 x@4D +

5 x@1D2 x@3D x@4D + 12 x@1D x@2D x@3D x@4D + 5 x@2D2 x@3D x@4D + 5 x@1D x@3D2 x@4D +

5 x@2D x@3D2 x@4D + x@3D3 x@4D + 2 x@1D2 x@4D2+ 5 x@1D x@2D x@4D2

+ 2 x@2D2 x@4D2+

5 x@1D x@3D x@4D2+ 5 x@2D x@3D x@4D2

+ 2 x@3D2 x@4D2+ x@1D x@4D3

+ x@2D x@4D3+ x@3D x@4D3

e@1D2 e@2D

� EToAll

EToAll@<f>, <opts>DOptions@EToAllD=8Targets®8H,P,S,M, X<, Vars®0<

If f is a symmetric function expressed as a linear combination of e functions, EToAll returns the same functionexpressed as linear combinations of the appropriate functions as specified in Targets. Setting the option Vars tosome positive integer n restricts the number of variables in the problem to n, resulting in the possible elimation ofsome terms in the answer. Note that the X's will only be displayed if Vars is specified.

symfun31-doc.nb 33

Page 34: SymFun 3.1: Documentationww3.haverford.edu/math/cgreene/symfun/symfun31-doc.pdfSymFun 3.1: Documentation Summer 2004: Created by Curtis Greene, Julien Colvin, Ben Fineman Summer 2009:

Sum@e@iD e@jD, 8i, 3<, 8j, 3<DEToAll@%D

e@1D2+ 2 e@1D e@2D + e@2D2

+ 2 e@1D e@3D + 2 e@2D e@3D + e@3D2

:e@1D2+ 2 e@1D e@2D + e@2D2

+ 2 e@1D e@3D + 2 e@2D e@3D + e@3D2,

h@1D2+ 2 h@1D3

+ 3 h@1D4+ 2 h@1D5

+ h@1D6- 2 h@1D h@2D - 6 h@1D2 h@2D -

6 h@1D3 h@2D - 4 h@1D4 h@2D + h@2D2+ 4 h@1D h@2D2

+ 4 h@1D2 h@2D2+ 2 h@1D h@3D +

2 h@1D2 h@3D + 2 h@1D3 h@3D - 2 h@2D h@3D - 4 h@1D h@2D h@3D + h@3D2,

p@1D2+ p@1D3

+

7 p@1D4

12+

p@1D5

6+

p@1D6

36- p@1D p@2D -

3

2p@1D2 p@2D -

2

3p@1D3 p@2D -

1

6p@1D4 p@2D +

p@2D2

4+

1

2p@1D p@2D2

+

1

4p@1D2 p@2D2

+

2

3p@1D p@3D +

1

3p@1D2 p@3D +

1

9p@1D3 p@3D -

1

3p@2D p@3D -

1

3p@1D p@2D p@3D +

p@3D2

9,

s@2D + s@1, 1D + 2 s@2, 1D + s@2, 2D + 2 s@1, 1, 1D + 3 s@2, 1, 1D + 2 s@2, 2, 1D +

s@2, 2, 2D + 3 s@1, 1, 1, 1D + 2 s@2, 1, 1, 1D + s@2, 2, 1, 1D +

2 s@1, 1, 1, 1, 1D + s@2, 1, 1, 1, 1D + s@1, 1, 1, 1, 1, 1D,

m@2D + 2 m@1, 1D + 2 m@2, 1D + m@2, 2D + 6 m@1, 1, 1D + 4 m@2, 1, 1D + 2 m@2, 2, 1D +

m@2, 2, 2D + 14 m@1, 1, 1, 1D + 6 m@2, 1, 1, 1D + 2 m@2, 2, 1, 1D +

20 m@1, 1, 1, 1, 1D + 6 m@2, 1, 1, 1, 1D + 20 m@1, 1, 1, 1, 1, 1D>

Sum@e@iD e@jD, 8i, 3<, 8j, 3<DEToAll@%, Vars ® 2, Targets ® 8P, M, X<D

e@1D2+ 2 e@1D e@2D + e@2D2

+ 2 e@1D e@3D + 2 e@2D e@3D + e@3D2

:e@1D2+ 2 e@1D e@2D + e@2D2

+ 2 e@1D e@3D + 2 e@2D e@3D + e@3D2,

p@1D2+ p@1D3

+

p@1D4

4- p@1D p@2D -

1

2p@1D2 p@2D +

p@2D2

4, m@2D + 2 m@1, 1D + 2 m@2, 1D + m@2, 2D,

x@1D2+ 2 x@1D x@2D + 2 x@1D2 x@2D + x@2D2

+ 2 x@1D x@2D2+ x@1D2 x@2D2>

� HTo[EMPSXAll]

� HRestrictionRules

HRestrictionRules@<deg>, <var>D

HRestrictionRules[deg, var] creates a list of rules that express h functions of degree deg in terms of other hfuntions of degree deg when the number of variables is restricted to var. The basis used for this is h[lambda]functions where lambda[[1]]£var (note that this is NOT the same basis generated by HList[deg, var]).

HRestrictionRules@4, 2DHList@4, 2D

9h@4D ® -h@1D4+ h@1D2 h@2D + h@2D2, h@1D h@3D ® -h@1D4

+ 2 h@1D2 h@2D,

h@2D2® h@2D2, h@1D2 h@2D ® h@1D2 h@2D, h@1D4

® h@1D4=

9h@4D, h@1D h@3D, h@2D2=

34 symfun31-doc.nb

Page 35: SymFun 3.1: Documentationww3.haverford.edu/math/cgreene/symfun/symfun31-doc.pdfSymFun 3.1: Documentation Summer 2004: Created by Curtis Greene, Julien Colvin, Ben Fineman Summer 2009:

HRestrictionRules@6, 1DHList@6, 1D

9h@6D ® h@1D6, h@1D h@5D ® h@1D6, h@2D h@4D ® h@1D6,

h@1D2 h@4D ® h@1D6, h@3D2® h@1D6, h@1D h@2D h@3D ® h@1D6, h@1D3 h@3D ® h@1D6,

h@2D3® h@1D6, h@1D2 h@2D2

® h@1D6, h@1D4 h@2D ® h@1D6, h@1D6® h@1D6=

8h@6D<

� HToE

HToE@<f>, <opts>DOptions@HToED=8DegreeList®8<, Vars®0<

If f is a symmetric function expressed as a linear combination of h functions, HToE returns the same functionexpressed as a linear combination of the appropriate e functions. Setting the option DegreeList to a list of thedegrees of f saves Mathematica some computation, possibly resulting in faster output. Setting the option Vars tosome positive integer n restricts the number of variables in the problem to n, resulting in the possible elimation ofsome terms in the answer.

1 + Sum@h@iD, 8i, 1, 6<DHToE@%D% �� EToH

1 + h@1D + h@2D + h@3D + h@4D + h@5D + h@6D

1 + e@1D + e@1D2+ e@1D3

+ e@1D4+ e@1D5

+ e@1D6- e@2D - 2 e@1D e@2D - 3 e@1D2 e@2D -

4 e@1D3 e@2D - 5 e@1D4 e@2D + e@2D2+ 3 e@1D e@2D2

+ 6 e@1D2 e@2D2- e@2D3

+ e@3D +

2 e@1D e@3D + 3 e@1D2 e@3D + 4 e@1D3 e@3D - 2 e@2D e@3D - 6 e@1D e@2D e@3D +

e@3D2- e@4D - 2 e@1D e@4D - 3 e@1D2 e@4D + 2 e@2D e@4D + e@5D + 2 e@1D e@5D - e@6D

1 + h@1D + h@2D + h@3D + h@4D + h@5D + h@6D

1 + Sum@h@iD, 8i, 1, 6<DHToE@%, Vars ® 3D1 + h@1D + h@2D + h@3D + h@4D + h@5D + h@6D

1 + e@1D + e@1D2+ e@1D3

+ e@1D4+ e@1D5

+ e@1D6- e@2D - 2 e@1D e@2D - 3 e@1D2 e@2D -

4 e@1D3 e@2D - 5 e@1D4 e@2D + e@2D2+ 3 e@1D e@2D2

+ 6 e@1D2 e@2D2- e@2D3

+ e@3D +

2 e@1D e@3D + 3 e@1D2 e@3D + 4 e@1D3 e@3D - 2 e@2D e@3D - 6 e@1D e@2D e@3D + e@3D2

� HToM

HToM@<f>, <opts>DOptions@HToMD=8DegreeList®8<,Vars®0<

If f is a symmetric function expressed as a linear combination of h functions, HToM returns the same functionexpressed as a linear combination of the appropriate m functions. Setting the option DegreeList to a list of thedegrees of f saves Mathematica some computation, possibly resulting in faster output. Setting the option Vars tosome positive integer n restricts the number of variables in the problem to n, resulting in the possible elimation ofsome terms in the answer.

symfun31-doc.nb 35

Page 36: SymFun 3.1: Documentationww3.haverford.edu/math/cgreene/symfun/symfun31-doc.pdfSymFun 3.1: Documentation Summer 2004: Created by Curtis Greene, Julien Colvin, Ben Fineman Summer 2009:

1 + Sum@h@iD, 8i, 1, 6<DHToM@%D% �� MToH

1 + h@1D + h@2D + h@3D + h@4D + h@5D + h@6D

1 + m@1D + m@2D + m@3D + m@4D + m@5D + m@6D + m@1, 1D + m@2, 1D + m@2, 2D + m@3, 1D +

m@3, 2D + m@3, 3D + m@4, 1D + m@4, 2D + m@5, 1D + m@1, 1, 1D + m@2, 1, 1D + m@2, 2, 1D +

m@2, 2, 2D + m@3, 1, 1D + m@3, 2, 1D + m@4, 1, 1D + m@1, 1, 1, 1D + m@2, 1, 1, 1D +

m@2, 2, 1, 1D + m@3, 1, 1, 1D + m@1, 1, 1, 1, 1D + m@2, 1, 1, 1, 1D + m@1, 1, 1, 1, 1, 1D1 + h@1D + h@2D + h@3D + h@4D + h@5D + h@6D

1 + Sum@h@iD, 8i, 1, 6<DHToM@%, Vars ® 3D1 + h@1D + h@2D + h@3D + h@4D + h@5D + h@6D

1 + m@1D + m@2D + m@3D + m@4D + m@5D + m@6D + m@1, 1D + m@2, 1D + m@2, 2D +

m@3, 1D + m@3, 2D + m@3, 3D + m@4, 1D + m@4, 2D + m@5, 1D + m@1, 1, 1D +

m@2, 1, 1D + m@2, 2, 1D + m@2, 2, 2D + m@3, 1, 1D + m@3, 2, 1D + m@4, 1, 1D

� HToP

HToP@<f>, <opts>DOptions@HToPD=8DegreeList®8<, Vars®0<

If f is a symmetric function expressed as a linear combination of h functions, HToP returns the same functionexpressed as a linear combination of the appropriate p functions. Setting the option DegreeList to a list of thedegrees of f saves Mathematica some computation, possibly resulting in faster output. Setting the option Vars tosome positive integer n restricts the number of variables in the problem to n, resulting in the possible elimation ofsome terms in the answer.

HToP@h@3D h@2D h@1D - 2 h@2D^2 h@1D^2D% �� PToH

-

5

12p@1D6

-

2

3p@1D4 p@2D -

1

4p@1D2 p@2D2

+

1

6p@1D3 p@3D +

1

6p@1D p@2D p@3D

-2 h@1D2 h@2D2+ h@1D h@2D h@3D

HToP@h@3D h@2D h@1D - 2 h@2D^2 h@1D^2, Vars ® 3D

-

5

12p@1D6

-

2

3p@1D4 p@2D -

1

4p@1D2 p@2D2

+

1

6p@1D3 p@3D +

1

6p@1D p@2D p@3D

HToP@h@3D h@2D h@1D - 2 h@2D^2 h@1D^2, Vars ® 2D

-

1

2p@1D6

-

1

2p@1D4 p@2D

� HToS

HToS@<f>, <opts>DOptions@HToSD=8DegreeList®8<, Vars®0<

If f is a symmetric function expressed as a linear combination of h functions, HToS returns the same functionexpressed as a linear combination of the appropriate s functions. Setting the option DegreeList to a list of thedegrees of f saves Mathematica some computation, possibly resulting in faster output. Setting the option Vars tosome positive integer n restricts the number of variables in the problem to n, resulting in the possible elimation ofsome terms in the answer.

36 symfun31-doc.nb

Page 37: SymFun 3.1: Documentationww3.haverford.edu/math/cgreene/symfun/symfun31-doc.pdfSymFun 3.1: Documentation Summer 2004: Created by Curtis Greene, Julien Colvin, Ben Fineman Summer 2009:

1 + Sum@h@iD h@jD, 8i, 3<, 8j, 3<DHToS@%D% �� SToH

1 + h@1D2+ 2 h@1D h@2D + h@2D2

+ 2 h@1D h@3D + 2 h@2D h@3D + h@3D2

1 + s@2D + 2 s@3D + 3 s@4D + 2 s@5D + s@6D + s@1, 1D + 2 s@2, 1D +

s@2, 2D + 3 s@3, 1D + 2 s@3, 2D + s@3, 3D + 2 s@4, 1D + s@4, 2D + s@5, 1D

1 + h@1D2+ 2 h@1D h@2D + h@2D2

+ 2 h@1D h@3D + 2 h@2D h@3D + h@3D2

1 + Sum@h@iD h@jD, 8i, 3<, 8j, 3<DHToS@%, Vars ® 1D

1 + h@1D2+ 2 h@1D h@2D + h@2D2

+ 2 h@1D h@3D + 2 h@2D h@3D + h@3D2

1 + s@2D + 2 s@3D + 3 s@4D + 2 s@5D + s@6D

� HToX

HToX@<f>, <n>D

If f is a symmetric function expressed as a linear combination of h functions, HToX returns the same functionexpressed in the variables x[1], ..., x[n].

HToX@h@1D h@2D, 3D

x@1D3+ 2 x@1D2 x@2D + 2 x@1D x@2D2

+ x@2D3+ 2 x@1D2 x@3D +

3 x@1D x@2D x@3D + 2 x@2D2 x@3D + 2 x@1D x@3D2+ 2 x@2D x@3D2

+ x@3D3

� HToAll

HToAll@<f>, <opts>DOptions@HToAllD=8Targets®8E,P,S,M, X<, Vars®0<

If f is a symmetric function expressed as a linear combination of h functions, HToAll returns the same functionexpressed as linear combinations of the appropriate functions as specified in Targets. Setting the option Vars tosome positive integer n restricts the number of variables in the problem to n, resulting in the possible elimation ofsome terms in the answer. Note that the X's will only be displayed if Vars is specified.

symfun31-doc.nb 37

Page 38: SymFun 3.1: Documentationww3.haverford.edu/math/cgreene/symfun/symfun31-doc.pdfSymFun 3.1: Documentation Summer 2004: Created by Curtis Greene, Julien Colvin, Ben Fineman Summer 2009:

1 + Sum@h@iD h@jD, 8i, 3<, 8j, 3<DHToAll@%D

1 + h@1D2+ 2 h@1D h@2D + h@2D2

+ 2 h@1D h@3D + 2 h@2D h@3D + h@3D2

:1 + h@1D2+ 2 h@1D h@2D + h@2D2

+ 2 h@1D h@3D + 2 h@2D h@3D + h@3D2,

1 + e@1D2+ 2 e@1D3

+ 3 e@1D4+ 2 e@1D5

+ e@1D6- 2 e@1D e@2D - 6 e@1D2 e@2D -

6 e@1D3 e@2D - 4 e@1D4 e@2D + e@2D2+ 4 e@1D e@2D2

+ 4 e@1D2 e@2D2+ 2 e@1D e@3D +

2 e@1D2 e@3D + 2 e@1D3 e@3D - 2 e@2D e@3D - 4 e@1D e@2D e@3D + e@3D2,

1 + p@1D2+ p@1D3

+

7 p@1D4

12+

p@1D5

6+

p@1D6

36+ p@1D p@2D +

3

2p@1D2 p@2D +

2

3p@1D3 p@2D +

1

6p@1D4 p@2D +

p@2D2

4+

1

2p@1D p@2D2

+

1

4p@1D2 p@2D2

+

2

3p@1D p@3D +

1

3p@1D2 p@3D +

1

9p@1D3 p@3D +

1

3p@2D p@3D +

1

3p@1D p@2D p@3D +

p@3D2

9,

1 + s@2D + 2 s@3D + 3 s@4D + 2 s@5D + s@6D + s@1, 1D + 2 s@2, 1D + s@2, 2D +

3 s@3, 1D + 2 s@3, 2D + s@3, 3D + 2 s@4, 1D + s@4, 2D + s@5, 1D,

1 + m@2D + 2 m@3D + 3 m@4D + 2 m@5D + m@6D + 2 m@1, 1D + 4 m@2, 1D + 7 m@2, 2D +

6 m@3, 1D + 6 m@3, 2D + 4 m@3, 3D + 4 m@4, 1D + 3 m@4, 2D + 2 m@5, 1D + 6 m@1, 1, 1D +

10 m@2, 1, 1D + 10 m@2, 2, 1D + 7 m@2, 2, 2D + 8 m@3, 1, 1D + 6 m@3, 2, 1D +

4 m@4, 1, 1D + 14 m@1, 1, 1, 1D + 14 m@2, 1, 1, 1D + 10 m@2, 2, 1, 1D +

8 m@3, 1, 1, 1D + 20 m@1, 1, 1, 1, 1D + 14 m@2, 1, 1, 1, 1D + 20 m@1, 1, 1, 1, 1, 1D>

1 + Sum@h@iD h@jD, 8i, 3<, 8j, 3<DHToAll@%, Vars ® 2, Targets ® 8E, M, X<D

1 + h@1D2+ 2 h@1D h@2D + h@2D2

+ 2 h@1D h@3D + 2 h@2D h@3D + h@3D2

91 + h@1D2+ 2 h@1D h@2D + h@2D2

+ 2 h@1D h@3D + 2 h@2D h@3D + h@3D2,

1 + e@1D2+ 2 e@1D3

+ 3 e@1D4+ 2 e@1D5

+ e@1D6- 2 e@1D e@2D - 6 e@1D2 e@2D -

6 e@1D3 e@2D - 4 e@1D4 e@2D + e@2D2+ 4 e@1D e@2D2

+ 4 e@1D2 e@2D2,

1 + m@2D + 2 m@3D + 3 m@4D + 2 m@5D + m@6D + 2 m@1, 1D + 4 m@2, 1D + 7 m@2, 2D +

6 m@3, 1D + 6 m@3, 2D + 4 m@3, 3D + 4 m@4, 1D + 3 m@4, 2D + 2 m@5, 1D,

1 + x@1D2+ 2 x@1D3

+ 3 x@1D4+ 2 x@1D5

+ x@1D6+ 2 x@1D x@2D + 4 x@1D2 x@2D +

6 x@1D3 x@2D + 4 x@1D4 x@2D + 2 x@1D5 x@2D + x@2D2+ 4 x@1D x@2D2

+ 7 x@1D2 x@2D2+

6 x@1D3 x@2D2+ 3 x@1D4 x@2D2

+ 2 x@2D3+ 6 x@1D x@2D3

+ 6 x@1D2 x@2D3+ 4 x@1D3 x@2D3

+

3 x@2D4+ 4 x@1D x@2D4

+ 3 x@1D2 x@2D4+ 2 x@2D5

+ 2 x@1D x@2D5+ x@2D6=

Miscellaneous� LR

LRProduct@<Μ>,<Ν>D or s@<Μ>Ds@<Ν>D

Computes the expansion of s[Μ]s[Ν], expressed as a linear combination of s[Λ]'s.

s@<Μ>D<n>

Computes the expression s@ΜDn

s@<Μ>Ds@<Ν>Ds@<Ψ>D... ��Expand

Computes the product s[Μ] s[Ν] s[j]... Products of more than two terms need to be followed by "//Expand" in orderto expand completely. There is no need to type //Expand for s@ < Μ >Dn

38 symfun31-doc.nb

Page 39: SymFun 3.1: Documentationww3.haverford.edu/math/cgreene/symfun/symfun31-doc.pdfSymFun 3.1: Documentation Summer 2004: Created by Curtis Greene, Julien Colvin, Ben Fineman Summer 2009:

Computes the product s[Μ] s[Ν] s[j]... Products of more than two terms need to be followed by "//Expand" in orderto expand completely. There is no need to type //Expand for s@ < Μ >Dn

LRProduct@82, 1<, 82, 1<D

s@3, 3D + s@4, 2D + s@2, 2, 2D + 2 s@3, 2, 1D + s@4, 1, 1D + s@2, 2, 1, 1D + s@3, 1, 1, 1D

s@2, 1D s@2, 1D

s@3, 3D + s@4, 2D + s@2, 2, 2D + 2 s@3, 2, 1D + s@4, 1, 1D + s@2, 2, 1, 1D + s@3, 1, 1, 1D

s@2, 1D s@2, 1D s@2, 1Ds@2, 1D s@2, 1D s@2, 1D �� Expand

s@2, 1D Hs@3, 3D + s@4, 2D + s@2, 2, 2D + 2 s@3, 2, 1D + s@4, 1, 1D + s@2, 2, 1, 1D + s@3, 1, 1, 1DL

2 s@5, 4D + s@6, 3D + 2 s@3, 3, 3D + 8 s@4, 3, 2D + 4 s@4, 4, 1D +

4 s@5, 2, 2D + 6 s@5, 3, 1D + 2 s@6, 2, 1D + 4 s@3, 2, 2, 2D + 8 s@3, 3, 2, 1D +

9 s@4, 2, 2, 1D + 9 s@4, 3, 1, 1D + 6 s@5, 2, 1, 1D + s@6, 1, 1, 1D +

2 s@2, 2, 2, 2, 1D + 6 s@3, 2, 2, 1, 1D + 4 s@3, 3, 1, 1, 1D + 6 s@4, 2, 1, 1, 1D +

2 s@5, 1, 1, 1, 1D + s@2, 2, 2, 1, 1, 1D + 2 s@3, 2, 1, 1, 1, 1D + s@4, 1, 1, 1, 1, 1Ds@1D s@1D s@1D s@1D s@1D s@1D s@1D s@1D s@1D �� Expand �� Timing

831.45, s@9D + 42 s@5, 4D + 48 s@6, 3D + 27 s@7, 2D + 8 s@8, 1D + 42 s@3, 3, 3D + 168 s@4, 3, 2D +

84 s@4, 4, 1D + 120 s@5, 2, 2D + 162 s@5, 3, 1D + 105 s@6, 2, 1D + 28 s@7, 1, 1D +

84 s@3, 2, 2, 2D + 168 s@3, 3, 2, 1D + 216 s@4, 2, 2, 1D + 216 s@4, 3, 1, 1D +

189 s@5, 2, 1, 1D + 56 s@6, 1, 1, 1D + 42 s@2, 2, 2, 2, 1D + 162 s@3, 2, 2, 1, 1D +

120 s@3, 3, 1, 1, 1D + 189 s@4, 2, 1, 1, 1D + 70 s@5, 1, 1, 1, 1D + 48 s@2, 2, 2, 1, 1, 1D +

105 s@3, 2, 1, 1, 1, 1D + 56 s@4, 1, 1, 1, 1, 1D + 27 s@2, 2, 1, 1, 1, 1, 1D +

28 s@3, 1, 1, 1, 1, 1, 1D + 8 s@2, 1, 1, 1, 1, 1, 1, 1D + s@1, 1, 1, 1, 1, 1, 1, 1, 1D<

s@1D9 �� Timing

831.372, s@9D + 42 s@5, 4D + 48 s@6, 3D + 27 s@7, 2D + 8 s@8, 1D + 42 s@3, 3, 3D + 168 s@4, 3, 2D +

84 s@4, 4, 1D + 120 s@5, 2, 2D + 162 s@5, 3, 1D + 105 s@6, 2, 1D + 28 s@7, 1, 1D +

84 s@3, 2, 2, 2D + 168 s@3, 3, 2, 1D + 216 s@4, 2, 2, 1D + 216 s@4, 3, 1, 1D +

189 s@5, 2, 1, 1D + 56 s@6, 1, 1, 1D + 42 s@2, 2, 2, 2, 1D + 162 s@3, 2, 2, 1, 1D +

120 s@3, 3, 1, 1, 1D + 189 s@4, 2, 1, 1, 1D + 70 s@5, 1, 1, 1, 1D + 48 s@2, 2, 2, 1, 1, 1D +

105 s@3, 2, 1, 1, 1, 1D + 56 s@4, 1, 1, 1, 1, 1D + 27 s@2, 2, 1, 1, 1, 1, 1D +

28 s@3, 1, 1, 1, 1, 1, 1D + 8 s@2, 1, 1, 1, 1, 1, 1, 1D + s@1, 1, 1, 1, 1, 1, 1, 1, 1D<

Finally, a "check" that the calculation is correct:

s@2, 2D s@3, 1D s@1D �� Expand

aaa = SToX@%, 7D;

bbb = HSToX@s@2, 2D, 7DL HSToX@s@3, 1D, 7DL HSToX@s@1D, 7DL �� Expand;

aaa � bbb

s@5, 4D + s@6, 3D + s@3, 3, 3D + 3 s@4, 3, 2D + s@4, 4, 1D + 2 s@5, 2, 2D +

3 s@5, 3, 1D + s@6, 2, 1D + s@3, 2, 2, 2D + 2 s@3, 3, 2, 1D + 3 s@4, 2, 2, 1D +

2 s@4, 3, 1, 1D + 2 s@5, 2, 1, 1D + s@3, 2, 2, 1, 1D + s@4, 2, 1, 1, 1DTrue

symfun31-doc.nb 39

Page 40: SymFun 3.1: Documentationww3.haverford.edu/math/cgreene/symfun/symfun31-doc.pdfSymFun 3.1: Documentation Summer 2004: Created by Curtis Greene, Julien Colvin, Ben Fineman Summer 2009:

� Bigger examples

LRProduct@84, 3, 2, 1<, 83, 2, 1<D

s@4, 4, 4, 4D + 3 s@5, 4, 4, 3D + 2 s@5, 5, 3, 3D + 3 s@5, 5, 4, 2D + s@5, 5, 5, 1D +

3 s@6, 4, 3, 3D + 3 s@6, 4, 4, 2D + 4 s@6, 5, 3, 2D + 2 s@6, 5, 4, 1D + s@6, 6, 2, 2D +

s@6, 6, 3, 1D + s@7, 3, 3, 3D + 2 s@7, 4, 3, 2D + s@7, 4, 4, 1D + s@7, 5, 2, 2D +

s@7, 5, 3, 1D + s@4, 3, 3, 3, 3D + 3 s@4, 4, 3, 3, 2D + 2 s@4, 4, 4, 2, 2D + 3 s@4, 4, 4, 3, 1D +

3 s@5, 3, 3, 3, 2D + 6 s@5, 4, 3, 2, 2D + 6 s@5, 4, 3, 3, 1D + 6 s@5, 4, 4, 2, 1D +

2 s@5, 5, 2, 2, 2D + 6 s@5, 5, 3, 2, 1D + 3 s@5, 5, 4, 1, 1D + 3 s@6, 3, 3, 2, 2D +

3 s@6, 3, 3, 3, 1D + 3 s@6, 4, 2, 2, 2D + 8 s@6, 4, 3, 2, 1D + 3 s@6, 4, 4, 1, 1D +

4 s@6, 5, 2, 2, 1D + 4 s@6, 5, 3, 1, 1D + s@6, 6, 2, 1, 1D + s@7, 3, 2, 2, 2D + 2 s@7, 3, 3, 2, 1D +

2 s@7, 4, 2, 2, 1D + 2 s@7, 4, 3, 1, 1D + s@7, 5, 2, 1, 1D + s@4, 3, 3, 2, 2, 2D +

2 s@4, 3, 3, 3, 2, 1D + s@4, 4, 2, 2, 2, 2D + 4 s@4, 4, 3, 2, 2, 1D + 3 s@4, 4, 3, 3, 1, 1D +

3 s@4, 4, 4, 2, 1, 1D + s@5, 3, 2, 2, 2, 2D + 4 s@5, 3, 3, 2, 2, 1D + 3 s@5, 3, 3, 3, 1, 1D +

4 s@5, 4, 2, 2, 2, 1D + 8 s@5, 4, 3, 2, 1, 1D + 3 s@5, 4, 4, 1, 1, 1D + 3 s@5, 5, 2, 2, 1, 1D +

3 s@5, 5, 3, 1, 1, 1D + 2 s@6, 3, 2, 2, 2, 1D + 4 s@6, 3, 3, 2, 1, 1D + 4 s@6, 4, 2, 2, 1, 1D +

4 s@6, 4, 3, 1, 1, 1D + 2 s@6, 5, 2, 1, 1, 1D + s@7, 3, 2, 2, 1, 1D + s@7, 3, 3, 1, 1, 1D +

s@7, 4, 2, 1, 1, 1D + s@4, 3, 3, 2, 2, 1, 1D + s@4, 3, 3, 3, 1, 1, 1D + s@4, 4, 2, 2, 2, 1, 1D +

2 s@4, 4, 3, 2, 1, 1, 1D + s@4, 4, 4, 1, 1, 1, 1D + s@5, 3, 2, 2, 2, 1, 1D +

2 s@5, 3, 3, 2, 1, 1, 1D + 2 s@5, 4, 2, 2, 1, 1, 1D + 2 s@5, 4, 3, 1, 1, 1, 1D +

s@5, 5, 2, 1, 1, 1, 1D + s@6, 3, 2, 2, 1, 1, 1D + s@6, 3, 3, 1, 1, 1, 1D + s@6, 4, 2, 1, 1, 1, 1D

� Pieri

Pieri@<Λ>,<k>D

Pieri[Λ, k] computes the list of partitions that are "k-Pieri" over lambda (the partitions that come about by adding kboxes to the Ferrer's diagram of Λ with no more than one box added per column). Corresponds to the special caseof the LR rule where one multiplies by s[n].

Pieri@83, 3, 3<, 6D

889, 3, 3<, 86, 3, 3, 3<, 87, 3, 3, 2<, 88, 3, 3, 1<<

LRProduct@83, 3, 3<, 86<D

s@9, 3, 3D + s@6, 3, 3, 3D + s@7, 3, 3, 2D + s@8, 3, 3, 1D

LRProduct@83, 3, 3<, 81<D

s@4, 3, 3D + s@3, 3, 3, 1D

Pieri@82, 1<, 1D

882, 2<, 83, 1<, 82, 1, 1<<

SMult@82, 1<, 1D

s@2, 2D + s@3, 1D + s@2, 1, 1D

40 symfun31-doc.nb