Surface Micromachining

18
Surface Micromachining Dr. Marc Madou, Fall 2012, UCI Class 10

description

Surface Micromachining. Dr. Marc Madou, Fall 2012, UCI Class 10. L m. Photoresist. Lm + 2t SiO2. Surface Micromachining. n +. Basic Process Sequence (poly-Si). Blanket n + diffusion of Si substrate (ground plane) - PowerPoint PPT Presentation

Transcript of Surface Micromachining

Page 1: Surface Micromachining

Surface Micromachining

Dr. Marc Madou,

Fall 2012, UCI

Class 10

Page 2: Surface Micromachining

Blanket n+ diffusion of Si substrate (ground plane)

Passivation layer (e.g. SiO2 , Si3N4 , LPCVD Si3N4 on top of SiO2)

Opening up the passivation layer for contacts (observe color change or hydrophobic/hydrophilic behavior):

– wet (BHF)

– dry (SF6)

Strip resist in piranha (adds some oxide in the window)

Short BHF etch to remove thin oxide

n+

n

n+

ntSiO2

Lm

Lm + 2tSiO2Photoresist

Si3N4

Surface MicromachiningBasic Process Sequence (poly-Si)

Page 3: Surface Micromachining

Deposition of a base, spacer or sacrificial layer-phosphosilicate glass (PSG)-CVD

Densification at 950 °C for 30-60 min in wet oxygen

Base window etching in BHF for anchors

Structural material deposition e.g. poly-Si (doped or undoped) from (CVD at about 600°C , 73 Pa and 125 sccm (standard centimeter cube per minute); at about 100Å/min) e.g.

Anneal of the poly-Si at 1050°C for 1 hour to reduce stress in the structure

PSG

Structural layer

SiH4 → Si + 2H2

nitride

Surface Micromachining

Basic Process Sequence (poly-Si).

Page 4: Surface Micromachining

Basic Process Sequence (poly-Si)

Doping of poly-Si: in-situ, PSG sandwich and ion implantation

Patterning of structural material e.g. RIE in , say, CF4-O2

Release step, selective etching of spacer layer e.g. in diluted HF

RS(μm / )min >> Rm(μm / )min >> R i(μm )min

RS

Ri Rm

nitride

Surface Micromachining

Page 5: Surface Micromachining

Etchants-Spacer and Microstructural LayerEtchant Buffer/Isolation Spacer MicrostructureBuffered HF(5:1, NH4F:conc. HF)

LPCVD Si3N4/thermal

SiO2

PSG Poly-Si

RIE us ing CHF3BHF (6:1)

LPCVDSi3N4

LP CVDSiO2

CVD Tungsten

KOH LPCVDSi3N4/thermal SiO2

Poly-Si Si3N4

Ferri c Chloride Thermal SiO2 Cu Polyimide

HF LPCVDSi3N4/thermal SiO2

PSG Polyimide

Phosphoric/Aceti cAcid/Ni tri c Acid(PAN or5:8:1:1water:phosphoric:aceti c:ni tri c)

Thermal SiO2 Al PE CVD Si3N4Nickel

Ammonium Iodide/ Iodine Alcohol

Thermal SiO2 Au Ti

EDP Thermal SiO2 Poly-Si SiO2

Generic principle of surface micromachining

Si

Si

Al

Etch access

Si

Sacrificial layer definition

Releasing diaphragm:phosphoric/acetic acid/nitric acid (PAN)

Polyimide diaphragm deposition

Surface Micromachining

Page 6: Surface Micromachining

LPCVD of poly-Si Hot wall, horizontal reactor Reaction rate controlled--at lower

pressures and well controlled temperatures (100 to 200 wafers)

Poly-Si deposits everywhere requiring periodic cleaning (e.g. every 20 runs if each run deposits 0.5 µm)

Visit: http://mems.eeap.cwru.edu/shortcourse/partII_2.html and http://www-mtl.mit.edu:800/htdocs/tutorial.html

Surface Micromachining

Page 7: Surface Micromachining

ABCDESi Phosphosilicate glass PolysiliconStiction Stiction during release:– Surface tension during drying pulls movable

members together (See also room temperature bonding of Si to Si and glass to Si)

– Solutions:» Stand-off bumps» Sacrificial polymer » Sacrificial poly-Si links to stiffen the structures» HF vapor» Freeze-drying water/methanol mixtures» Super critical cleaning

Stiction after release:– Hydrophobic monolayers– Rough surfaces– Bumps

Surface Micromachining

Page 8: Surface Micromachining

Control of film stress With L=150 µm and W=t=2 µm, fo=10 to 100 kHz.

Annealing at high temperature (900-1150°C)

Fine-grained tensile vs large grained compressive

Doping elements Sandwich doping and annealing. Vary material composition e.g Si

rich Si3N4

In PECVD: change the RF power and frequency

In sputtering: gas pressure and substrate bias

fo ≈12π

4EtW3

ML3 +24σ rtW5ML

Polysilicon Drive combSense combAnchorFlexure ( length L, width W, thickness t)Drive combcontact padSense contact padyxSuspended shuttle (mass M)

Surface Micromachining

Page 9: Surface Micromachining

Control of film stress

MMMM

Folding flexures makes the resonant frequency independent of the residual stress but warpage becomes an issue Corrugated structural members (see above)

Y

X

ky >> kx( )force constant

fx =kx

M ⎛ ⎝

⎞ ⎠

12

Surface Micromachining

Page 10: Surface Micromachining

Sealing processes Microshells a wafer level

packaging strategy Thin gaps (e.g. 100 nm) are etched

out and then sealed:– Reactive sealing by oxidation

– LPCVD deposition

Surface Micromined Sealed ResonatorSiO2Si Polysilicon VacuumResonatorAEtched spacerCavityO2B

COMPOSITE SI3 N4 /POLYSILICONPOLYSILICON PIEZORESISTOR

Surface Micromachining

Page 11: Surface Micromachining

IC compatibility

CMOS SurfaceMicromachining

Common Features Silicon based processes Same materials Same etching principles

Process flow Standard Application specificVertical dimens ion ~ 1 µm ~1-5 µmLateral dimension <1 µm 2-10 µmComplexity (# masks) >10 2-6

Temperature (°C) MaterialLP CVD Depos ition 450 Low Temperature Oxide

(LTO)/PSG" " 610 Low stress poly Si" " 650 Doped poly Si" " 800 NitrideAnnealing 950

1050PSG densificationPoly Si stress annealing

Comparison of CMOS and Surface Micromachining

Critical Process Temperatures for Microstructures

- Junction migration at 800 to 950°C- Al interconnect suffers at 400-450 °C- Topography

Surface Micromachining

Page 12: Surface Micromachining

Poly-Si surface micromachining modifications: porous poly-Si

Just like we can make porous Si from single crystal Si we can do the same with poly-Si (low currents densities in highly concentrated HF)

Applications:– Channels parallel to a flat surface

(switch from porous to polishing and back--chambers with porous plugs)

– Enclosed chambers (blisters of free poly-Si)

– Hollow resonators (higher Q)

CVD Si3N4

CVD poly-Si

CVD Si3N4

Surface Micromachining

Page 13: Surface Micromachining

Poly-Si surface micromachining modifications: hinged poly-Si

Make structures horizontally and erect them on a poly-Si hinge (probe station)---rigid structures (Prof. Pister, UCB)

Polyimide hinges also have been made ( butterfly wing)---movable structures

Poly 1OxidePoly 2Poly 2Poly 1Poly 2 staple holdingpoly 1 plate

polyimide hinge (E= 3 GPa) poly-Si hinge (E= 140 GPa)

Surface Micromachining

Page 14: Surface Micromachining

Poly-Si surface micromachining modifications:hinged poly-Si

Pister et al., UCB

Micromachined integrated optics for free space interconnections

Surface Micromachining

Page 15: Surface Micromachining

Poly-Si surface micromachining modifications: thick poly-Si and HEXSIL

Thick poly-Si--10 µm in 20 ‘ with SiH2Cl2 at 1000°C has become possible (low tensile stress)

HEXSIL (Dr. Keller, UCB):– Deep dry etching of trenches in SCS

(e.g. 100 µm deep)-short isotropic etch to smooth the walls

– Deposition of sacrificial and structural materials (undoped, doped poly-Si and metal e.g. Ni)

– Demolding by etching away the sacrificial material

Surface Micromachining

Page 16: Surface Micromachining

Poly-Si surface micromachining modifications: HEXSIL

Dr. Keller, UCB

Membrane filter with stiffening rib HEXSIL tweezers

Surface Micromachining

Page 17: Surface Micromachining

Poly-Si surface micromachining modifications: SIMOX

Types of Silicon On Insulator (SOI) processes:

– SIMOX (Separated by IMplanted OXygen)

– Si fusion bonded wafers

– Zone-melt recrystallized polysilicon (ZMR)

SIMOX substrate

0.2 μ -m epi Si

0.4 μ m buried oxide

Thicken up epi Si to

4 μ m

Dry etch access hole

S acrificial layer etching Hermetic sealing of etching hole by plasma CVD of

non stressed dielectric plug

Metallization and diaphragm definition

PP

Surface Micromachining

Page 18: Surface Micromachining

Non-poly-Si surface micromaching.

Polyimide: e.g. SRI flat panel display

UV depth lithography– AZ-4000 (high viscosity, many

layers)

– SU-8 (IBM)

Surface Micromachining

Capp Spindt