Sttp ppt msp_overview_09-10-2009_zvpm

46
1 Membrane Separation Processes for Wastewater Treatment: An Overview Dr. Z.V.P. Murthy Professor Department of Chemical Engineering Sardar Vallabhbhai National Institute of Technology Surat – 395007, Gujarat. October 09, 2009 Presentation at the AICTE sponsored One-week Short-Term Training Programme on Treatment and Disposal of Wastewaters, October 5-9, 2009, SVNIT, Surat

description

Scope of reuse of sewage for baroda city

Transcript of Sttp ppt msp_overview_09-10-2009_zvpm

Page 1: Sttp ppt msp_overview_09-10-2009_zvpm

1

Membrane Separation Processes for Wastewater Treatment: An Overview

Dr. Z.V.P. MurthyProfessor

Department of Chemical EngineeringSardar Vallabhbhai National Institute of Technology

Surat – 395007, Gujarat.October 09, 2009

Presentation at the AICTE sponsored One-week Short-Term Training Programme on Treatment and Disposal of Wastewaters, October 5-9, 2009, SVNIT, Surat

Page 2: Sttp ppt msp_overview_09-10-2009_zvpm

2

Outline of Presentation

� Introduction

� Various Membrane Separation Processes

� Membrane Modules

� Case Study

Page 3: Sttp ppt msp_overview_09-10-2009_zvpm

3

������������

�� ���������� ����������� ����������

�������

������������� �������������������������

� � ������������� ��������������������

� ���������������������������

� ����� �����

� ������ ��������������

� ! �������������� ������� ��������������������

"��������

Page 4: Sttp ppt msp_overview_09-10-2009_zvpm

4

� ����������"�������

� �# ������ ��"�����$����# �

� ������������% �������������������# ���

� &# "������# �# �������������������������

# �# �������

� ��!��"�����!���������#

Page 5: Sttp ppt msp_overview_09-10-2009_zvpm

5

����������������

�� � ����

Rapid MixCoagulation/ Flocculation Sedimentation

Filtration

Disinfection

� ������������������

�������� ������������������

� �� �����������

�����������$�% �����&� �'����% �����

�������������� ���

Page 6: Sttp ppt msp_overview_09-10-2009_zvpm

6

��������

����

� �� �����������

�������� ������������������

� ��������������� ����

� ���

����� ����

�� � ����

�� � ����� ���

���� �� �������

��'� ����% �����

����������� ����

Page 7: Sttp ppt msp_overview_09-10-2009_zvpm

7

�������������� �������� ������������������������� ��������

� ������������������������ ������������ ������� � ��� � ������������water diffuses from dilute to concentrated solution. � ��� ��������� ��������������������� � � � � ��������

������������������!"��"���� "�����#$%%������ ��������&���'

��������(������ )��� �(( �������

������ ������� &*������' #$+, -����������"���&����������� ���'

� ����� ��������&*������' #$., -����������"��

����/�� ���� &���0�� ��/�' #$1, ��������� �2�/���

�����/�� ���� &���' #$11 ���� �������

��3�������������&���'4 #$5, ����6�����/��� �������

� ����� ��������&���' #$5, ������������������������ ��" ��

Development of practical membrane processes

*Loeb-Sourirajan of UCLA in early 1960’s : Breakthrough discovery for industrial membrane application: RO for desalination.

Page 8: Sttp ppt msp_overview_09-10-2009_zvpm

8

��������/������������� �������� ������ �����

� !����"���������"�����#�"������������������� �������������

� $����� ��#��������� "�� ���� ���� ������ ������

� % "����� �����#���������� ��������&����� ���� ����#������ ���� � ����

� � ����� ���"�'��(� ����� ������#�� ���

� )�������������� ��"��� ����&������������*" �����+ ���

� � �#�� ����#����� ��������� �������"���

� )������"�����"����

�, ������"��� �������������

��������

�%���� ���#"����

� )+ ������ �����#������

�- ����� ��� �� ����� ��������...

Page 9: Sttp ppt msp_overview_09-10-2009_zvpm

9

Pressure-Driven Membrane Processes

SolventParticle or Solute Molecule

Membrane

PermeateFeed

P∆∆∆∆

Page 10: Sttp ppt msp_overview_09-10-2009_zvpm

10

Pressure-Driven Membrane Processes

Suspended Solids (Particles)

Macromolecules (Humics)

Multivalent Ions (Hardness)

Monovalent Ions (Na+,Cl-)

���� ���� ��������

Water Molecules

Page 11: Sttp ppt msp_overview_09-10-2009_zvpm

11

Membrane Fouling

particlesmacromolecules ionsmicrobes

Page 12: Sttp ppt msp_overview_09-10-2009_zvpm

12

Membrane Fouling

���� ���� ���� ����

Page 13: Sttp ppt msp_overview_09-10-2009_zvpm

13

� $����"�����&�������� �����������

� ������ ������� &7' �� ∆∆∆∆

� � ����� ��������&�7' � ∆∆∆∆

� ������ ��������&�7' � ∆∆∆∆

� ��3�������������&��' � ∆∆∆∆

� �������� ����&�������� �����������

� �����/�� ���� &�' � ∆∆∆∆

� /������ ������&�������� �����������

� 0 � ������� � ∆/� 1 ����� � ∆/

���3��8�7������������������(�������

Page 14: Sttp ppt msp_overview_09-10-2009_zvpm

14

3� "����������������� ����������

� Flux: The volume of treated water obtained per unit time per unit membrane surface area. Higher flux is often desirable. (m3/m2/h or m/h) (MF/UF)

tRP

J⋅

∆=µ

J :Flux, �P: trans-membrane pressure, �: viscosity, Rt: total membrane resistance

Page 15: Sttp ppt msp_overview_09-10-2009_zvpm

15

3� "����������������� ����������

F

P

F

PF

CC

- 1 C

C - C R ==

� Selectivity: For dilute aqueous mixtures of a solvent (water) and a solute (particles), the selectivity is expressed in terms of retention “R”towards solute. CF and Cp are solute concentration in feed

and permeateR = 100% (complete retention) of soluteR = 0% (solute and solvent pass thru membrane

� Water Recovery: QP/QF

'�(���

')(��)

'* �*

Page 16: Sttp ppt msp_overview_09-10-2009_zvpm

16

Page 17: Sttp ppt msp_overview_09-10-2009_zvpm

17

��������� ������������� ����/����������

� 2����� ������� ����$� ��������

� 3����������1 �� ����4��������5� ��!��� ����4��� ����5������ ���� ���#������ ���������& ���� ����

4�( �����#��� ��������� ����cellulose acetate, cellulose esters, polypropylene polyamides, polysulfones, etc.); organic- cheaper.Ceramic: Alumina, Titania, and Zirconia: high thermal/chemical resistant

� ����/������(0� �8��������"��"��

� 3����������������"���������"��4�6�766�µm) of identical morphology.

� ������������membrane constituted of two or more structural planes of non-identical morphologies. ������������� ����46 ���6 8�µ�5����9����"��������� ���"���"�� ��� 486�� �86�µm).

Page 18: Sttp ppt msp_overview_09-10-2009_zvpm

18������ ����������� �������9��������"������� ������� �������� ����� ���

Page 19: Sttp ppt msp_overview_09-10-2009_zvpm

19

� ����/�����(�������� ��/��

� 0� �����:he fluid flows at right angle to the membrane.

� / ����#�+ ��:���#�"���"���� � ������������ �� �� �� �

� 0�������� ��������#�� �;/ 9��) ���<

� 3"�� ����#��� ���������� ��3"�������

�% ���#��*"������� ����

� - ������� ��#������ ������� �� �� ����"�# ��

� % ���� �=��� 9��#�� ���� >���������#�#������� �� % ������������*"���� ���� 3� ����#�"(

Page 20: Sttp ppt msp_overview_09-10-2009_zvpm

20��"�����0��(�99666:;��0��������:���

Page 21: Sttp ppt msp_overview_09-10-2009_zvpm

21

����������� � �������� � ����� ������������� �������������

������

+�#����*������,��-�.����#

��� ����� ������Microfiltration:

� Simple screening mechanism

Pore size 0.1 �m - 10 �m

∆P ≈ 0.01 to 0.5 MPaMolecular Weight Cut-Off (MWCO):>1,00,000� Low pressure process

� Most effectively remove particles and microorganisms (bacteria)

� High flux

� Colloids/Macromole ---> theoretically pass through the membrane

Page 22: Sttp ppt msp_overview_09-10-2009_zvpm

22

+�#����*������,� �.�.��#�....�� � �/

! �"������������ ����#��������"�����(�"���������������(�������,��������(�"���(����"����������

�� ����� ������

� ��������� ����������

� ����� ��������������

� �������������������

Ultrafiltration:� Screening and Adsorption

Pore size 1 - 100 nm∆P 0.1 to 1 MPa

� Membrane is classified in terms of Molecular Weight-Cut off (MWCO) : 1000 - 100,000

<�� �((��=:�(������>��&��'#?,,, +#,?,,, 1#,,?,,, #+#,,,?,,, +%

� Two layers: a thin (0.1 to 0.5 µm), skin layer and a porous substructure support layer

� Separation of macromolecules

�Only surface deposition - no internal pore plugging-so, relatively easy to remove, irreversible

Page 23: Sttp ppt msp_overview_09-10-2009_zvpm

23

������� ������

�����������������������

� ���������� � �������������������

��������������������

Nanofiltration:

� NF Removes molecules in the 0.001-0.01 �m

� ∆P 0.5 to 6 MPa

� MWCO: upto 10,000

� NF is essentially a lower-pressure version of reverse osmosis

� NF performance characteristics between reverse osmosis and ultrafiltration

Nanofiltration: Water softening, removal of organic matter,

desalting of organic reaction products.

Page 24: Sttp ppt msp_overview_09-10-2009_zvpm

24

OSMOSIS and REVERSE OSMOSISOsmosis (see Figure A) is the flow of solvent through a semipermeablemembrane from the less concentrated to the more concentrated region.

A “semipermeable” membrane is a membrane, which allows solvent to pass but completely prevents the flow of certain solutes or ions in solution. The osmotic flow is a natural occurrence, as the system tends to come to equilibrium and equalise chemical potentials.

Figure A. Principle of reverse osmosis.

Page 25: Sttp ppt msp_overview_09-10-2009_zvpm

25

!�"������������ �����������������# (���������(�# ����# ��������

���� �����'����

������������ ����������� ����� ��������

��������������������

������

Membrane: similar to UF, thin active layer; porous support layer

Desalination (seawater and brackish water), metal plating effluent treatment,

color removal from textile effluents, production of high purity water

(boiler feed, electronics, medical, pharmaceutical)

Operating Pressure: 1.0 - 10 MPaRO has the separation range of 0.0001 to 0.001µm

Page 26: Sttp ppt msp_overview_09-10-2009_zvpm

26

� The osmotic flow can be decreased by applying a pressure on theconcentrated solution.

•The higher the applied pressure the lesser the osmotic flow.

•When the osmotic flow stops, the applied pressure is the osmoticpressure, which is given by the symbol �.

Osmotic pressure is a thermodynamic property of a solution and as such values can be found in various reference books.

� For dilute systems, the following van’t Hoff equation may be used to calculate osmotic pressure:� = CAiRTwhere CAi is the molar concentration of solute A at location i, R is the gas constant, and T is the absolute temperature.

Osmotic pressure is equal to 6.86 kPa (51 torr) for each 100 mg/L of dissolved solids.

Page 27: Sttp ppt msp_overview_09-10-2009_zvpm

27

Flux in RO and NF System:

������������ �������������� �������������� �������������� ��

Collier County, FL

Flux (Jw) = Kw (∆Ρ−∆Π) Kw = Water mass transfer coefficient ∆Ρ = Mean imposed pressure gradient ∆Π = Mean osmotic pressure gradient

Page 28: Sttp ppt msp_overview_09-10-2009_zvpm

28

MEMBRANE MODULES

Membrane module refers to the device which houses the membrane element:

• Tubular membrane module

• Hollow fibre membrane module

•Spiral wound membrane module

• Plate and frame membrane module

Page 29: Sttp ppt msp_overview_09-10-2009_zvpm

29

Feed Retentate

Permeate (flows radially)

• Membrane is cast inside the support tube

• Tubular membranes have a diameter of 5 - 15 mm

• High suspended solids tolerance

• Flow is usually inside out

•Mainly MF and UF

• Low packing density, high prices per module

�� � � �������� ��� ���� � � ���� � � �������� ��� ���� � � ���� � � �������� ��� ���� � � ���� � � �������� ��� ���� � � ��

Page 30: Sttp ppt msp_overview_09-10-2009_zvpm

30

� � ��� � ���� ������� ��� ���� � � ��� � ��� � ���� ������� ��� ���� � � ��� � ��� � ���� ������� ��� ���� � � ��� � ��� � ���� ������� ��� ���� � � ��

•Consists of a bundle of hundreds and thousands of hallow fiber

•Entire assembly is inserted into a pressure vessel

• Feed can be applied inside of the fiber (inside-out flow) outside (outside-in flow)

• Highest packing density of all.

•Hollow fiber is used mainly for NF and RO

Page 31: Sttp ppt msp_overview_09-10-2009_zvpm

31

•Flexible permeate spacer is provided between two flat sheet membranes

•Flow is in a spiral pattern.

•Membrane envelop is spirally wound along with a feed spacer

• Filtrate is collected within the envelop and piped out

•Packing density: high

•RO and NF

Spiral wound membrane module

Page 32: Sttp ppt msp_overview_09-10-2009_zvpm

32

Plate-and-frame module

Two membranes are placed in a sandwich-like fashion with their feed sides facing each other.

Easy to clean and replace membranes.

Low membrane area per unit volume (a problem in high pressure application where pressure vessel costs aresignificant).

Page 33: Sttp ppt msp_overview_09-10-2009_zvpm

33

CASE STUDY

Performance of Spiral-wound TFC-PA RO Membrane for Tertiary Treatment of Effluent in Common Effluent Treatment Plant

������������� ������������� ����������

�������������������������������� ����������������������������������������������������� ����������������������� �������� ������� �������� �����

��! �����"!����� ���������#��! �����"!����� ���������#

Pollution Control Board norms for discharge of effluent to CETP:

pH : 6.5 $ 8.5COD : < 1000 ppmBOD : < 400 ppm

SS : < 300 ppm

Detoxified toxic contaminants at each unit before discharge to CETP

Records of quantity and quality of effluent maintained by each member unit

Page 34: Sttp ppt msp_overview_09-10-2009_zvpm

34

Materials and Methods

� Experiments are performed on Perma%-pilot membrane system consisting of a spiral-wound TFC-PA RO membrane module

� Specifications of TFC-PA RO membrane module:______________________________________________Item Specification______________________________________________Membrane module Spiral-woundMembrane type TFC-PA RO membraneMembrane maker Permionics, Vadodara, IndiaMembrane material TFC PolyamideEffective membrane area 1.0 m2

Number of modules oneLength of module 21 in.Diameter of module 2.5 in._______________________________________________

Page 35: Sttp ppt msp_overview_09-10-2009_zvpm

35

� Specifications of membrane:

� TFC-PA RO membrane has three layers:

(1) First layer: 5-20 &m thick TFC-PA layer

(2) Second layer: 50 &m thick of polysulfone

(3) Third layer: 200 &m thick of polyester

� Perma-TFC membranes are capable of withstanding pH in the range 2-12, pressure up to 30 atm and temperatures up to 50°C

Materials and Methods……

Page 36: Sttp ppt msp_overview_09-10-2009_zvpm

36

EXPERIMENTAL SET-UP:

Perma�-pilot scale membrane system

Page 37: Sttp ppt msp_overview_09-10-2009_zvpm

37

� Before actual experiments membrane is subjected to stabilization at 20 atm for 2 hours to avoid membrane compaction during operation.

� The experiments are performed for various membrane flux rates in the range of 52-88 L/(m2 h) or LMH with the operating pressures between 7-20 atm.

Material and Methods……

Page 38: Sttp ppt msp_overview_09-10-2009_zvpm

38

Material and Methods……

� The membrane performance can be represented in terms of normalized flux by the following relation:

� …………(1)

where JN is the normalized flux [L/(m2 h atm)], T is the temperature in the range of 303-308 K, Q is the volume flow rate of permeate (m3/h), A is the effective membrane area (m2), Pm is transmembrane pressure (atm).

� Performance of membrane in terms of percentage rejection (R) is given as

…………(2)

where Cf and Cp are the individual component concentrations in the incoming feed to the RO system and in the permeate from the system, respectively.

m

TN AP

QJ )297(03.1 −=

1001% ���

����

�−=

CfCp

R

Page 39: Sttp ppt msp_overview_09-10-2009_zvpm

39

� The normalized flux decline rate is calculated by the following Eq. (3)

………(3)

� The important parameters like color, pH, total solids (TS), suspended solids (SS), total dissolved solids (TDS), phenol, ammonia, COD, BOD, sulphate, total hardness, Mg hardness, Ca hardness, zinc and total Cr are measured in the feed and permeate samples, according to standard methods.

Material and Methods……

100hours operating flux normalized initial

flux normalized final -flux normalized initial hour)per (% rate decline

flux normalized Average��

×=�

Page 40: Sttp ppt msp_overview_09-10-2009_zvpm

40

Results and Discussion

� Characteristics of the secondary treated wastewater from CETP used as a feed in the present study:____________________________________________________________________________________Parameters Unit Value____________________________________________________________________________________pH - 6.95Color Pt-Co unit 1070TS mg/L 8460SS mg/L 296TDS mg/L 8164Phenol mg/L 4.19Ammonia mg/L 210COD mg/L 656BOD mg/L 160Sulphate mg/L 1027Total Hardness mg/L 1770Ca Hardness mg/L 1600Mg Hardness mg/L 170Zinc mg/L 0.03Total Cr mg/L 0.07______________________________________________________________________________________

Page 41: Sttp ppt msp_overview_09-10-2009_zvpm

41

'�������!����������������(�'�������!����������������(�))�"*'��� ��"*'��� �%%))����������������������

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

���� �������� ���� ��������)),, ��������))-- ��������))�� ��������))..

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

(�� ����/0123(�� ����/0123 45#�45#� 5454 6.6. -#.-#.

(������7/0� ��3(������7/0� ��3 ,-#�,-#� ,,,, ,�,� ,�,�

*���8���/93*���8���/93 ,-#,-# ,-#-,-#- ,,,, ::

'�������!��������'�������!�������� ,5,5))-�-� ,,)),4,4 ,-,-)),-#5,-#5))::

//�� �� 33

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Page 42: Sttp ppt msp_overview_09-10-2009_zvpm

42

� Normalized flux of the RO membrane under different flux rates as a function of time are shown in Fig.

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35 40 45

Time, h

J N, (

L/m

2 h a

tm)

87.3 LMH

78 LMH

64 LMH

52.4 LMH

64 LMH (Firs t CIP )

52.4 LMH (Firs t CIP )

64 LMH (Seco nd CIP )

(�!#;�� ���<����� �������������� ��������������������(�!#;�� ���<����� �������������� �������������������� � �

Results and Discussion ……

Page 43: Sttp ppt msp_overview_09-10-2009_zvpm

43

� The results are summarized in Table

_______________________________________________________Parameter Test-1 Test-2 Test-3 Test-4_______________________________________________________Flux rate (LMH) 87.3 78 64 52.4Operating pressure 17-20 15-18 12-12.5 7(atm)Normalized flux, JN 3.71-3.25 4.11-3.42 4.47-4.29 6.27-4.8[L/(m2 h atm) 25°C]%Drop in JN per hour 1.5 1.7 0.40 0.2%Drop after first CIP - - 0.70 1.6%Drop after second CIP - - 0.67 -Average % rejection 99.4 99.4 99.1 98.8of COD_______________________________________________________

Results and Discussion ……

Page 44: Sttp ppt msp_overview_09-10-2009_zvpm

44

���� ��� ������ ��

�(��(�))�"*' � =������� ����>�������"*' � =������� ����>������

��=�����7������� ����>�����������*' � =������=�����7������� ����>�����������*' � =����

0.0514 – 85.70.01-0.06mg/LTotal Cr

5100BDL*mg/LZinc

30-1001000mg/LMg Hardness

75-2001000mg/LCa Hardness

300-6001000mg/LTotal Hardness

200-4001000mg/LSulphate

--------1000mg/LBOD

10098.8 – 99.44-8mg/LCOD

5092 – 94.811-16mg/LAmmonia

0.001-0.00296.6 – 97.80.09-0.14mg/LPhenol

300-60099 – 99.724-79mg/LTDS

------98 – 99.71-5mg/LSS

300-60099 – 99.724-80mg/LTS

5-2596 - 9810-40Pt-Co unitColor

6.5-8.5---6.7-7.3-pH

Specified limit**% Rejection Permeateunit Parameter

* BDL=Below Detectable Limit, ** Specified limit by pollution control authority

Page 45: Sttp ppt msp_overview_09-10-2009_zvpm

45

The conclusions from the pilot study are summarized as follows:

� The optimal operation flux rate of the RO membrane is found to be 64 LMH for the present application.

� At a flux rate of 64 LMH and water recovery of 11%, the average operating pressure of 12 atm is noted corresponding to a high normalized flux of 4.5 L/(m2 h atm) at 25°C.

� Average rejections of the RO membrane in terms of COD and BOD are >99% and 100%, respectively.

� It is found that the RO system is effective for the secondary treated industrial effluent in order to comply with the local specified limits for discharging into the public sewerage system. In turn that can be used for other purposes due its high quality, instead of sending it to sewerage.

Conclusions

Page 46: Sttp ppt msp_overview_09-10-2009_zvpm

46

References:1. Membrane processes for water and wastewater treatment by S.S. Khanal, Department of Civil

Engineering, Construction and Environmental Engineering, Iowa State University, USA.2. Emerging Applications for Water Treatment and Potable Water Reuse by T.Y. Cath, Environmental

Science and Engineering Division, Colorado School of Mines, USA.3. Z.V.P. Murthy, L.B. Chaudhari, Performance of Spiral-wound TFC-PA RO membrane for tertiary

treatment of effluent in common effluent treatment plant, Proceedings of the “2nd International Conference on Engineering for Waste Valorisation (WasteEng08)”, University of Patras, Greece, June 3 - 5, 2008, pp 229-230.