Springer Handbook of Electronic and Photonic...

33
Springer Handbook of Electronic and Photonic Materials

Transcript of Springer Handbook of Electronic and Photonic...

Page 1: Springer Handbook of Electronic and Photonic Materialsmido.kiev.ua/lib/SHB_epm/files/01A-2017_Bookmatter... · Editors Safa Kasap University of Saskatchewan Saskatoon, Canada safa.kasap@usask.ca

Springer Handbookof Electronic and Photonic Materials

Page 2: Springer Handbook of Electronic and Photonic Materialsmido.kiev.ua/lib/SHB_epm/files/01A-2017_Bookmatter... · Editors Safa Kasap University of Saskatchewan Saskatoon, Canada safa.kasap@usask.ca

Springer Handbooks providea concise compilation of approvedkey information on methods ofresearch, general principles, andfunctional relationships in physicaland applied sciences. The world’sleading experts in the fields ofphysics and engineering will be as-signed by one or several renownededitors to write the chapters com-prising each volume. The contentis selected by these experts fromSpringer sources (books, journals,online content) and other systematicand approved recent publications ofscientific and technical information.

The volumes are designed to beuseful as readable desk referencebook to give a fast and comprehen-sive overview and easy retrieval ofessential reliable key information,including tables, graphs, and bibli-ographies. References to extensivesources are provided.

Page 3: Springer Handbook of Electronic and Photonic Materialsmido.kiev.ua/lib/SHB_epm/files/01A-2017_Bookmatter... · Editors Safa Kasap University of Saskatchewan Saskatoon, Canada safa.kasap@usask.ca

HHandbookSpringer

of Electronicand Photonic Materials

Safa Kasap, Peter Capper (Eds.)

2nd EditionWith 1088 Figures and 185 Tables

K

Page 4: Springer Handbook of Electronic and Photonic Materialsmido.kiev.ua/lib/SHB_epm/files/01A-2017_Bookmatter... · Editors Safa Kasap University of Saskatchewan Saskatoon, Canada safa.kasap@usask.ca

EditorsSafa KasapUniversity of SaskatchewanSaskatoon, [email protected]

Peter CapperSouthampton, [email protected]

ISBN: 978-3-319-48931-5 e-ISBN: 978-3-319-48933-9DOI 10.1007/978-3-319-48933-9Library of Congress Control Number: 2017944229

© Springer International Publishing AG 2017

This work is subject to copyright. All rights are reserved by the Publisher,whether the whole or part of the material is concerned, specificallythe rights of translation, reprinting, reuse of illustrations, recitation,broadcasting, reproduction on microfilm or in any other physical way, andtransmission or information storage and retrieval, electronic adaptation,computer software, or by similar or dissimilar methodology now known orhereafter developed.The use of general descriptive names, registered names, trademarks,service marks, etc. in this publication does not imply, even in the absenceof a specific statement, that such names are exempt from the relevantprotective laws and regulations and therefore free for general use.The publisher, the authors and the editors are safe to assume that the adviceand information in this book are believed to be true and accurate at the dateof publication. Neither the publisher nor the authors or the editors give awarranty, express or implied, with respect to the material contained hereinor for any errors or omissions that may have been made. The publisherremains neutral with regard to jurisdictional claims in published maps andinstitutional affiliations.

Production and typesetting: le-tex publishing services GmbH, LeipzigTypography and layout: schreiberVIS, SeeheimIllustrations: le-tex publishing services GmbH, LeipzigCover design: eStudio Calamar Steinen, BarcelonaCover production: WMXDesign GmbH, HeidelbergPrinting and binding: Printer Trento s.r.l., Trento

Printed on acid free paper

This Springer imprint is published by Springer NatureThe registered company is Springer International Publishing AGThe registered company address is: Gewerbestrasse 11, 6330 Cham,Switzerland

Page 5: Springer Handbook of Electronic and Photonic Materialsmido.kiev.ua/lib/SHB_epm/files/01A-2017_Bookmatter... · Editors Safa Kasap University of Saskatchewan Saskatoon, Canada safa.kasap@usask.ca

V

Foreword

The editors and authors of the Springer Handbookof Electronic and Photonic Materials are to be con-gratulated on the second edition of this distinguishedvolume, which will be an invaluable source of informa-tion for all students, scientists, professionals, and otherinterested people working in these areas. Having madecontributions to earlier handbooks, I am well awareof the considerable and sustained work that is neces-sary to produce a volume of this kind. This particularHandbook, however, is distinguished by its breadth ofcoverage in the field and the way in which it discussesthe very latest developments. In such a rapidly movingfield, this is a considerable challenge, which has beenmet admirably.

Previous handbooks and encyclopedias have tendedto concentrate on semiconducting materials, for theunderstandable reason of their dominance in the elec-tronics field, and the wide range of semiconductingmaterials and phenomena that must be covered. Fewhave been courageous enough to predict future trends,but in 1992 Mahajan and Kimerling attempted thisin the Introduction to their Concise Encyclopaedia ofSemiconducting Materials and Related Technologies(Pergamon) and foresaw future challenges in the areasof nanoelectronics, low dislocation-density III–V sub-strates, semi-insulating III–V substrates, patterned epi-taxy of II–Vs, alternative dielectrics and contacts for sil-icon technology, and developments in ion-implantationand diffusion. To a greater or lesser extent, all of thesehave been proved to be true, but it illustrates how diffi-cult it is to make such a prediction.

Not many people would have thought, two decadesago, that the III–nitrides would occupy an importantposition in this book. As high melting point materials,with the associated growth problems, they were nothigh on the list of favorites for light emitters at the blueend of the spectrum! The story is a fascinating one –at least as interesting as the solution to the problem ofthe short working life of early solid-state lasers at thered end of the spectrum. Likewise, more recently, theadvances in white-light emitting diodes (WLEDs) haveimpacted us all, in replacement of traditional incan-descent bulbs for applications such as car headlights,torches, and other lighting, and are making a huge im-pact in saving energy. Optoelectronics and photonics,in general, have seen one of the most spectacular ad-vances over the last decade, and this is fully reflected inthe book, ranging from visible-light emitters and phos-

Prof. Arthur WilloughbyUniversity of Southampton

phors to infrared materials. Part Dof this book covers a wide range ofwork in this area, including III–Vand II–VI optoelectronic materialsand bandgap engineering, as wellas photonic glasses, liquid crys-tals, organic photoconductors, andthe new area of photonic crystals.The entire part reflects materials forlight generation, processing, trans-mission and detection – all the es-sential elements for using light in-stead of electrons.

New materials have emergedsince the first edition of this bookwas published in 2006 and they are also fully reflectedin the book. One of these is graphene, which is underactive research in order to discover its most effectiveapplications, and a whole chapter is deservedly devotedto this. Other 2Dmaterials have followed this discovery,and offer similarly exciting possibilities.

Another strong feature of this book is its coverageof fundamental properties in Part A, including optical,magnetic, electronic and dielectric properties, whichlays the groundwork for the rest of the book. Likewise,in Part B, we learn about single-crystal growth, epitaxy,semiconductor compounds’ growth and related charac-terization, all of which will be extremely instructive tothose new to the field.

In theMaterials for Electronics section (Part C), thebook charts the progress in silicon – overwhelminglythe dominant material for a whole range of electronicfunctions and circuitry – including new dielectrics andother issues associated with shrinking geometry ofcircuits and devices to produce ever higher packingdensities. It also includes areas rarely covered in otherbooks: thick films, high-temperature electronic materi-als, and amorphous and microcrystalline materials. Theexisting developments that extend the life of silicontechnology, including silicon/germanium alloys, appeartoo, and raise the question again as to whether the pre-dicted timetable for the demise of silicon has again beendeclared too early! Ferroelectrics – a class of materialsused so effectively in conjunction with silicon – cer-tainly deserve to be here.

The chapters in Part E (Novel Materials and Se-lected Applications), break new ground in a number ofadmirable ways. Most of us are familiar with informa-

Page 6: Springer Handbook of Electronic and Photonic Materialsmido.kiev.ua/lib/SHB_epm/files/01A-2017_Bookmatter... · Editors Safa Kasap University of Saskatchewan Saskatoon, Canada safa.kasap@usask.ca

VI Foreword

tion recording devices such as CDs, DVDs, etc., but feware aware of the materials, or principles, involved. Thisbook describes magnetic information storage materials,as well as phase-change optical recording, keeping usfully up to date with respect to recent developments. Thechapters in this section cover a diverse range of mate-rials with applications such as solar cells, sensors, pho-toconductors, carbon nanotubes, graphene, thermoelec-tric materials, and metamaterials on which such a hugevolume of work is presently being pursued worldwide.Both ends of the spectrum, from research to applica-tions, are represented in chapters on organic electronicsand packaging materials, as well as flexible substrates,perovskites, and materials for terahertz engineering.

So, a particular strength of this book is that it rangesfrom the fundamental science (Part A) through growthand characterization of the materials (Part B) to appli-cations (Parts C–E). Virtually all the materials coveredhere have a wide range of applications, which is one ofthe reasons why this book is going to be so useful. AsI indicated before, few of us will be successful in pre-dicting the future direction and trends that occupy thehigh-ground in this field in the coming decade, but thisbook teaches us the basic principles of materials andleaves it to us to adapt these to the needs of tomorrow. Icommend it to you most warmly.

Arthur Willoughby

Page 7: Springer Handbook of Electronic and Photonic Materialsmido.kiev.ua/lib/SHB_epm/files/01A-2017_Bookmatter... · Editors Safa Kasap University of Saskatchewan Saskatoon, Canada safa.kasap@usask.ca

VII

Preface

After several years in use, this second edition of theSpringer Handbook of Electronic and Photonic Mate-rials is brought out to update the coverage and includenew topics. Like the first edition, it represents a compre-hensive treatise on electronic and photonic materials,with each chapter written by experts in the field. It isaimed at senior undergraduate and graduate students,researchers, and practicing professionals working in thearea of electronic, optoelectronic, and photonic materi-als.

The idea for the first edition of this volume grewout of the need for a reference work that covers thewide spectrum of topics in materials that today’s elec-trical engineers, material scientists, and physicists need.Electronic and photonic materials is a truly interdis-ciplinary subject that encompasses a number of tradi-tional disciplines such as materials science, electricalengineering, chemical engineering, mechanical engi-neering, physics, and chemistry. It is not unusual tofind a mechanical engineering faculty carrying out re-search on electronic packaging, and electrical engineerscarrying out characterization measurements on semi-conductors. There are only a few established univer-sity departments specializing in electronic or photonicmaterials. In general, electronic materials as a dis-cipline appears as a research group or as an inter-disciplinary activity within a college or faculty. Onecould argue that, because of the very fact that it issuch an interdisciplinary field, there is a greater needto have a handbook that covers not only fundamen-tal topics but also advanced topics; hence the presentHandbook.

The chapters in this second edition of the SpringerHandbook of Electronic and Photonic Materials pro-vide the necessary background and up-to-date knowl-edge in a wide range of topics. Each chapter hasan introduction to the topic, many clear illustrations,and numerous references. Clear explanations and il-lustrations make the handbook useful for all levels ofresearch. All chapters are as self-contained as possible.There are both fundamental and advanced chapters thatwill appeal to readers with different backgrounds. Thisis particularly important for this Handbook since thesubject matter is highly interdisciplinary. For example,there will be readers with a background (first degree) inchemical engineering working on semiconductor pro-

cessing and who need to learn the fundamentals ofsemiconductor physics. Someone with a first degree inphysics would need to quickly update himself on ma-terials science concepts such as liquid phase epitaxyand so on. Difficult mathematics has been avoided and,whenever possible, the explanations have been givensemiquantitatively. There is a Glossary of DefiningTerms at the end of the Handbook, which is a partic-ularly useful feature in an interdisciplinary handbook.

As indicated before, the second edition is a majorrevision of the first one. Some chapters of the first edi-tion have been left out and many chapters have gonethrough major revisions. Quite a few new chapters havebeen added: Photoconductivity in Materials Research;Temperature-Insensitive Band-Gap III-V Semiconduc-tors: Tl-III-V and III-V-Bi; Graphene; Organic SolarCells; Materials for Terahertz Engineering; Metamate-rials; Thermoelectric Materials; Transparent Conduc-tive Oxides; and Inorganic Perovskite Oxides.

The editors are very grateful to all the authors fortheir excellent contributions and for their cooperationin delivering their manuscripts in the various stages ofthe production of this Handbook. Sincere thanks go toJudith Hinterberg for all her support and help through-out the long period of commissioning the contributionsand for getting them ready for production. Ursula Barthand Constanze Ober have very skilfully handled themyriad issues involved in getting the Handbook readyfor production, copy-editing, figure redrawing, proofpreparation and correction, and our sincere thanks goto them also for all their dedicated work in making theHandbook attractive to read.

It is a pleasure to thank Professor ArthurWilloughby for his many helpful suggestions that havemade this a better Handbook. His wealth of experienceas the Editor-in-Chief of the Journal of Materials Sci-ence: Materials in Electronics played an important rolenot only in selecting chapters but also in finding theright authors.

Finally, the Editors wish to thank all the membersof their families (Nicolette (SK) and Marian, Samueland Thomas (PC)) for their support and particularly fortheir endurance during the entire project.

Safa Kasap Saskatoon, CanadaPeter Capper Southampton, UK

Page 8: Springer Handbook of Electronic and Photonic Materialsmido.kiev.ua/lib/SHB_epm/files/01A-2017_Bookmatter... · Editors Safa Kasap University of Saskatchewan Saskatoon, Canada safa.kasap@usask.ca

IX

About the Editors

Safa Kasap is currently a Distinguished Professor of Electronic and OptoelectronicMaterials and Devices in the Electrical Engineering Department at the University ofSaskatchewan, Canada. He obtained his BSc (1976), MSc (1978), and PhD (1983)degrees from the Imperial College of Science, Technology and Medicine, Universityof London, UK, specializing in amorphous semiconductors and chalcogenide glasses.In 1996 he was awarded the DSc (Engineering) from London University for his re-search contributions to materials science in electrical engineering. He is a Fellow ofthe American Physical Society and the Royal Society of Canada. He is the author ofOptoelectronics and Photonics: Principles and Practices (2nd Edition) and Principlesof Electronic Materials and Devices (4th Edition). Both textbooks are widely used bymany major universities and professionals. He is the Deputy Editor-in-Chief for theJournal of Materials Science: Materials in Electronics.

Peter Capper was formerly Materials Team Leader at SELEX ES, which is nowpart of Leonardo MW Ltd. Dr Capper obtained his BA (1968) and PhD (1971) inChemical Physics and Physics from Essex University and Portsmouth Polytechnic,UK, respectively. He has spent some 40 years in the infrared industry, growing andcharacterizing cadmium mercury telluride (CMT) and other tellurium-based materi-als. He holds patents in the bulk growth of CMT, has authored/co-authored over 100papers and given several invited talks at international crystal growth/infrared (IR) con-ferences. He is a Fellow of the Institute of Physics and an Editor for the Journal ofMaterials Science: Materials in Electronics. He has edited/co-edited ten books in IRmaterials and devices and crystal growth.

Page 9: Springer Handbook of Electronic and Photonic Materialsmido.kiev.ua/lib/SHB_epm/files/01A-2017_Bookmatter... · Editors Safa Kasap University of Saskatchewan Saskatoon, Canada safa.kasap@usask.ca

XI

List of Authors

Martin Abkowitz (deceased)

Sadao AdachiGunma UniversityFaculty of Science and TechnologyGunma, [email protected]

Guy J. AdriaenssensUniversity of LeuvenLab. for Semiconductor PhysicsLeuven, [email protected]

Wilfried von AmmonVon Ammon ConsultingRoth, [email protected]

Hajime AsahiOsaka UniversityInst. of Scientific and Industrial ResearchOsaka, [email protected]

Peter AshburnUniversity of SouthamptonSchool of Electronics and Computer ScienceSouthampton, [email protected]

Mark AuslenderBen-Gurion University of the Negev Beer ShevaDept. of Electrical and Computer EngineeringBeer Sheba, [email protected]

Darren M. BagnallUniversity of New South WalesSchool of Photovoltaic and Renewable EnergyEngineeringSydney, [email protected]

Ian M. BakerLeonardo MW LtdSouthampton, [email protected]

Sergei BaranovskiiPhilipps UniversityDept. of PhysicsMarburg, [email protected]

Mark BaxendaleQueen Mary University of LondonSchool of Physics and AstronomyLondon, [email protected]

Mohammed L. BenkhedirTebessa UniversityLab. of Applied and Theoretical PhysicsTebessa, [email protected]

Monica BrinzaASML Netherlands B.V.Veldhoven, The [email protected]

Paul D. BrownUniversity of NottinghamDept. of Mechanical, Materials andManufacturing EngineeringNottingham, [email protected]

Peter CapperFormerly with Leonardo MW LtdSouthampton, [email protected]

R. Lawrence Comstock (deceased)

Ray DeCorbyUniversity of AlbertaElectrical and Computer EngineeringEdmonton, [email protected]

M. Jamal DeenMcMaster UniversityDept. of Electrical and Computer EngineeringHamilton, [email protected]

Page 10: Springer Handbook of Electronic and Photonic Materialsmido.kiev.ua/lib/SHB_epm/files/01A-2017_Bookmatter... · Editors Safa Kasap University of Saskatchewan Saskatoon, Canada safa.kasap@usask.ca

XII List of Authors

Leonard DissadoUniversity of LeicesterDept. of EngineeringLeicester, [email protected]

David DunmurUniversity of SouthamptonChemistrySouthampton, [email protected]

Lester F. Eastman (deceased)

Andy EdgarVictoria UniversitySchool of Chemical and Physical SciencesWellington, New [email protected]

Vassili FedotovUniversity of SouthamptonOptoelectronics Research CentreSouthampton, [email protected]

Romualdo A. FerreyraKyoto Institute of TechnologyInnovation CenterKyoto, [email protected]

Paul FonsNational Institute of Advanced Industrial Scienceand TechnologyTsukuba, [email protected]

Brian E. FoutzCharlottesville, [email protected]

Mark FoxUniversity of SheffieldDept. of Physics and AstronomySheffield, [email protected]

Darrel FrearNXP SemiconductorCore Technology in Package InnovationChandler, [email protected]

Jacek GieraltowskiEuropean Institute for Marine StudiesOceanic Domains LaboratoryPlouzané, [email protected]

Robert D. Gould (deceased)

Yaser M. HaddaraMcMaster UniversityDept. of Electrical and Computer EngineeringHamilton, [email protected]

Walid A. HadiUniversity of WindsorDept. of Electrical and Computer EngineeringWindsor, [email protected]

Shlomo HavaBen-Gurion University of the Negev Beer ShevaDept. of Electrical and Computer EngineeringBeer Sheba, [email protected]

Masahiro HiramotoInstitute for Molecular ScienceDept. of Materials Molecular ScienceOkazaki, [email protected]

Hideo HosonoTokyo Institute of TechnologyMaterials Research Center of Element StrategyYokohama, [email protected]

Colin HumphreysUniversity of CambridgeDept. Materials Science and MetallurgyCambridge, [email protected]

Mehrdad IrannejadUniversity of WaterlooDept. of Mechanical and MechatronicsEngineeringWaterloo, [email protected]

Stuart IrvineSwansea UniversityCollege of EngineeringSwansea, [email protected]

Page 11: Springer Handbook of Electronic and Photonic Materialsmido.kiev.ua/lib/SHB_epm/files/01A-2017_Bookmatter... · Editors Safa Kasap University of Saskatchewan Saskatoon, Canada safa.kasap@usask.ca

List of Authors XIII

Tatsumi IshiharaKyushu UniversityDept. of Applied ChemistryFukuoka, [email protected]

Radu IspasoiuON-SemiconductorImage Sensor GroupSan José, [email protected]

Minoru IsshikiTohoku UniversityInst. of Multidisciplinary Research for AdvancedMaterialsSendai, [email protected]

Tim JoyceUniversity of LiverpoolSchool of EngineeringLiverpool, [email protected]

M. Zahangir KabirConcordia UniversityDept. of Electrical and Computer EngineeringMontreal, [email protected]

Safa KasapUniversity of SaskatchewanSaskatoon, [email protected]

Gudrun KissingerInnovations for High PerformanceMicroelectronics (IHP)Frankfurt/Oder, [email protected]

Alexander V. KolobovNational Institute of Advanced Industrial Scienceand TechnologyTsukuba, [email protected]

Cyril KoughiaUniversity of SaskatchewanDept. of Electrical and Computer EngineeringSaskatoon, [email protected]

Roger LewisUniversity of WollongongSchool of PhysicsWollongong, [email protected]

Geoffrey LuckhurstUniversity of SouthamptonChemistrySouthampton, [email protected]

Jiří MálekUniversity of PardubiceDept. of Physical ChemistryPardubice, Czech [email protected]

Akihisa MatsudaOsaka UniversityDept. of Systems InnovationOsaka, [email protected]

Naomi MatsuuraUniversity of TorontoDept. of Materials Science & EngineeringToronto, [email protected]

Jan MistrikUniversity of PardubiceCenter of Materials and NanotechnologyPardubice, Czech [email protected]

Winfried MönchUniversity Duisburg-EssenFaculty of PhysicsDuisburg, [email protected]

Donald T. MorelliMichigan State UniversityChemical Engineering and Materials ScienceEast Lansing, [email protected]

Kazuo MorigakiUniversity of TokyoTokyo, [email protected]

Page 12: Springer Handbook of Electronic and Photonic Materialsmido.kiev.ua/lib/SHB_epm/files/01A-2017_Bookmatter... · Editors Safa Kasap University of Saskatchewan Saskatoon, Canada safa.kasap@usask.ca

XIV List of Authors

Hadis MorkoçVirginia Commonwealth UniversityElectrical and Computer EngineeringRichmond, [email protected]

Jayanta MukherjeeCompound Photonics UK LtdDurham, [email protected]

Takashi NagaseOsaka Prefecture UniversityDept. of Physics and ElectronicsSakai, [email protected]

Hiroyoshi NaitoOsaka Prefecture UniversityDept. of Physics and ElectronicsSakai, [email protected]

Arokia NathanUniversity of CambridgeDept. of Electrical EngineeringCambridge, [email protected]

Stephen K. O’LearyUniversity of British ColumbiaSchool of EngineeringKelowna, [email protected]

Chisato OgiharaYamaguchi UniversityGraduate School of Science and EngineeringYamaguchi, [email protected]

Fabien PascalUniversity of MontpellierInstitute of Electronic and SystemsMontpellier, [email protected]

Michael C. PettyDurham UniversitySchool of Engineering and Computing SciencesDurham, [email protected]

Henry H. RadamsonChinese Academy of ScienceInst. of MicroelectronicsBeijing, Chinaand

KTH Royal Institute of TechnologySchool of Information and CommunicationTechnologyStockholm, [email protected]

Asim K. RayBrunel University LondonInst. of Materials and ManufacturingMiddlesex, [email protected]

Stephen ReynoldsUniversity of DundeeSchool of Science and EngineeringDundee, [email protected]

Oleg RubelMcMaster UniversityDept. of Materials Science and EngineeringHamilton, [email protected]

Harry E. RudaUniversity of TorontoDept. of Materials Science and Engineering, andEdward Rogers Dept. of Electrical and ComputerEngineeringToronto, [email protected]

Andreas SattlerSiltronic AGMünchen, [email protected]

Peyman ServatiUniversity of British ColumbiaElectrical and Computer EngineeringVancouver, [email protected]

Derek ShawHull UniversityDept. of PhysicsHull, [email protected]

Page 13: Springer Handbook of Electronic and Photonic Materialsmido.kiev.ua/lib/SHB_epm/files/01A-2017_Bookmatter... · Editors Safa Kasap University of Saskatchewan Saskatoon, Canada safa.kasap@usask.ca

List of Authors XV

Fumio ShimuraShizuoka Institute of Science and TechnologyDept. of Materials and Life ScienceFukuroi, [email protected]

Yusuke ShinmuraInstitute for Molecular ScienceDept. of Materials Molecular ScienceOkazaki, [email protected]

Michael S. ShurRensselaer Polytechnic InstituteDept. of Physics, Applied Physics, and AstronomyNew York, [email protected]

Poppy SiddiquaUniversity of British ColumbiaSchool of EngineeringKelowna, [email protected]

Jai SinghCharles Darwin UniversitySchool of Engineerng and Information TechnologyDarwin, [email protected]

Tim SmeetonSHARP Laboratories of EuropeOxford, [email protected]

Hitoshi SuzukiHiroshima UniversityGraduate School of Advanced Sciences of MatterHigashihiroshima, [email protected]

Roman SvobodaUniversity of PardubiceDept. of Physical ChemistryPardubice, Czech [email protected]

Stephen J. SweeneyUniversity of SurreyDept. of Physics and Advanced TechnologyInstituteGuildford, [email protected]

David SykesLoughborough Surface Analysis LtdLoughborough, [email protected]

Keiji TanakaHokkaido UniversityDept. Applied PhysicsSapporo, [email protected]

Charbel TannousUniversity of Western BrittanyLab. of Magnetism of BrittanyBrest, [email protected]

Ali TekeBalikesir UniversityDept. of PhysicsBalikesir, [email protected]

Junji TominagaNational Institute of Advanced Industrial Scienceand TechnologyTsukuba, [email protected]

Harry TullerMassachusetts Institute of TechnologyDept. of Materials Science and EngineeringCambridge, [email protected]

Kazushige UedaKyushu Institute of TechnologyDept. of Materials ScienceKitakyushu, [email protected]

Robert M. WallaceUniversity of Texas at DallasDept. of Materials Science and EngineeringRichardson, [email protected]

Jifeng WangRasa Industries Ltd.Advanced Microelectronic Materials DevelopmentCenterTokyo, [email protected]

Page 14: Springer Handbook of Electronic and Photonic Materialsmido.kiev.ua/lib/SHB_epm/files/01A-2017_Bookmatter... · Editors Safa Kasap University of Saskatchewan Saskatoon, Canada safa.kasap@usask.ca

XVI List of Authors

David S. WeissMolecular Glasses, Inc.Rochester, [email protected]

Rainer WescheSwiss Federal Institute of Technology LausanneSwiss Plasma CenterVilligen, [email protected]

Roger WhatmoreImperial College LondonDept. of MaterialsLondon, [email protected]

Neil WhiteUniversity of SouthamptonSchool of Electronics and Computer ScienceSouthampton, [email protected]

Congyong ZhuInfineon TechnologiesChandler, [email protected]

Page 15: Springer Handbook of Electronic and Photonic Materialsmido.kiev.ua/lib/SHB_epm/files/01A-2017_Bookmatter... · Editors Safa Kasap University of Saskatchewan Saskatoon, Canada safa.kasap@usask.ca

XVII

Contents

List of Abbreviations ............................................................. XXIX

1 Perspectives on Electronic and Photonic MaterialsTim Smeeton, Colin Humphreys ................................................ 11.1 Tremendous Integration ................................................ 21.2 The Silicon Age .......................................................... 31.3 The Compound Semiconductors........................................ 7References ....................................................................... 14

Part A Fundamental Properties

2 Electrical Conduction in Metals and SemiconductorsSafa Kasap, Cyril Koughia, Harry E. Ruda ..................................... 192.1 Fundamentals: Drift Velocity, Mobility and Conductivity............. 202.2 Matthiessen’s Rule ...................................................... 222.3 Resistivity of Metals ..................................................... 232.4 Solid Solutions and Nordheim’s Rule .................................. 262.5 Carrier Scattering in Semiconductors .................................. 282.6 The Boltzmann Transport Equation .................................... 292.7 Resistivity of Thin Polycrystalline Films................................ 302.8 Inhomogeneous Media: Effective Media Approximation............. 322.9 The Hall Effect ........................................................... 352.10 High Electric Field Transport ............................................ 372.11 Impact Ionization ....................................................... 382.12 Two-Dimensional Electron Gas......................................... 402.13 One-Dimensional Conductance ........................................ 422.14 The Quantum Hall Effect ................................................ 43References ....................................................................... 44

3 Optical Properties of Electronic Materials:Fundamentals and CharacterizationJan Mistrik, Safa Kasap, Harry E. Ruda, Cyril Koughia, Jai Singh ........... 473.1 Optical Constants ........................................................ 473.2 Refractive Index ......................................................... 503.3 Optical Absorption....................................................... 533.4 Optical Characterization................................................. 693.5 Optical Materials......................................................... 79References ....................................................................... 82

4 Magnetic Properties: From Traditional to SpintronicCharbel Tannous, Jacek Gieraltowski .......................................... 854.1 Traditional Magnetism .................................................. 874.2 Nonconventional Magnetism and Progress

Toward Spintronics and Quantum Devices ............................ 994.3 Spintronics and Quantum Information Devices ....................... 104References ....................................................................... 109

Page 16: Springer Handbook of Electronic and Photonic Materialsmido.kiev.ua/lib/SHB_epm/files/01A-2017_Bookmatter... · Editors Safa Kasap University of Saskatchewan Saskatoon, Canada safa.kasap@usask.ca

XVIII Contents

5 Defects in Monocrystalline SiliconWilfried von Ammon, Andreas Sattler, Gudrun Kissinger..................... 1115.1 Technological Impact of Intrinsic Point Defects Aggregates.......... 1125.2 Thermophysical Properties of Intrinsic Point Defects ................. 1135.3 Aggregates of Intrinsic Point Defects................................... 1155.4 Formation of OSF Ring .................................................. 127References ....................................................................... 129

6 Diffusion in SemiconductorsDerek Shaw ...................................................................... 1336.1 Basic Concepts ........................................................... 1346.2 Diffusion Mechanisms................................................... 1346.3 Diffusion Regimes ....................................................... 1366.4 Internal Electric Fields .................................................. 1386.5 Measurement of Diffusion Coefficients ................................ 1396.6 Hydrogen in Semiconductors ........................................... 1406.7 Diffusion in Group IV Semiconductors ................................. 1416.8 Diffusion in III–V Compounds .......................................... 1436.9 Diffusion in II–VI Compounds .......................................... 1446.10 Nano Volume Diffusion ................................................. 1466.11 Diffusion in Molten Semiconductors ................................... 1466.12 The Meyer–Neldel Rule ................................................. 1466.13 Conclusions .............................................................. 1476.14 General Reading and References....................................... 147References ....................................................................... 147

7 Photoconductivity in Materials ResearchStephen Reynolds, Monica Brinza, Mohammed L. Benkhedir,Guy J. Adriaenssens ............................................................. 1517.1 Steady-State Photoconductivity (SSPC) ................................ 1537.2 Constant Photocurrent Method (CPM) and Related Techniques...... 1577.3 Steady-State Photocarrier Grating Method (SSPG) .................... 1607.4 Modulated Photocurrent Spectroscopy (MPC) ......................... 1617.5 Switch-on and Switch-off Transients ................................. 1647.6 Transient Photocurrent Spectroscopy (TPC) ............................ 1667.7 Time-of-Flight (TOF) and Related Techniques ........................ 1687.8 Other Photoconductivity-Related Techniques ........................ 171References ....................................................................... 172

8 Electronic Properties of Semiconductor InterfacesWinfried Mönch.................................................................. 1758.1 Experimental Database ................................................. 1778.2 IFIGS-and-Electronegativity Theory ................................... 1818.3 Comparison of Experiment and Theory ................................ 1838.4 Modifications of Schottky Contacts..................................... 1878.5 Graphene Schottky Contacts ............................................ 1908.6 Final Remarks............................................................ 190References ....................................................................... 191

Page 17: Springer Handbook of Electronic and Photonic Materialsmido.kiev.ua/lib/SHB_epm/files/01A-2017_Bookmatter... · Editors Safa Kasap University of Saskatchewan Saskatoon, Canada safa.kasap@usask.ca

Contents XIX

9 Charge Transport in Disordered MaterialsSergei Baranovskii, Oleg Rubel ................................................. 1939.1 General Remarks on Charge Transport in Disordered Materials...... 1959.2 Charge Transport in Disordered Materials via Extended States ...... 1989.3 Hopping Charge Transport in Disordered Materials

via Localized States...................................................... 2009.4 Concluding Remarks .................................................... 215References ....................................................................... 216

10 Dielectric ResponseLeonard Dissado ................................................................. 21910.1 Definition of Dielectric Response ...................................... 22010.2 Frequency-Dependent Linear Responses.............................. 22210.3 Information Contained in the Relaxation Response.................. 22810.4 Charge Transport......................................................... 24010.5 Data Presentation ....................................................... 24310.6 A Few Final Comments .................................................. 243References ....................................................................... 244

11 Ionic Conduction and ApplicationsHarry Tuller....................................................................... 24711.1 Conduction in Ionic Solids .............................................. 24811.2 Fast Ion Conduction ..................................................... 25111.3 Mixed Ionic–Electronic Conduction .................................... 25611.4 Applications.............................................................. 25811.5 Future Trends ............................................................ 262References ....................................................................... 263

Part B Growth and Characterization

12 Bulk Crystal Growth: Methods and MaterialsPeter Capper ..................................................................... 26912.1 Background .............................................................. 26912.2 History.................................................................... 27012.3 Techniques ............................................................... 27112.4 Materials Grown ......................................................... 27812.5 Conclusions .............................................................. 289References ....................................................................... 289

13 Single-Crystal Silicon: Growth and PropertiesFumio Shimura .................................................................. 29313.1 Overview ................................................................. 29413.2 Starting Materials........................................................ 29513.3 Single-Crystal Growth................................................... 29613.4 New Crystal Growth Methods ........................................... 304References ....................................................................... 306

14 Epitaxial Crystal Growth: Methods and MaterialsPeter Capper, Stuart Irvine, Tim Joyce.......................................... 30914.1 Liquid-Phase Epitaxy (LPE) ............................................. 30914.2 Metal Organic Chemical Vapor Deposition ............................. 319

Page 18: Springer Handbook of Electronic and Photonic Materialsmido.kiev.ua/lib/SHB_epm/files/01A-2017_Bookmatter... · Editors Safa Kasap University of Saskatchewan Saskatoon, Canada safa.kasap@usask.ca

XX Contents

14.3 Molecular Beam Epitaxy (MBE) ......................................... 329References ....................................................................... 337

15 Narrow Bandgap II-VI Semiconductors: GrowthPeter Capper ..................................................................... 34315.1 Bulk Growth Techniques ................................................ 34415.2 Liquid Phase Epitaxy (LPE) .............................................. 34915.3 Metal-Organic Vapor Phase Epitaxy (MOVPE) .......................... 35315.4 Molecular Beam Epitaxy (MBE) ......................................... 35815.5 Alternatives to MCT ...................................................... 361References ....................................................................... 362

16 Wide-Bandgap II-VI Semiconductors: Growth and PropertiesMinoru Isshiki, Jifeng Wang .................................................... 36516.1 Crystal Properties ........................................................ 36716.2 Epitaxial Growth......................................................... 37116.3 Bulk Crystal Growth ..................................................... 37516.4 Conclusions .............................................................. 381References ....................................................................... 381

17 Structural CharacterizationPaul D. Brown ................................................................... 38517.1 Radiation-Material Interactions ....................................... 38617.2 Particle-Material Interactions .......................................... 38717.3 X-ray Diffraction ......................................................... 39017.4 Optics, Imaging and Electron Diffraction .............................. 39317.5 Characterizing Functional Activity...................................... 40317.6 Sample Preparation ..................................................... 40417.7 Case Studies – Complementary Characterization of Electronic

and Optoelectronic Materials........................................... 40617.8 Concluding Remarks .................................................... 411References ....................................................................... 412

18 Surface Chemical AnalysisDavid Sykes....................................................................... 41318.1 Electron Spectroscopy ................................................... 41418.2 Glow-Discharge Spectroscopies (GDOES and GDMS) .................. 41618.3 Secondary Ion Mass Spectrometry (SIMS) .............................. 41718.4 Conclusion ............................................................... 423

19 Thermal Properties and Thermal Analysis:Fundamentals, Experimental Techniques and ApplicationsSafa Kasap, Jiří Málek, Roman Svoboda....................................... 42519.1 Heat Capacity ............................................................ 42619.2 Thermal Conductivity.................................................... 43119.3 Thermal Expansion ...................................................... 43619.4 Enthalpic Thermal Properties........................................... 43819.5 Temperature-Modulated DSC (TMDSC).................................. 446References ....................................................................... 449

Page 19: Springer Handbook of Electronic and Photonic Materialsmido.kiev.ua/lib/SHB_epm/files/01A-2017_Bookmatter... · Editors Safa Kasap University of Saskatchewan Saskatoon, Canada safa.kasap@usask.ca

Contents XXI

20 Electrical Characterization of Semiconductor Materialsand DevicesM. Jamal Deen, Fabien Pascal .................................................. 45320.1 Resistivity ................................................................ 45420.2 Hall Effect ................................................................ 46220.3 Capacitance–Voltage Measurements................................... 46420.4 Current–Voltage Measurements ........................................ 47020.5 Charge Pumping ......................................................... 47220.6 Low-Frequency Noise ................................................... 47320.7 Deep-Level Transient Spectroscopy .................................... 477References ....................................................................... 479

Part C Materials for Electronics

21 Single-Crystal Silicon: Electrical and Optical PropertiesMark Auslender, Shlomo Hava ................................................. 48521.1 Silicon Basics ............................................................ 48521.2 Electrical Properties ..................................................... 49521.3 Optical Properties ....................................................... 515References ....................................................................... 520

22 Silicon-Germanium: Properties, Growth and ApplicationsYaser M. Haddara, Peter Ashburn, Darren M. Bagnall........................ 52322.1 Physical Properties of Silicon-Germanium ............................ 52422.2 Optical Properties of SiGe ............................................... 53022.3 Growth of Silicon-Germanium ......................................... 53422.4 Polycrystalline Silicon-Germanium .................................... 537References ....................................................................... 539

23 Temperature-Insensitive Band-Gap III-V Semiconductors:Tl-III-V and III-V-BiHajime Asahi..................................................................... 54323.1 Tl-III-V Alloy Semiconductors .......................................... 54423.2 III-V-Bi Alloy Semiconductors .......................................... 55023.3 Summary ................................................................. 554References ....................................................................... 554

24 Amorphous Semiconductors: Structure, Optical,and Electrical PropertiesKazuo Morigaki, Chisato Ogihara .............................................. 55724.1 Electronic States ......................................................... 55724.2 Structural Properties .................................................... 56024.3 Optical Properties ....................................................... 56124.4 Electrical Properties ..................................................... 56524.5 Light-Induced Phenomena............................................. 56724.6 Nanosized Amorphous Structure ....................................... 569References ....................................................................... 570

25 Amorphous and Microcrystalline SiliconAkihisa Matsuda................................................................. 57325.1 Reactions in SiH4 and SiH4=H2 Plasmas ............................... 57425.2 Film Growth on a Surface............................................... 575

Page 20: Springer Handbook of Electronic and Photonic Materialsmido.kiev.ua/lib/SHB_epm/files/01A-2017_Bookmatter... · Editors Safa Kasap University of Saskatchewan Saskatoon, Canada safa.kasap@usask.ca

XXII Contents

25.3 Defect Density Determination for a-Si:H and �c-Si:H................ 58025.4 Device Applications ..................................................... 58225.5 Recent Progress in Material Issues

Related to Thin-Film Silicon Solar Cells ............................... 58325.6 Summary ................................................................. 586References ....................................................................... 586

26 Ferroelectric MaterialsRoger Whatmore................................................................. 58926.1 Definitions and Background............................................ 58926.2 Ferroelectric Materials .................................................. 59326.3 Ferroelectric Materials Fabrication Technology ....................... 60026.4 Ferroelectric Applications ............................................... 607References ....................................................................... 613

27 Dielectric Materials for MicroelectronicsRobert M. Wallace ............................................................... 61527.1 Overview ................................................................. 61527.2 Gate Dielectrics .......................................................... 62027.3 Isolation Dielectrics ..................................................... 63527.4 Capacitor Dielectrics ..................................................... 63627.5 Interconnect Dielectrics ................................................. 63927.6 Summary ................................................................. 641References ....................................................................... 641

28 Thin FilmsRobert D. Gould†, Safa Kasap, Asim K. Ray ................................... 64528.1 Deposition Methods..................................................... 64728.2 Structure ................................................................. 66928.3 Properties ................................................................ 68028.4 Concluding Remarks .................................................... 699References ....................................................................... 702

29 Thick FilmsNeil White ........................................................................ 70729.1 Thick Film Processing ................................................... 70829.2 Substrates ................................................................ 71029.3 Thick Film Materials ..................................................... 71129.4 Components and Assembly ............................................. 71429.5 Sensors ................................................................... 717References ....................................................................... 720

Part D Materials for Optoelectronics and Photonics

30 III-V Ternary and Quaternary CompoundsSadao Adachi .................................................................... 72530.1 Introduction to III–V Ternary and Quaternary Compounds .......... 72630.2 Interpolation Scheme ................................................... 72630.3 Structural Parameters ................................................... 72730.4 Mechanical, Elastic and Lattice Vibronic Properties .................. 72930.5 Thermal Properties ...................................................... 731

Page 21: Springer Handbook of Electronic and Photonic Materialsmido.kiev.ua/lib/SHB_epm/files/01A-2017_Bookmatter... · Editors Safa Kasap University of Saskatchewan Saskatoon, Canada safa.kasap@usask.ca

Contents XXIII

30.6 Energy Band Parameters ................................................ 73330.7 Optical Properties ....................................................... 73730.8 Carrier Transport Properties............................................. 739References ....................................................................... 741

31 Group III NitridesRomualdo A. Ferreyra, Congyong Zhu, Ali Teke, Hadis Morkoç .............. 74331.1 Crystal Structures of Nitrides............................................ 74531.2 Lattice Parameters of Nitrides .......................................... 74631.3 Mechanical Properties of Nitrides ...................................... 74831.4 Thermal Properties of Nitrides ......................................... 75231.5 Electrical Properties of Nitrides......................................... 75731.6 Optical Properties of Nitrides ........................................... 76931.7 Properties of Nitride Alloys ............................................. 78231.8 Doped GaN ............................................................... 78631.9 Defects in GaN ........................................................... 78931.10 GaN-Based Nanostructures ............................................. 79431.11 Summary and Conclusions.............................................. 801References ....................................................................... 802

32 Electron Transport Within III-V Nitride SemiconductorsStephen K. O’Leary, Poppy Siddiqua, Walid A. Hadi, Brian E. Foutz,Michael S. Shur, Lester F. Eastman† ............................................ 82932.1 Electron Transport Within Semiconductors and the Monte

Carlo Simulation Approach ............................................. 83032.2 Steady-State and Transient Electron Transport

Within Bulk Wurtzite GaN, AlN, and InN............................... 83432.3 Electron Transport Within III–V Nitride Semiconductors: A Review.. 84532.4 Conclusions .............................................................. 850References ....................................................................... 850

33 II-IV Semiconductors for Optoelectronics: CdS, CdSe, CdTeMinoru Isshiki, Jifeng Wang .................................................... 85333.1 Background .............................................................. 85333.2 Solar Cells ................................................................ 85333.3 Radiation Detectors ..................................................... 85833.4 Conclusions .............................................................. 863References ....................................................................... 863

34 II-VI Narrow Bandgap Semiconductors: OptoelectronicsIan M. Baker ..................................................................... 86734.1 Overview ................................................................. 86734.2 Applications and Sensor Design........................................ 87034.3 Photoconductive Detectors in HgCdTe ................................. 87134.4 Sprite Detectors .......................................................... 87234.5 Introduction to Photovoltaic Devices in HgCdTe ...................... 87334.6 Manufacturing Technology for Photodiode Arrays .................... 87934.7 Advanced HgCdTe Technologies ........................................ 88634.8 Emission Devices in II–VI Semiconductors ............................ 89234.9 Potential for Reduced Dimensionality in HgTe–CdTe ................. 893References ....................................................................... 893

Page 22: Springer Handbook of Electronic and Photonic Materialsmido.kiev.ua/lib/SHB_epm/files/01A-2017_Bookmatter... · Editors Safa Kasap University of Saskatchewan Saskatoon, Canada safa.kasap@usask.ca

XXIV Contents

35 Optoelectronic Devices and MaterialsStephen J. Sweeney, Jayanta Mukherjee....................................... 89735.1 Introduction to Optoelectronic Devices ................................ 89835.2 Light-Emitting Diodes and Semiconductor Lasers .................... 90035.3 Single- and Multimode Lasers ......................................... 91335.4 Optical Amplifiers ....................................................... 92235.5 Modulators............................................................... 92335.6 Photodetectors .......................................................... 92735.7 Conclusions .............................................................. 929References ....................................................................... 930

36 Liquid CrystalsGeoffrey Luckhurst, David Dunmur............................................. 93336.1 Introduction to Liquid Crystals ......................................... 93336.2 The Basic Physics of Liquid Crystals .................................... 94036.3 Liquid-Crystal Devices................................................... 94736.4 Materials for Displays ................................................... 956References ....................................................................... 964

37 Organic PhotoconductorsDavid S. Weiss, Martin Abkowitz† .............................................. 96737.1 Chester Carlson and Xerography........................................ 96837.2 Operational Considerations and Critical Materials Properties ........ 97037.3 OPC Characterization .................................................... 97837.4 OPC Architecture and Composition ..................................... 98037.5 Photoreceptor Fabrication .............................................. 99037.6 Summary ................................................................. 990References ....................................................................... 992

38 Luminescent MaterialsAndy Edgar....................................................................... 99738.1 Luminescent Centres .................................................... 99938.2 Interaction with the Lattice ............................................ 100138.3 Thermally Stimulated Luminescence................................... 100338.4 Optically (Photo-)Stimulated Luminescence .......................... 100438.5 Experimental Techniques – Photoluminescence ..................... 100538.6 Applications.............................................................. 100638.7 Representative Phosphors .............................................. 1011References ....................................................................... 1011

39 Nano-Engineered Tunable Photonic CrystalsHarry E. Ruda, Naomi Matsuura ............................................... 101339.1 PC Overview .............................................................. 101439.2 Traditional Fabrication Methodologies for Static PCs ................. 101739.3 Tunable PCs .............................................................. 102739.4 Summary and Conclusions.............................................. 1030References ....................................................................... 1031

40 Quantum Wells, Superlattices, and Band-Gap EngineeringMark Fox, Radu Ispasoiu........................................................ 103740.1 Principles of Bandgap Engineering and Quantum Confinement .... 103840.2 Optoelectronic Properties of Quantum-Confined Structures ......... 104040.3 Emitters .................................................................. 1047

Page 23: Springer Handbook of Electronic and Photonic Materialsmido.kiev.ua/lib/SHB_epm/files/01A-2017_Bookmatter... · Editors Safa Kasap University of Saskatchewan Saskatoon, Canada safa.kasap@usask.ca

Contents XXV

40.4 Detectors ................................................................. 105040.5 Modulators............................................................... 105240.6 Quantum Dots and Nanowires ......................................... 105340.7 Conclusions .............................................................. 1055References ....................................................................... 1055

41 Glasses for Photonic IntegrationRay DeCorby, Mehrdad Irannejad .............................................. 105941.1 Main Attributes of Glasses as Photonic Materials ..................... 106141.2 Glasses for Integrated Optics ........................................... 106841.3 Laser Glasses for Integrated Light Sources............................. 107141.4 Summary ................................................................. 1077References ....................................................................... 1077

42 Optical Nonlinearity in Photonic GlassesKeiji Tanaka ...................................................................... 108142.1 Third-Order Nonlinearity in Homogeneous Glass..................... 108342.2 Second-Order Nonlinearity in Poled Glass ............................ 108842.3 Particle-Embedded Systems............................................ 108942.4 Photoinduced Phenomena ............................................. 109042.5 Summary ................................................................. 1091References ....................................................................... 1092

Part E Novel Materials and Selected Applications

43 Solar Cells and PhotovoltaicsStuart Irvine ..................................................................... 109743.1 Figures of Merit for Solar Cells .......................................... 109843.2 Crystalline Silicon........................................................ 110043.3 Amorphous Silicon ...................................................... 110243.4 GaAs Solar Cells .......................................................... 110243.5 CdTe Thin-Film Solar Cells .............................................. 110443.6 CuInGaSe2 (CIGS2) Thin-Film Solar Cells................................ 110543.7 Excitonic PV .............................................................. 110743.8 Conclusions .............................................................. 1107References ....................................................................... 1108

44 Disordered Semiconductors on Mechanically FlexibleSubstrates for Large-Area ElectronicsPeyman Servati, Arokia Nathan ................................................ 111144.1 a-Si:H TFTs on Flexible Substrates...................................... 111244.2 Field-Effect Transport in Amorphous Films ........................... 111244.3 Electronic Transport Under Mechanical Stress ......................... 1118References ....................................................................... 1123

45 Photoconductors for X-Ray Image DetectorsM. Zahangir Kabir, Safa Kasap ................................................. 112545.1 X-Ray Photoconductors ................................................. 112745.2 Dark Current Limitations ................................................ 113645.3 Metrics of Detector Performance ....................................... 113945.4 Summary ................................................................. 1145References ....................................................................... 1145

Page 24: Springer Handbook of Electronic and Photonic Materialsmido.kiev.ua/lib/SHB_epm/files/01A-2017_Bookmatter... · Editors Safa Kasap University of Saskatchewan Saskatoon, Canada safa.kasap@usask.ca

XXVI Contents

46 Phase-Change Memory MaterialsAlexander V. Kolobov, Junji Tominaga, Paul Fons ............................ 114946.1 Structure of Ge-Sb-Te Phase-Change Alloys .......................... 115046.2 Mechanism of the Phase-Change Process ............................. 115646.3 Present Applications and Future Trends ............................... 1158References ....................................................................... 1160

47 Carbon Nanotubes and Bucky MaterialsMark Baxendale ................................................................. 116347.1 Carbon Nanotubes....................................................... 116347.2 Bucky Materials .......................................................... 1170References ....................................................................... 1170

48 GrapheneHenry H. Radamson ............................................................. 117348.1 Graphene Synthesis ..................................................... 117448.2 Band Structure and Electronic Applications ........................... 117648.3 Characterization of Graphene Material ................................ 117848.4 Photonic Applications................................................... 1180References ....................................................................... 1182

49 Magnetic Information-Storage MaterialsCharbel Tannous, R. Lawrence Comstock† ..................................... 118549.1 Magnetic Recording Technology........................................ 118649.2 Magnetic Random-Access Memory..................................... 121549.3 Extraordinary Magnetoresistance (EMR) ............................... 122049.4 Summary ................................................................. 1220References ....................................................................... 1220

50 High-Temperature SuperconductorsRainer Wesche ................................................................... 122550.1 The Superconducting State ............................................. 122850.2 Cuprate High-Tc Superconductors: An Overview ...................... 123450.3 Physical Properties of Cuprate Superconductors ...................... 123950.4 Superconducting Films.................................................. 124450.5 The Special Case of MgB2 ............................................... 124550.6 Iron-Based Superconductors ........................................... 124850.7 Summary ................................................................. 1250References ....................................................................... 1252

51 Molecular ElectronicsMichael C. Petty, Takashi Nagase, Hitoshi Suzuki, Hiroyoshi Naito.......... 125751.1 Electrically Conductive Organic Compounds ........................... 125851.2 Materials ................................................................. 126151.3 Plastic Electronics ....................................................... 126351.4 Molecular-Scale Electronics ............................................ 126651.5 DNA Electronics .......................................................... 127451.6 Conclusions .............................................................. 1276References ....................................................................... 1276

Page 25: Springer Handbook of Electronic and Photonic Materialsmido.kiev.ua/lib/SHB_epm/files/01A-2017_Bookmatter... · Editors Safa Kasap University of Saskatchewan Saskatoon, Canada safa.kasap@usask.ca

Contents XXVII

52 Organic Materials for Chemical SensingAsim K. Ray ...................................................................... 128152.1 Analyte Requirements .................................................. 128252.2 Brief Review of Inorganic Materials.................................... 128352.3 Macrocylic Compounds for Sensing .................................... 128652.4 Sensing with Phthalocyanine and Porphyrin ......................... 129152.5 Polymeric Materials ..................................................... 129752.6 Cavitand Molecules...................................................... 130352.7 Concluding Remarks .................................................... 1305References ....................................................................... 1305

53 Packaging MaterialsDarrel Frear ...................................................................... 131153.1 Package Applications.................................................... 131253.2 The Materials Challenge of Electronic Packaging...................... 131353.3 Materials Coefficient of Thermal Expansion ........................... 131553.4 Wirebond Materials ..................................................... 131553.5 Solder Interconnects .................................................... 131753.6 Substrates ................................................................ 132253.7 Underfill and Encapsulants............................................. 132353.8 Electrically Conductive Adhesives (ECAs) ............................... 132453.9 Thermal Issues........................................................... 132653.10 Summary ................................................................. 1327References ....................................................................... 1327

54 Organic Solar CellsMasahiro Hiramoto, Yusuke Shinmura ........................................ 132954.1 History.................................................................... 133054.2 Excitons .................................................................. 133154.3 Donor–Acceptor Sensitization .......................................... 133254.4 Exciton Diffusion ........................................................ 133254.5 Blended Junctions ...................................................... 133354.6 Route Formation ........................................................ 133454.7 �–� Stacking ............................................................ 133554.8 HOMO–LUMO Gap ........................................................ 133554.9 Tandem Cells ............................................................. 133654.10 Conclusions .............................................................. 1337References ....................................................................... 1337

55 Materials for Terahertz EngineeringRoger Lewis ...................................................................... 133955.1 Overview ................................................................. 133955.2 Terahertz Sources ........................................................ 134355.3 Terahertz Detectors ...................................................... 134555.4 Terahertz Components .................................................. 134655.5 Conclusion ............................................................... 1347References ....................................................................... 1347

56 MetamaterialsVassili Fedotov ................................................................... 135156.1 Bulk Metamaterials...................................................... 135156.2 Planar Metamaterials ................................................... 1365References ....................................................................... 1375

Page 26: Springer Handbook of Electronic and Photonic Materialsmido.kiev.ua/lib/SHB_epm/files/01A-2017_Bookmatter... · Editors Safa Kasap University of Saskatchewan Saskatoon, Canada safa.kasap@usask.ca

XXVIII Contents

57 Thermoelectric MaterialsDonald T. Morelli ................................................................ 137957.1 Overview of the Field ................................................... 138057.2 Semiconductors as Thermoelectric Materials.......................... 138157.3 New Concepts in Thermoelectric Materials Design .................... 138557.4 Summary and Future Outlook .......................................... 1389References ....................................................................... 1390

58 Transparent Conductive OxidesHideo Hosono, Kazushige Ueda ................................................ 139158.1 Overview ................................................................. 139158.2 Materials Design for TCOs ............................................... 139558.3 New Approach to Explore Candidate Materials:

Materials Genome Approach ........................................... 1402References ....................................................................... 1403

59 Inorganic Perovskite OxidesTatsumi Ishihara................................................................. 140559.1 Typical Properties of Perovskite Oxides ................................ 140959.2 Photocatalytic Activity .................................................. 141159.3 Application for Solid Oxide Fuel Cells (SOFCs).......................... 141359.4 Oxygen Separating Membrane.......................................... 141859.5 Summary ................................................................. 1419References ....................................................................... 1420

About the Authors ................................................................ 1421Detailed Contents................................................................. 1435Glossary of Defining Terms ..................................................... 1461Subject Index ...................................................................... 1495

Page 27: Springer Handbook of Electronic and Photonic Materialsmido.kiev.ua/lib/SHB_epm/files/01A-2017_Bookmatter... · Editors Safa Kasap University of Saskatchewan Saskatoon, Canada safa.kasap@usask.ca

XXIX

List of Abbreviations

2DEG two-dimensional electron gas2DHG two-dimensional hole gas3DAP three-dimensional atom probe

microscopy

A

ABE acceptor-bound excitonAC alternating currentACPM absolute constant photocurrent methodACRT accelerated crucible rotation techniqueACT advanced Compton telescopeADX angular dispersive x-ray diffractionAECA anisotropic electrically conductive

adhesivesAEM analytical electron microscopeAES Auger electron spectroscopyAFC antiferromagnetically coupledAFM atomic force microscopyAG Adam-GibbsAHE anomalous Hall effectALD atomic layer depositionALE atomic layer epitaxyAMA active matrix arrayAMFPI active matrix flat-panel imagerAMOLED active matrix organic light-emitting

diodeAMR anisotropic magnetoresistanceAPD avalanche photodiodeASTC Advanced Storage Technology

ConsortiumAuNp hybrid graphene-gold nanoparticlesAWG arrayed-waveguide grating

B

BAR bit aspect ratioBE bound excitonBEEM ballistic-electron-emission microscopyBEOL back end of lineBER bit error rateBET Brunauer, Emmett and TellerBIL burst-illumination LIDARBJT bipolar junction transistorBLG bilayer grapheneBLIP background limited detectorsBPSG boro-phosphosilicate glassBSA bovine serum albuminBSE backscattered electronBSF basal stacking faultBZ Brillouin zone

C

CAIBE chemically assisted ion beam etchingCARR compound annual reduction rateCB conduction bandCBD chemical bath depositionCBE chemical beam epitaxyCBED convergent beam electron diffractionCC constant currentCCD charge-coupled deviceCCSS coclose-spaced sublimationCCZ continuous Czochralski methodCDD charge density differenceCFL compact fluorescent lampsCFLPE container-free LPECGC coupled granular continuousCGL charge-generation layerCHCC conduction–hole–conduction–

conductionCHSH conduction–hole–spin–holeCID compositional interdiffusionCIP current-in-planeCKR cross Kelvin resistorCL cathodoluminescenceCMOS complementary

metal-oxide-semiconductorCMP chemical mechanical polishingCMS core multishellCO carbon monoxideCOD catastrophic optical damageCOP crystal originated particleCP charge pumpingCPM constant photocurrent methodCPP current-perpendicular-to-planeCPU central processing unitCRA cast recrystallize annealCSD chemical solution depositionCSO chip scale opticCSP chip scale packagingCSS close-space sublimationCTE coefficient of thermal expansionCTEM conventional TEMCTL charge transport layerCVD chemical vapor depositionCVT chemical vapor transportCW continuous waveCZ Czochralski

D

DA Drude approximationDAG direct alloy growthDAP donor–acceptor pair

Page 28: Springer Handbook of Electronic and Photonic Materialsmido.kiev.ua/lib/SHB_epm/files/01A-2017_Bookmatter... · Editors Safa Kasap University of Saskatchewan Saskatoon, Canada safa.kasap@usask.ca

XXX List of Abbreviations

DBE donor-bound excitonDBP dual beam photoconductivityDBR distributed Bragg reflectorDC direct currentDCA direct chip attachDCPBH double-channel planar buried

heterostructureDCXRD double crystal x-ray diffractionDEZ diethylzincDFB distributed feedbackDFT density functional theoryDH double heterostructureDIL dual-in-lineDiP dual-in-line-packageDLHJ double-layer heterojunctionDLPH double-layer planar heterostructureDLTS deep-level transient spectroscopyDME detector materials engineeringDMFT dynamical mean field theoryDMS dilute magnetic semiconductorDOS density of statesDP Dulong–Petit ruleDPI dual polarization interferometricDPN dip-pen nanolithographyDQE detective quantum efficiencyDQW double quantum wellDRAM dynamic random-access memoryDSC differential scanning calorimeterDSIMS dynamic SIMSDSP digital signal processorDSSR double split-ring resonatorDTGS deuterated triglycerine sulfateDUT device under testDVD digital versatile diskDW domain wallDWB dual-waveband detectorDWDM dense wavelength-division multiplexing

E

e-APD electron avalanche photodiodeEAM electroabsorption modulatorEBIC electron beam-induced currentEBL electron beam lithographyECA electrically conductive adhesivesECB electrically controlled birefringenceECC exchange-coupled-compositeECR electron cyclotron resonanceECRPECVD electron cyclotron PECVDEDFA erbium-doped fiber amplifierEDMR electrically detected magnetic

resonanceEDS energy dispersive x-ray spectroscopyEDX energy dispersive x-rayEELS electron energy loss spectroscopyEEPROM electrically erasable programmable

read-only memoryEFG edge-defined film-fed growthEHP electron–hole pairEIA Electronic Industries Alliance

EL electroluminescenceELISA enzyme-linked immunosorbent assayELO epitaxial lateral overgrowthELOG epitaxial layer overgrowthEMA effective media approximationEMR extraordinary magnetoresistanceENDOR electron–nuclear double resonanceEOT equivalent oxide thicknessEP exciton polaritonEPD etch pit densityEPR electron paramagnetic resonanceESA excited state absorptionESCA electron spectroscopy for chemical

analysisESR electron spin resonanceETB empirical tight-binding approximationEXAFS extended x-ray absorption fine structure

F

FAB fabrication facilityFBG fiber Bragg gratingFBZ first Brillouin zoneFCA free-carrier absorptionfcc face-centered cubicFeRAM ferroelectric random access memoryFET field-effect transistorFF fill factorFFT fast Fourier transformationFHD flame hydrolysis depositionFIB focused ion beamFIC fast ion conductorFinFET fin field effect transistorFM ferromagneticFMR ferromagnetic resonanceFOD flame oxidation depositionFOM figure of meritFPA focal plane arrayFPD flow pattern defectFRAM ferroelectric random-access memoryFSG fluorinated silicate glassFSS frequency selective surfaceFT Fourier transformFTIR Fourier-transform infraredFTO fluorine-doped tin oxideFTPS Fourier-transform photocurrent

spectroscopyFWHM full width at half maximumFX free excitonFZ floating-zone

G

GC glassy carbonGDA generalized Drude approximationGDMS glow discharge mass spectrometryGDOES glow discharge optical emission

spectroscopyGM grid methodGMR giant magnetoresistance

Page 29: Springer Handbook of Electronic and Photonic Materialsmido.kiev.ua/lib/SHB_epm/files/01A-2017_Bookmatter... · Editors Safa Kasap University of Saskatchewan Saskatoon, Canada safa.kasap@usask.ca

List of Abbreviations XXXI

GNR graphene nanoribbonGOI gate oxide integrityGRL granular recording layerGSMBE gas-source molecular beam epitaxy

H

HAADF high-angle annular dark fieldHAMR heat assisted magnetic recordingHARP high-gain avalanche rushing

photoconductorHAZ heat affected zoneHBT heterojunction bipolar transistorhcp hexagonal close-packedHDC horizontal directional solidification

crystallizationHDMR heated dot magnetic recordingHEMT high electron mobility transistorHFET heterojunction field effect transistorHIP hot isostatic pressingHIS high impedance surfaceHMS head-media separationHNP high nitrogen pressureHOLZ high-order Laue zoneHOMO highest occupied molecular orbitalHOT higher operating temperatureHPB high-pressure BridgmanHPD high-pressure depletionHREM high-resolution electron microscopyHRTEM high-resolution transmission electron

microscopyHRXRD high-resolution x-ray diffractionHSG hemispherical-grainHSRS higher silane-related speciesHV high vacuumHVPE hydride vapor phase epitaxyHWE hot-wall epitaxy

I

I/O input/outputsIBI isobutyl iodideIC integrated circuitICSD inorganic crystal structure databaseICTS isothermal capacitance transient

spectroscopyIDCA integrated detector – cooler assemblyIDE interdigitated electrodeIFIGS interface-induced gap statesIFTOF interrupted field time-of-flightIgG immunogamma globulinIMC integrated magnetic concentratorIMM inverted metamorphic structureIMP interdiffused multilayer processIMPATT impact avalanche transit timeiOLEDS inverted OLEDiPCM interfacial phase-change memoryIPEYS internal photoemission yield

spectroscopy

IPS in-plane switchingIQE internal quantum efficiencyIR infraredISB intersubbandISE ion-selective electrodeISHE inverse spin-Hall effectITO indium tin oxideIZO indium zinc oxide

J

JFET junction field-effect transistor

K

KCR Kelvin contact resistanceKKR Kramers–Kronig relationKWW Kohlrausch–Williams–Watts

L

LA longitudinal acousticalLAST lead–antimony–silver–tellurideLC liquid crystalLCD liquid crystal displayLD laser diodeLDA local density approximationLDD lightly doped drainLEC liquid encapsulated CzochralskiLED light-emitting diodeLEEBI low-energy electron beam irradiationLEIS low-energy ion scatteringLEL lower explosive limitLEO lateral epitaxial overgrowthLF low frequencyLFN low-frequency noiseLL Luttinger liquidLLS laser light scatteringLMA law of mass actionLMR longitudinal magnetic recordingLMTO linearized muffin-tin orbitalsLO longitudinal opticalLOCOS local oxidation of siliconLPCVD low pressure chemical vapor depositionLPD light point defectLPE liquid phase epitaxyLPEE liquid phase electroepitaxyLSDA local spin density approximationLSTD laser light scattering tomography defectLTCC low-temperature co-fired ceramicLUMO lowest unoccupied molecular orbitalLWIR long-wavelength infrared

M

MAA monomer methacrylic acidMBE molecular beam epitaxyMC Monte CarloMCCZ magnetic field applied continuous CZ

Page 30: Springer Handbook of Electronic and Photonic Materialsmido.kiev.ua/lib/SHB_epm/files/01A-2017_Bookmatter... · Editors Safa Kasap University of Saskatchewan Saskatoon, Canada safa.kasap@usask.ca

XXXII List of Abbreviations

MCL magnetic cap layerMCT mercury cadmium tellurideMCZ Czochralski growth with an applied

magnetic fieldMDF model dielectric functionMDP molecularly doped polymerMDSC temperature-modulated differential

scanning calorimetryMEED medium-energy electron diffractionMEM micro-electromechanicalMEMS micro-electromechanical systemMESFET metal–semiconductor

field-effect-transistorMF meeting frontMFCs mass flow controllersMHJ mesa heterojunctionMI-M-I-M metal-insulator-metal-insulator-metalMIGS metal-induced gap stateMIM metal–insulator–metalMIP molecularly imprinted polymerMIPS millions of instructions per secondMIS metal–insulator–semiconductorML monolayerMLC multilayer ceramicMLHJ multilayer heterojunctionMO metal-organicMOCVD metal-organic chemical vapor

depositionMOD metal-organic depositionMODFET modulation-doped FETMOMBE metal-organic molecular beam epitaxyMOPA master oscillator power amplifierMOS metal–oxide–semiconductorMOSFET metal–oxide–semiconductor field-effect

transistorMOSS multi-beam optical stress sensorMOVPE metal-organic vapor phase epitaxyMPB morphotropic phase boundaryMPC modulated photoconductivityMPU microprocessor unitMQD multiple quantum diskMQW multiple quantum wellMR magnetoresistanceMRAM magnetic random-access memoryMRI magnetic resonance imagingMS metal-semiconductorMSG microstructure glassMTC minimal thermal conductivityMTF modulation transfer functionMTJ magnetic tunneling junctionMUTIS metal-ultrathin insulator–semiconductorMWIR medium-wavelength infraredMWNT multiwall nanotube

N

NBTI negative-bias temperature instabilityNCA nanochannel aluminaNCG nanochannel glass

NDM negative differential mobilityNDR negative differential resistancenear-IR near-infraredNEPh noise equivalent photonsNETD noise equivalent temperature differenceNeXT nonthermal energy exploration

telescopeNHE normal hydrogen electrodeNHF nonreversing heat flowNMOS n-type-channel

metal-oxide-semiconductorNMR nuclear magnetic resonanceNNH nearest-neighbor hoppingNREL National Renewable Energy LaboratoryNTC negative temperature coefficientNTCR negative temperature coefficient of

resistanceNTD neutron transmutation dopingNW nanowireNW LED nanowire light-emitting diodeNWQD nanowire quantum dot

O

OCV open circuit potentialODMR optically detected magnetic resonanceOLED organic light-emitting diodeOMVPE organometallic vapor phase epitaxyOPSEL optically pumped surface-emitting laserOPV organic photovoltaic deviceOSF oxidation-induced stacking faultOSG organo-silicate glassOSL optically stimulated luminescenceOZM overlap zone-melting

P

PA photoinduced absorptionPACE-I producible alternative to CdTe epitaxyPAMBE plasma-assisted molecular beam epitaxyPAni polyanilinePAS positron annihilation spectroscopyPBG photonic band gapPCA principal component analysisPCB printed circuit boardPCM phase-change memoryPDP plasma display panelPDS photothermal deflection spectroscopyPE BJT polysilicon emitter bipolar junction

transistorPECVD plasma-enhanced chemical vapor

depositionPEM polymer electrolyte membranePES photoemission spectroscopyPET positron emission tomographyPGEC phonon-glass-electron crystalPICTS photoinduced current transient

spectroscopyPIDC photoinduced discharge

Page 31: Springer Handbook of Electronic and Photonic Materialsmido.kiev.ua/lib/SHB_epm/files/01A-2017_Bookmatter... · Editors Safa Kasap University of Saskatchewan Saskatoon, Canada safa.kasap@usask.ca

List of Abbreviations XXXIII

PL photoluminescencePLC planar lightwave circuitPLD pulsed laser depositionPM particulate matterPMOS p-type MOSPMR perpendicular magnetic recordingPOF plastic optical fiberppm parts per millionPR photoreflectancePRAM phase-change random access memoryPRML partial response maximum likelihoodPRT platinum resistance thermometerPSL photo-stimulated luminescencePTC positive temperature coefficientPTCR positive temperature coefficient of

resistancePTS photon-trapping structurePV photovoltaicPVD physical vapor depositionPVT physical vapor transportPZC point of zero chargePZT lead zirconate titanate

Q

QA quench annealQC quantum cascadeQCL quantum cascade laserQCM quartz crystal microbalanceQCSE quantum-confined Stark effectQD quantum dotQDIP quantum dot infrared photodetectorQE quantum efficiencyQFL quasi-Fermi levelQHE quantum Hall effectQW quantum wellQWIP quantum well intersubband

photodetector

R

RA resistance � areaRAIRS reflection adsorption infrared

spectroscopyRBS Rutherford backscattering spectrometryRCLED resonant cavity light emitting diodeRDF radial distribution functionRDS reflection difference spectroscopyRE rare earthRED reflection electron diffractionRF radio frequencyRGO reduced graphene oxideRH relative humidityRHEED reflection high-energy electron

diffractionRHF reversing heat flowRIBE reactive ion beam etchingRIE etching reactive ion etchingRIL resistive interface layer

RIU refractive index unitsRKKY Ruderman–Kittel–Kasuya–YoshidaRMS root mean squareROIC readout integrated circuitRRR residual resistivity ratioRTA rapid thermal annealingRTD resistance temperature deviceRTS random telegraph signal

S

S-R-H Shockley–Read–HallSA self-assemblySA-VPE selective-area vapor-phase epitaxySAF synthetic antiferromagnetSAM self-assembled monolayerSAW surface acoustic waveSAXS small-angle x-ray scatteringSCE saturated calomel electrodeSCH separate confinement heterostructureSCLC space-charge-limited currentSCM step-coverage methodSCVT seeded chemical vapor transportSD sputtering depositionSDW spin density waveSE spectroscopic ellipsometrySEM scanning electron microscopySF staking faultSFM synthetic ferrimagnetic mediaSG selenide glassSGE spin-Gunn effectSHE spin-Hall effectSiC silicon carbideSIMS secondary ion mass spectrometrySiON silicon oxynitrideSIPBH semi-insulating planar buried

heterostructureSK Stranski–KrastanovSL superlatticeSL-APD superlattice avalanche photodiodeSMD shifted-modulation-dopedSMR spin-Hall magnetoresistanceSNR signal-to-noise ratioSO small outlineSOA semiconductor optical amplifierSOC system-on-a-chipSOFC solid oxide fuel cellSOI silicon-on-insulatorSPAD single-photon avalanche diodeSPC spin-polarized currentSPE spin-Peltier effectSPECT single-photon emission computed

tomographySPGE spin photo-galvanic effectSPR surface plasmon resonanceSPRI surface plasmon resonance imagingSPV surface photovoltageSPVT seeded physical vapor transportSQW single quantum well

Page 32: Springer Handbook of Electronic and Photonic Materialsmido.kiev.ua/lib/SHB_epm/files/01A-2017_Bookmatter... · Editors Safa Kasap University of Saskatchewan Saskatoon, Canada safa.kasap@usask.ca

XXXIV List of Abbreviations

SRAM static random-access memorySRR split-ring resonatorSSE spin-Seebeck effectSSG superstructure gratingSSIMS static secondary ion mass spectrometrySSMBE solid source molecular beam epitaxySSPC steady-state photoconductivitySSPG steady-state photocarrier gratingSSR solid-state recrystallizationSSRM scanning spreading resistance

microscopySTEBIC scanning transmission electron beam

induced conductivitySTHM sublimation traveling heater methodSTI shallow trench isolationSTM scanning–tunnelling microscopySTN super-twisted nematicSTT spin-transfer torqueSUL soft underlayerSUMIT simultaneous unipolar multispectral

integrated technologySVP saturated vapor pressureSWC spin-wave currentSWCN single-wall carbon nanotubeSWIR short-wavelength infraredSWNT single-wall nanotube

T

TA transverse acousticalTAB tab automated bondingTADF thermally activated delayed

fluorescenceTAT trap-assisted tunnelingTCE thermal coefficient of expansionTCO transparent conducting oxideTCR temperature coefficient of resistivityTCRI temperature coefficient of the refractive

indexTD threading dislocationTDD threading dislocation densityTDDB time-dependent dielectric breakdownTDI time-delay and integrationTE transverse electricTEC thermal expansion coefficientTED transmission electron diffractionTEM transmission electron microscopyTEM-CL TEM-cathodoluminescenceTET two-electron transitionTFSCLC trap-free space-charge-limited current

densityTFT thin film transistorTHM traveling heater methodTL thermoluminescenceTLC trap-limited conductionTLM transmission line measurementTM transverse magneticTMR tunnel magnetoresistanceTN twisted nematic

TNM Tool–Narayanaswamy–MoynihanTO transverse opticalTOF time-of-flightToFSIMS time-of-flight SIMSTOS transparent oxide semiconductorTPB triple phase boundaryTPC transient photoconductivityTPV thermo-photovoltaicTRAPATT trapped plasma avalanche-triggered

transitTRMC time-resolved microwave conductivityTSL thermally stimulated luminescenceTVAN twisted vertically aligned

U

UAPD unipolar avalanche photodiodeUBM under bump metallurgyUD uniformly dopedUHV ultrahigh vacuumUHV-ECR-RMS ultrahigh vacuum-electron cyclotron

resonance-radio-frequency magnetronsputtering

ULSI ultra-large-scale integrationUMS ultrasonic micro-spectroscopy

V

VAN vertically aligned nematicVAP valence-alternation pairsVB valence bandVCSEL vertical cavity surface emitting laserVCZ vapor-pressure-controlled CzochralskiVD vacuum distillationVE vacuum evaporationVECSEL vertical external cavity surface emitting

laserVGA visual graphics arrayVGF vertical gradient freezingViGS virtual gap statesVIS visibleVLS vapor-liquid-solidVLSI very-large-scale integration circuitVOC volatile organic compoundVOx vanadium oxideVPE vapor phase epitaxyVRH variable-range hoppingVS vapor-solidVTD vapor transport depositionVUV vacuum ultravioletVUVG vertical unseeded vapor growthVW Volmer–Weber

W

WAT weak absorption tailWDM wavelength division multiplexingWDX wavelength dispersive x-ray

Page 33: Springer Handbook of Electronic and Photonic Materialsmido.kiev.ua/lib/SHB_epm/files/01A-2017_Bookmatter... · Editors Safa Kasap University of Saskatchewan Saskatoon, Canada safa.kasap@usask.ca

List of Abbreviations XXXV

WEEE waste in electrical and electronicequipment

WKB Wentzel–Kramers–BrillouinWSP wafer scale packagingWXI wide-band x-ray imager

X

XANES x-ray absorption near-edge structureXAS x-ray absorption spectroscopyXEBIT x-ray-sensitive electron beam image

tubeXGA extended graphics arrayXPS x-ray photoelectron spectrometry

XRD x-ray diffractionXRF x-ray fluorescenceXRSP x-ray storage phosphor

Y

YL yellow luminescence

Z

ZTCR zero temperature coefficient ofresistance