SoilEngineering

167
Soil Eart

description

spreadsheet for soilengineering

Transcript of SoilEngineering

Page 1: SoilEngineering

Soil Earthquake

Page 2: SoilEngineering

Last Updated:26/9/2009

StructureEarthquake

After you read explanations, Run the

programs !

To run the programs, please click letters in

the the Cell !

F2
To run the programs, please click letters in the the Cell !
E21
After you read explanations, Run the programs !
Page 3: SoilEngineering

To return the begining, please

click the "B" letter!!

A1
To return the begining, please click the "B" letter!!
Page 4: SoilEngineering
Page 5: SoilEngineering

SHALLOW FOUNDATIONS

DEEP FOUNDATIONS

To return "main options" , click the letters !

I7
To return "main options" , click the letters !
Page 6: SoilEngineering

Dr. Ferhat Özçep

To return "main options" , click the letters !

J2
Dr. Ferhat Özçep
Page 7: SoilEngineering

For Coarse Grained Soils

Pile DataD Pile Radius 0.65 mL Pile Length 20.00 m

Soil Data

f 0

Cohesion 5.00 #DIV/0!

Unit Weigth 1.85

Nq Coefficient 1.0Nc Coefficient 9.0

Coefficient 0.0

Ap Area of pile point 0.33

As Surface area of pile shaft 40.82a Adhesion Coeficient 0.9

fsi Skin Friction Resistance 4.5 4.50

Qp Pile Tip / Base Resistance 14.92 ton

Qs Pile Skin Friction Resistance 183.69 ton

Ultimate Pile Load 198.61 ton

FS Safety Factor 2.5

Allowable Pile Capacity 79.45 ton

Building of Structural Load per Pile 75 ton

Safety

Bearing Capacity for Pile Foundations

Angle of Shearing Resistance ( f )

cu ton/m2

Soil ( g ) ton/m3

Ng

m2

m2

ton/m2

Qult

Qallow

QB

If Angle of Shearing Resitance (f) is equal to 0, then Nq is equal to

1

To return "main options" , click the cell !

Load carried by pile point

Load carried by pile shaft

B1
To return "main options" , click the cell !
D13
If Angle of Shearing Resitance (f) is equal to 0, then Nq is equal to 1
C22
Load carried by pile point
C23
Load carried by pile shaft
Page 8: SoilEngineering

Parameter Estimation

Cohesion 5.00a Adhesion Coeficient 0.90 0.90

SPT Blow Count 30

fsi Skin Friction resistance 4.91

fsi Skin Friction resistance 2.45

cu ton/m2

ton/m2

ton/m2

Figure. Undrained shear strength (cu) and adhesion cofficient ( a) relationships (Tomlinson, 1980)

Düşük Yerdeğiştirmeli Kazıklar

Yüksek Yerdeğiştirmeli Kazıklar

E62
Yüksek Yerdeğiştirmeli Kazıklar
E63
Düşük Yerdeğiştirmeli Kazıklar
Page 9: SoilEngineering

For Fine Grained Soils

Pile DataD Pile Radius 0.65 mL Pile Length 20.00 m

Soil Data

Cohesion 5

Nc Coefficient 9

a Adhesion Coeficient 0.9

fsi Friction resistance 4.5 4.50

Ap Area of pile point 0.33

As Surface area of pile shaft 40.82

Qp Pile Tip / base resistance 14.92 tonQs Pile Skin Friction Resistance 183.69 ton

Ultimate Pile Load 198.61 tonFS Safety Factor 2.5

Allowable Pile Capacity 79.45 ton

Building of Structural Load per Pile 75 ton

Safety

Bearing Capacity for Pile Foundations

cu ton/m2

ton/m2

m2

m2

Qult

Qallow

QB

If internal firction angel (f) is equal 0, then Nq is equal 1

Load carried by pile point

Load carried by pile point

Load carried by pile shaft

J11
If internal firction angel (f) is equal 0, then Nq is equal 1
I18
Load carried by pile point
I19
Load carried by pile shaft
Page 10: SoilEngineering

Figure. For Piled foundations, Angle of Shearing Resistance (f) and Nq relationships.

Düşük Yerdeğiştirmeli Kazıklar

Yüksek Yerdeğiştirmeli Kazıklar

Page 11: SoilEngineering

If internal firction angel (f) is equal 0, then Nq is equal 1

Load carried by pile point

Page 12: SoilEngineering

) and Nq relationships.

Page 13: SoilEngineering

Dis

tan

ce (

m)

2 Layer State 0 02 6.5 118 364 13.6 109.5 346 19 101 328 20.5 92.5 30

10 22 84 2812 24 75.5 2614 26 67 2416 28 58.5 2218 30 50 20.520 32 41.5 1922 34 28.5 13.624 36 13.5 6.50 0 0

Profile 1. Layer 2. Layer t1 (msn)

VP normal (m/sn) 282 1000 12.7VP revers (m/sn) 282 1000 12.7VS (m/sn) 133 235 16

282 1000

Shot Offset 2 10 10

Geophone Space (m) 2 1.87 1.87

Number of Geophone 12

TICKNESS (VP normal) 1.87 m 1.87

TICKNESS (VP revers) 1.87 m

SEISMIC REFRACTION STUDIES

P n

orm

al (

trav

el t

ime)

, msn

S R

ever

s (t

rave

l tim

e), m

sn

P R

ever

s (t

rave

l tim

e), m

sn

h1

h'1

To return the " main options",

click cell!

obtain from graph !

A1
To return the " main options", click cell!
A18
obtain from graph !
Page 14: SoilEngineering

Last h 10 10 Last h'h4 h4'h3 h3'h2 h2'h1 1.9 1.9 h1'

10 10

0.0 0.00.0 0.00.0 0.0

1.9 1.9

Dep

t

Surface

Seismic Line Serim

Geophysical Soil Section

Page 15: SoilEngineering

S R

ever

s (t

rave

l tim

e), m

sn

P r

ever

s (t

rave

l tim

e), m

sn

0 0

3 Layer State 2 6.5 91 454 15 87 446 24 83 438 28 79 42

10 32 75 4112 36 71 4014 40 67 3616 41 58.5 3218 42 50 2820 43 41.5 2422 44 28.5 1524 45 13.5 6.50 0 0

Profile 1. Layer 2. Layer 3. layer t2 (msn) t3 (msn)

VP normal (m/sn) 235 500 2000 12 33VP revers (m/sn) 235 500 2000 12 33VS (m/sn) 150 275 500Average Vp (m/sn) 235 500 2000

Shot Offset 2Geophone Space (m) 2Number of Geophone 12

TICKNESS (VP normal) 1.6 m h2 1.2 m

TICKNESS (VP revers) 1.6 m h'2 1.2 m

h1 ort. 1.6 mh2 ort. 1.2 m

S R

ever

s (t

rave

l tim

e), m

sn

P R

ever

s (t

rave

l tim

e), m

sn

h1

h'1

obtain from graph !

A105
obtain from graph !
Page 16: SoilEngineering

0 2 4 6 8 10 12 14 16 18 20 22 24 0

0

20

40

60

80

100

120

140

0

20

40

60

80

100

120

140

Tim

e (

ms

)

Distance (m)

P revers Atış

P normal Atış

S revers Atış

ell

SEISMIC TIME- DISTANCE GRAPH (2 LAYER MODEL)

To return the " main options",

click cell!

Page 17: SoilEngineering

0 2 4 6 8 10 12 14 16 18 20 22 24 0

0

20

40

60

80

100

120

140

0

20

40

60

80

100

120

140

P revers P normal

S revers

SEISMIC TIME- DISTANCE GRAPH (3 LAYER MODEL)

Page 18: SoilEngineering

Dr. Ferhat Özçep

Q1
Dr. Ferhat Özçep
Page 19: SoilEngineering

AB/2 Apparent Resistivity Evaluation Results3 25.2 Layers Ticknes True Resistivity 4 20 h1 10 25

5 16 h2 10 8

7 12 h3 15 7

10 9.9 h4 20 100

15 8.5 h5

20 6.8 h6

25 6.1 h7

30 6.6 h8

35 5.95 h9 20 6

40 6.28

50 6.7

60 6.45

70 6.7

80 6.43

90 6.38

100 5.3

120 5.5

Presentation and Evaluation of Electrical (Resitivity) Data

1 10 100 10001

10

100

Electrod Space (AB/2)

Re

sis

tiv

ity

(o

hm

.m)

To return the "main option", click cell!

Dr. Ferhat Özçep

A1
To return the "main option", click cell!
C18
Dr. Ferhat Özçep
Page 20: SoilEngineering

TREE LAYERS RESISTIVITY MODELLING

Model Parameters

Resistivity (ohm-m) Ticknes of Layers (m)

Rho1 25 d1 2.5Rho2 8 d2 9Rho3 6 d3 infinite

1

10

100

Model Curve Field Data

Electrod Space

Ap

pre

nt

Res

isti

vity

Steven D. Sheriff Approach

C49
Steven D. Sheriff Approach
Page 21: SoilEngineering

Point 1 Point 2h1 10 10h2 10 10h3 15 15h4 20 20

h5 0 0

h6 0 0

h7 0 0

h8 0 0

h9 20 20

20 20

0 00 00 00 0

20 20

15 15

10 10

10 10

Dep

t

SurfaceElectric Array

GeophysicalSoil Section

GWL

To return the "main option", click cell!

Page 22: SoilEngineering

Three layer resistivity example. Depth and distance are

in meters, resistivity is in ohm-meters. Apparent

resistivity is for the Schlumberger electrode arrangement.

Layer resistivities and thickness, from top to bottom:

seed: 2.556757 includes phase shift for O'Neill's coefficients

Xinc: -0.166667 to get 6 samples per integer power of ten

n L Ld2>230?tanh(Ld2)1 ### ### ###2 ### ### ###3 ### ### ###4 ### ### ###5 ### ### ###6 ### ### ###7 ### ### ###8 ### ### ###9 ### ### ###

10 ### ### ###11 ### ### ###12 ### ### ###13 ### ### ###14 ### ### ###15 ### ### ###16 ### ### ###17 ### ### ###18 ### ### ###19 ### ### ###20 ### ### ###21 ### ### ###22 ### ### ###23 ### ### ###24 ### ### ###25 ### ### ###26 ### ### ###27 ### ### ###28 ### ### ###

Dr. Ferhat Özçep

P1
Dr. Ferhat Özçep
Page 23: SoilEngineering

29 ### ### ###30 ### ### ###31 ### ### ###32 ### ### ###33 ### ### ###34 ### ### ###35 ### ### ###36 ### ### ###37 ### ### ###38 ### ### ###

Page 24: SoilEngineering

Three layer resistivity example. Depth and distance are

in meters, resistivity is in ohm-meters. Apparent

resistivity is for the Schlumberger electrode arrangement.

Layer resistivities and thickness, from top to bottom:

includes phase shift for O'Neill's coefficients

to get 6 samples per integer power of ten

T2 Ld1>230?tanh(Ld1) T1 b O'Neill convolve x = 1/L### ### ### ###### ### ### ###### ### ### ###### ### ### ###### ### ### ###### ### ### ###### ### ### ###### ### ### ###### ### ### ###### ### ### ###### ### ### ###### ### ### ###### ### ### ###### ### ### ###### ### ### ### 14 -0.0003 ### 1.000000 98

### ### ### ### 13 0.00207 ### 1.467799

### ### ### ### 12 -0.005 ### 2.154434

### ### ### ### 11 0.01125 ### 3.162277 102

### ### ### ### 10 -0.0252 ### 4.641587

### ### ### ### 9 0.05812 ### 6.812919

### ### ### ### 8 -0.1436 ### 9.999997 83

### ### ### ### 7 0.393 8.408953 ###

### ### ### ### 6 -1.1324 7.468465 ###

### ### ### ### 5 2.7044 6.825966 ### 34

### ### ### ### 4 -3.4507 6.413380 ###

### ### ### ### 3 0.4248 6.194637 ### 30

### ### ### ### 2 1.1817 6.091567 ### 51

### ### ### ### 1 0.6194 6.044524 ###

Page 25: SoilEngineering

### ### ### ### 0 0.2374 6.022995 ### 89

### ### ### ### -1 0.08688 6.012963 ### 140

### ### ### ### -2 0.0235 6.007991 ### 175

### ### ### ### -3 0.01284 6.005229 ###

### ### ### ### -4 -0.0012 6.003545 ###

### ### ### ### -5 0.00304### ### ### ###### ### ### ###### ### ### ###### ### ### ###

Page 26: SoilEngineering

BOREHOLE BOREHOLE METHOD BORING NO:1LOGAND

Department of Geophysics SPTTEST

BOREHOLE DEPT:18 m BX..................m HX..................mBOREHOLE SITE: İSTANBUL (Avcılar) external radiusInternal Radi external r Internal R external r Internal RadiusGROUND WATER LEVEL (GWL) : 3m DATE: 3-4 MAY 2004 73 mm 65.0mm 88.9mm 80.9mm 114.3mm 104.7mm

SPT TESTENGINEER: Ferhat Özçep FORMATION PROPERTIES Blow count

DE

PT

(m

)

CA

RO

TE

%

RQ

D %

SA

MP

LE T

YP

E a

nd N

O

SO

IL P

RO

FIL

E

0-15

cm

15-3

0cm

30-4

5cm

SP

T(N

) 30

\10 \20 \30 \40 \50 FIE

LD R

EC

OR

DS

1 m

SPT1 8 7 7 14

2 m

3 m SPT2 5 8 7 15

4 m

SPT3 10 21 18 39

5 m

6 m SPT4 3 4 7 11

7 m

SPT5 8 12 11 23

8 m

9 m SPT6 8 20 20 40

10 m

SPT7 6 10 12 22

11 m

12 m SPT8 15 15 16 31

13 m

SPT9 6 6 13 19

14 m

15 m SPT10 5 9 12 21

16 m

SPT11 19 22 23 45

17 m

18 m SPT13 17 17 30 47

Istanbul University

(Definition, Color, Density,

Texture, Ground waater situation

etc.) 0 10 20 30 40 50

SPT (N) & Depth Graph

To return "main options", click cell !

To draw SPT (N) & Depth graph, erase the blow table "No Data or UD" !

A1
To return "main options", click cell !
S11
To draw SPT (N) & Depth graph, erase the blow table "No Data or UD" !
Page 27: SoilEngineering

0 10 20 30 40 50

Page 28: SoilEngineering

Table 1.

SPT (N)Peck (1974) Meyerhof (1956)

< 4 <29 <30(4 - 10) 29-30 30-35(10 -30) 30-36 35-40

Internal Radius (30-50) 36-41 40-45>50 >41 >45

Table for Depth and SPT (N) Graph Derinlik (m) SPT (N)

14 -1.5 1415 -3 1539 -4.5 3911 -6 1123 -7.5 2340 -9 4022 -10.5 2231 -12 3119 -13.5 1921 -15 2145 -16.5 4547 -18 47

Table 2

SPT (N)2 0.254 0.58 1

15 230 4

Estimation of Boring Depth for Site Investigation

Store Number 3 mBoring Depth (Db) 6.5 mBoring Depth (Db) 12.9 m

Angle of Shearing Resistance (f)

qu, kg/cm2

To return "main options", click cell !

To draw SPT (N) & Depth graph, erase the blow table "No Data or UD" !

Dr. Ferhat Özçep

(Sowers ve Sowers, 1970)

Z1
Dr. Ferhat Özçep
W42
(Sowers ve Sowers, 1970)
Page 29: SoilEngineering

(Sowers ve Sowers, 1970)

Page 30: SoilEngineering

SPT CORRECTIONS

GWL (m) 1

70AD SPT (Field) CN CB CS CR SPT(correc N55 N1(60) N (X)

1.8 15 1.8 1,7 1.0 1.0 0.80 #VALUE! ### ### #VALUE!

3.3 15 1.8 1.67 1.0 1.0 0.80 20.1 16.4 15.1 12.9

4.8 15 1.8 1.45 1.0 1.0 0.80 17.4 14.2 13.1 11.20

6.3 15 1.8 1.30 1.0 1.0 0.80 15.6 12.8 11.7 10.0

7.8 15 1.8 1.19 1.0 1.0 0.80 14.2 11.7 10.7 9.2

9.3 15 1.8 1.10 1.0 1.0 0.80 13.2 10.8 9.9 8.5

10.8 15 1.8 1.05 1.0 1.0 0.80 12.6 10.3 9.5 8.1

12.3 15 1.8 0.97 1.0 1.0 0.80 11.6 9.5 8.7 7.5

13.8 15 1.8 0.92 1.0 1.0 0.80 11.0 9.0 8.3 7.1

15.3 15 1.8 0.89 1.0 1.0 0.80 10.7 8.8 8.0 6.9

16.8 15 1.8 0.84 1.0 1.0 0.80 10.1 8.2 7.6 6.5

18.3 15 1.8 0.81 1.0 1.0 0.80 9.7 7.9 7.3 6.219.8 15 1.8 0.78 1.0 1.0 0.80 9.3 7.6 7.0 6.021.3 15 1.8 0.75 1.0 1.0 0.80 9.0 7.4 6.8 5.8

SPT(corr.)

15.6

14.2 Estimation of Aveage SPT Value13.2

Data Number = 3SPT (Average) = 14.3

g (gr/cm3)

Energy Level

Dr. Ferhat Özçep

AI9
Dr. Ferhat Özçep
AL13
Energy Level
Page 31: SoilEngineering

CS sampling = 1 CB Bore radius correction. If bore radius is betwen 65 and 115 mm, then CB is 1

If it has 150 mm radius, then CB is 1,05, and if it has 200 mm radius, then CB is 1,15.

CN for SPT(N), effective overburden presure correction factor

Page 32: SoilEngineering

örtü gerile efektf örtü geril suiçeren tabaka kaslınlCN katsatyıtabak aklınlığı

31.8 23.9 0.80 0.80 2.0440 1.8

58.3 35.7 2.30 2.30 1.6735 1.5

84.8 47.5 3.80 3.80 1.4513 1.5

111.2 59.3 5.30 5.30 1.2991 1.5

137.7 71.0 6.80 6.80 1.1866 1.5

164.2 82.8 8.30 8.30 1.0990 1.5

186.3 90.2 9.80 9.80 1.0532 1.5

217.2 106.3 11.30 11.30 0.9697 1.5

243.7 118.1 12.80 12.80 0.9201 1.5

265.8 125.5 14.30 14.30 0.8928 1.5

296.7 141.7 15.80 15.80 0.8402 1.5323.1 153.4 17.30 17.30 0.8073 1.5349.6 165.2 18.80 18.80 0.7780 1.5376.1 177.0 20.30 20.30 0.7517 1.5

Energy Level

Page 33: SoilEngineering

Measured Geophysical Parameters SYMBOL UNITE 1.LAYER 2.LAYER

P WAVE VELOCITY m/s 282 1000

S WAVE VELOCITY m/s 133 235

DEPTH OF LAYER h m 1.87 ?

RESISTIVITY VALUES r ohm-m 5 22

Derived Geotechnical Parameters SYMBOL UNITE 1.LAYER 2.LAYER

For 30m, Avarage S (SHEAR) WAVE VELOCITY m/sn 224

DENSITY (Gardner at al., 1974) g 1.27 1.74

MAX SHEAR MODULUS (Kramer, 1996) 224.4 961.2

YOUNG MODULUS (Bowles, 1988) E 608.9 2827.5

POISSON RATIO (Bowles, 1988) n - 0.36 0.47

BULK MODULUS (Bowles, 1988) K 709.5 16124.2

SOIL FUNDAMENTAL PERIOD (Kanai, 1983) sn 0.9

qa (Uchiyama et al. 1984) 0.98 3.55

SOIL AMPLIFICATION (Midorikawa (1987) Relative 2.6

SPT (N) VALUE (Imai and Yoshimura, 1977) Blow Count 5 31

WATER CONTENT (Ozcep et al, 2009) w % 45 3445 34

ESTIMATION OF GEOTECHNICAL PARAMETERS FROM GEOPHYSICAL DATA ( For 2 Layers)

Vp

Vs

Vs (30)

gr/cm3

Gmax kg/cm2

kg/cm2

kg/cm2

To

qu kg/cm2

ZB

SPT(30)

To return "main options" , click the cell !

Dr. Ferhat Özçep

If you dont have a value, please sign " - " ( dash) !

A1
To return "main options" , click the cell !
F5
Dr. Ferhat Özçep
E8
If you dont have a value, please sign " - " ( dash) !
Page 34: SoilEngineering

Measured Geophysical Parameters SYMBOL UNITE 1.LAYER 2.LAYER 3.LAYER

P WAVE VELOCITY m/s 235 500 1500

S WAVE VELOCITY m/s 150 275 500

DEPTH OF LAYER h m 1.6 1.2 ?

RESISTIVITY VALUES r ohm-m - - -

Derived Geotechnical Parameters SYMBOL UNITE 1.LAYER 2.LAYER 3.LAYER

For 30m, Avarage S (SHEAR) WAVE VELOCITY m/sn 433

DENSITY (Gardner at al., 1974) g gr/cm3 1.21 1.46 1.93

MAX SHEAR MODULUS (Kramer, 1996) kg/cm2 272.7 1106.9 4815.7

YOUNG MODULUS (Bowles, 1988) E kg/cm2 630.5 2840.6 13845.1

POISSON RATIO (Bowles, 1988) n - 0.16 0.28 0.44

BULK MODULUS (Bowles, 1988) K kg/cm2 305.7 2183.3 36920.3

SOIL FUNDAMENTAL PERIOD (Kanai, 1983) sn 0.4

qa (Uchiyama et al. 1984) kg/cm2 1.29 5.07 19.54

SOIL AMPLIFICATION (Midorikawa (1987) Relative 1.8

SPT (N) VALUE (Imai and Yoshimura, 1977) Blow Count 8 49 REFÜ

WATER CONTENT (Ozcep et al., 2009) w % - - -#VALUE! #VALUE! #VALUE!

ESTIMATION OF GEOTECHNICAL PARAMETERS FROM GEOPHYSICAL DATA ( For 3 Layers)

Vp

Vs

Vs (30)

Gmax

To

qu

ZB

SPT(30)

If you dont have a value, please sign " - " ( dash) !

F37
If you dont have a value, please sign " - " ( dash) !
Page 35: SoilEngineering

stp1 spt2

5 31

To return "main options" , click the cell !

Dr. Ferhat Özçep

If you dont have a value, please sign " - " ( dash) !

Page 36: SoilEngineering

stp1 spt2 spt38 49 301

If you dont have a value, please sign " - " ( dash) !

Page 37: SoilEngineering

Im

ai

an

d Y

os

him

ura

(1

97

7)

Oh

ba

an

dT

ori

um

i (1

97

0)

Ohta and Goto (1978)

İyis

an

(1

99

4)

Ok

am

oto

a

t a

l. (

19

89

)

Imai (1978) Lee (1990)

Sy

ko

ra a

nd

Sto

ko

e (

19

83

)

Kik

u a

t a

l. (

20

01

)

Ath

an

as

op

ou

los

(1

99

5)

Ath

an

as

op

ou

los

(1

99

5)

All

So

ils

All

So

ils

Pleistocene Halocene

All

So

ils

Pli

es

toc

en

e

HalocenePleistocene

Sa

nd

Sil

t

Cla

y

All

So

ils

All

So

ils

Cla

y

All

So

ils

Cla

y

Fin

e S

an

d

Mid

dle

Sa

nd

Co

ars

e S

an

d

Gra

ve

lly

Sa

nd

Gra

ve

l

Cla

y

Fin

e S

an

d

Mid

dle

Sa

nd

Co

ars

e S

an

d

Gra

ve

lly

Sa

nd

Gra

ve

l

Sa

nd

Cla

y

Sa

nd

Cla

y

Sa

nd

De

pth

(m

)

SP

T (

N)

Vs (m/s)

1.8 8 151 160 134 147 144 153 155 195 103 112 110 118 119 150 151 233 186 161 208 189 159 206 218 184 125 193 227

3.3 8 151 160 152 165 162 173 174 220 116 127 125 133 134 169 151 233 186 161 208 189 159 206 218 184 125 193 227

4.8 8 151 160 164 178 175 186 188 237 126 137 134 143 144 182 151 233 186 161 208 189 159 206 218 184 125 193 227

6.3 8 151 160 173 188 185 197 199 250 133 144 142 151 152 192 151 233 186 161 208 189 159 206 218 184 125 193 227

7.8 8 151 160 180 196 193 205 207 261 138 151 148 158 159 201 151 233 186 161 208 189 159 206 218 184 125 193 227

9.3 8 151 160 187 203 200 213 215 271 143 156 153 163 165 208 151 233 186 161 208 189 159 206 218 184 125 193 227

10.8 8 151 160 192 210 206 219 221 279 148 161 158 168 170 214 151 233 186 161 208 189 159 206 218 184 125 193 227

12.3 8 151 160 197 215 211 225 227 286 152 165 162 173 174 220 151 233 186 161 208 189 159 206 218 184 125 193 227

13.8 8 151 160 202 220 216 230 232 293 155 169 166 177 178 225 151 233 186 161 208 189 159 206 218 184 125 193 227

SPT (N) - Vs Velocity Relationships

To return "main options" , click the cell !

Dr. Ferhat Özçep

F1
To return "main options" , click the cell !
A2
Dr. Ferhat Özçep
Page 38: SoilEngineering

15.3 8 151 160 206 225 221 235 237 299 158 173 169 180 182 229 151 233 186 161 208 189 159 206 218 184 125 193 227

16.8 8 151 160 210 229 225 240 242 305 161 176 173 184 185 234 151 233 186 161 208 189 159 206 218 184 125 193 227

18.3 8 151 160 214 233 229 244 246 310 164 179 176 187 189 238 151 233 186 161 208 189 159 206 218 184 125 193 227

19.8 8 151 160 217 237 232 248 250 315 167 182 178 190 192 242 151 233 186 161 208 189 159 206 218 184 125 193 227

21.3 8 151 160 220 240 236 251 253 319 169 184 181 193 194 245 151 233 186 161 208 189 159 206 218 184 125 193 227

22.8 8 151 160 223 243 239 255 257 324 171 187 183 195 197 249 151 233 186 161 208 189 159 206 218 184 125 193 227

24.3 8 151 160 226 247 242 258 260 328 174 189 186 198 200 252 151 233 186 161 208 189 159 206 218 184 125 193 227

25.8 8 151 160 229 250 245 261 263 332 176 192 188 200 202 255 151 233 186 161 208 189 159 206 218 184 125 193 227

27.3 8 151 160 232 252 248 264 266 336 178 194 190 203 204 258 151 233 186 161 208 189 159 206 218 184 125 193 227

28.8 8 151 160 234 255 250 267 269 339 180 196 192 205 207 260 151 233 186 161 208 189 159 206 218 184 125 193 227

30.3 8 151 160 236 258 253 270 272 343 181 198 194 207 209 263 151 233 186 161 208 189 159 206 218 184 125 193 227

Page 39: SoilEngineering

Im

ai

an

d Y

os

him

ura

(1

97

7)

Oh

ba

an

dT

ori

um

i (1

97

0)

Ohta and Goto (1978)

İyis

an

(1

99

4)

Ok

am

oto

a

t a

l. (

19

89

)

Imai (1978) Lee (1990)

Sy

ko

ra a

nd

Sto

ko

e (

19

83

)

Kik

u a

t a

l. (

20

01

)

Ath

an

as

op

ou

los

(1

99

5)

Ath

an

as

op

ou

los

(1

99

5)

All

So

ils

All

So

ils

Pleistocene Halocene

All

So

ils

Pli

es

toc

en

e

HalocenePleistocene

Sa

nd

Sil

t

Cla

y

All

So

ils

All

So

ils

Cla

y

All

So

ils

Cla

y

Fin

e S

an

d

Mid

dle

Sa

nd

Co

ars

e S

an

d

Gra

ve

lly

Sa

nd

Gra

ve

l

Cla

y

Fin

e S

an

d

Mid

dle

Sa

nd

Co

ars

e S

an

d

Gra

ve

lly

Sa

nd

Gra

ve

l

Sa

nd

Cla

y

Sa

nd

Cla

y

Sa

nd

De

pth

(m

)

Vs

(m

/s)

SPT (N)

1.8 150 8 6 15 9 10 7 7 2 72 44 49 33 32 8 8 2 4 6 3 4 7 3 2 4 15 5 3

3.3 150 8 6 7 5 5 3 3 1 35 21 24 16 16 4 8 2 4 6 3 4 7 3 2 4 15 5 3

4.8 150 8 6 5 3 3 2 2 1 23 14 15 11 10 3 8 2 4 6 3 4 7 3 2 4 15 5 3

6.3 150 8 6 3 2 2 2 2 0 17 10 11 8 7 2 8 2 4 6 3 4 7 3 2 4 15 5 3

7.8 150 8 6 3 2 2 1 1 0 13 8 9 6 6 1 8 2 4 6 3 4 7 3 2 4 15 5 3

9.3 150 8 6 2 1 1 1 1 0 10 6 7 5 5 1 8 2 4 6 3 4 7 3 2 4 15 5 3

10.8 150 8 6 2 1 1 1 1 0 9 5 6 4 4 1 8 2 4 6 3 4 7 3 2 4 15 5 3

12.3 150 8 6 2 1 1 1 1 0 8 5 5 3 3 1 8 2 4 6 3 4 7 3 2 4 15 5 3

13.8 150 8 6 1 1 1 1 1 0 7 4 4 3 3 1 8 2 4 6 3 4 7 3 2 4 15 5 3

Vs Veleocity - SPT (N) Relationships

Page 40: SoilEngineering

15.3 150 8 6 1 1 1 1 1 0 6 4 4 3 3 1 8 2 4 6 3 4 7 3 2 4 15 5 3

16.8 150 8 6 1 1 1 1 0 0 5 3 4 2 2 1 8 2 4 6 3 4 7 3 2 4 15 5 3

18.3 150 8 6 1 1 1 0 0 0 5 3 3 2 2 1 8 2 4 6 3 4 7 3 2 4 15 5 3

19.8 150 8 6 1 1 1 0 0 0 4 3 3 2 2 0 8 2 4 6 3 4 7 3 2 4 15 5 3

21.3 150 8 6 1 1 1 0 0 0 4 2 3 2 2 0 8 2 4 6 3 4 7 3 2 4 15 5 3

22.8 150 8 6 1 0 1 0 0 0 4 2 2 2 2 0 8 2 4 6 3 4 7 3 2 4 15 5 3

24.3 150 8 6 1 0 0 0 0 0 3 2 2 2 1 0 8 2 4 6 3 4 7 3 2 4 15 5 3

25.8 150 8 6 1 0 0 0 0 0 3 2 2 1 1 0 8 2 4 6 3 4 7 3 2 4 15 5 3

27.3 150 8 6 1 0 0 0 0 0 3 2 2 1 1 0 8 2 4 6 3 4 7 3 2 4 15 5 3

28.8 150 8 6 1 0 0 0 0 0 3 2 2 1 1 0 8 2 4 6 3 4 7 3 2 4 15 5 3

30.3 150 8 6 1 0 0 0 0 0 3 2 2 1 1 0 8 2 4 6 3 4 7 3 2 4 15 5 3

Page 41: SoilEngineering

14 4 17 6 31

8 4 9 4 16

6 4 7 3 11

5 4 5 2 8

5 4 4 2 7

4 4 4 2 6

4 4 4 2 5

4 4 3 2 4

4 4 3 1 4

Page 42: SoilEngineering

4 4 3 1 4

4 4 3 1 3

4 4 3 1 3

4 4 3 1 3

4 4 2 1 3

3 4 2 1 3

3 4 2 1 3

3 4 2 1 3

3 4 2 1 2

3 4 2 1 2

3 4 2 1 2

Page 43: SoilEngineering

Sample 1 Sample 3

Liquit Limid (%) = 75 Liquid Limit (%) = 55Plastic Limit (%) = 60 Plastic Limit (%) = 20

Plastisity Index (%) = 15 Plastisity Index (%) = 35Sample 2 Sample 4

Liquid Limit (%) = 45 Liquid Limit (%) = 45Plastic Limit (%) = 30 Plastic Limit (%) = 20

UNIFIED SOIL CLASSIFICATION

To return " main options", click cell !

D1
To return " main options", click cell !
Page 44: SoilEngineering

Plastisity Index (%) = 15 Plastisity Index (%) = 25

Figure 1. LL-PI curve

Figure 2. Granulometry Curve

0.001 0.01 0.1 1 10 1000

10

20

30

40

50

60

70

80

90

100

Sample A

Sample B

Sample C

Sample D

Sample E

Grain Size (mm)

Pe

rce

nta

ge

Fin

e (

%)

0 10 20 30 40 50 60 70 80 90 1000

10

20

30

40

50

60

Sample 1 Sample 2Sample 3 Sample 4Column U

Liquit Limid LL (%)

Pla

stis

ity In

de

x P

I (%

)

CL&ML ML & OL

CL

CH

MH & OH

A Line

Use Figure 2 !

Page 45: SoilEngineering

D10 (mm) 0.9D30 (mm) 3D60 (mm) 7

Cu (uniformity coeficient) 7.78

Cz 1.43

Passed RetainedSieve No 200 45 55

COARSE GRAINED SOILS Use the Sieve 4 's Results !

Soil Type is such as: First and or Second letter GM,GC,SM,SC

G=GravelS=SandM=Silt COARSE GRAINED SOILSC=Clay

O=Organic Main SymbolPt=Peat

Second Letter Passed RetainedW= well graded Sieve No 4 40 60

P=poorly graded Type GRAVELM=Silt Main Symbol GC=Clay WELL

L= Low Plastisity Sub-Symbol (1) POORLYH= High Plastisity

Cz 1.43Grading POORLY

Sub-Symbol PSoil Symbol

G P

Sub-Symbol (2)

PI 8LL 25

Soil Sub-SymbolC

PI 3.5M C

PI KoşuluAlt Simge C

A Çizgisi KoşluAlt Simge C

Use Figure 2 !

Use Figure 2 !

Use Figure 2 !

C69
Use Figure 2 !
C70
Use Figure 2 !
C71
Use Figure 2 !
Page 46: SoilEngineering

To return " main options", click cell !

Dr. Ferhat Özçep

L3
Dr. Ferhat Özçep
Page 47: SoilEngineering

FINE GRAINED SOIL

PI 32Main Symbol C C

LL 48Second Symbol L PI 19.6

M C

Soil Symbol0

C L C 0

Unified Soil Classification System

Sample A Sample B Sample C

37.500 95.00 37.500 85.00 37.500 92.0020.000 89.60 20.000 85.00 20.000 87.0014.000 86.40 14.000 75.00 14.000 84.0010.000 82.90 10.000 65.00 10.000 79.006.300 72.30 6.300 55.00 6.300 72.003.350 35.70 3.350 45.00 3.350 55.001.180 15.400 1.180 14.000 1.180 22.000

0.6 9.60 0.6 5.00 0.6 14.000.212 1.2 0.212 4 0.212 40.063 0.8 0.063 0.9 0.063 1

Grain Size (mm)

Percentage Fine (%)

Grain Size (mm)

Percentage Fine (%)

Grain Size (mm)

Percentage Fine (%)

Page 48: SoilEngineering

Soil Type is such as: GM,GC,SM,SC

Page 49: SoilEngineering

LL PI

0.0 4.0

25.5 4.0

30.0 7.3

Page 50: SoilEngineering

1000.0 715.4

30.0 7.3

1000.0 892.8

50 0

50.0 1000.0

Unified Soil Classification System

Sample D Sample E

37.500 98.00 37.500 93.0020.000 88.00 20.000 88.0014.000 75.00 14.000 86.4010.000 74.00 10.000 81.006.300 72.30 6.300 73.003.350 46.00 3.350 31.001.180 19.000 1.180 21.000

0.6 9.00 0.6 13.000.212 6 0.212 30.063 1 0.063 0.9

Grain Size (mm)

Percentage Fine (%)

Grain Size (mm)

Percentage Fine (%)

Page 51: SoilEngineering

Structural Data

Depth of Footing beneath ground surface, m Df 3

Footing Width, m B 4Footing Length, m L 5

Radius for Circular Foundation, m R 3

Laboratory Data and Coefficients

c 2.1

g1 1.8

g2 1.8

Angle of Shearing Resistance (o) f 30

Foundation Slope from vertical direction (0) q 0

Bearing Capacity Coefficients Nq 22.4

Bearing Capacity Coefficients Nq 18.3Bearing Capacity Coefficients Nc 37.0Bearing Capacity Coefficients Nc 30.0Bearing Capacity Coefficients 22.3

Bearing Capacity Coefficients 15.6

Bearing Capacity Coefficients 2.993 37.0

Shape Coefficients 1.479 30.0

Shape Coefficients 1.239Shape Coefficients 1.239

Depth Coefficients 1.259Depth Coefficients 1.130

Depth Coefficients 1.130

Slope Coefficients 1.000

Slope Coefficients 1.000Slope Coefficients 1.000

SOIL BEARING CAPACITY

(STATIC & DYNAMIC)

Cohesion, ton/m2

Unit Weigth of Backfill Soil, ton/m3

Unit Weigth of Soil beneath Footing, ton/m3 / Lower Layer from Foundations

NgNg

Kp

sc

sq

sg

dc

dq

dg

ic

iqig

To return "main options" , click the cell !

Vesic (1973)

Dr. Ferhat Özçep

Meyerhof (1963)

Terzaghi (1943)

Meyerhof (1963)

Meyerhof (1973)

Terzaghi (1948)

A2
To return "main options" , click the cell !
D2
Dr. Ferhat Özçep
C17
Terzaghi (1943)
C18
Meyerhof (1963)
C19
Terzaghi (1948)
C20
Meyerhof (1973)
C21
Vesic (1973)
C22
Meyerhof (1963)
Page 52: SoilEngineering

If foundation is below the groundwater level, please use the effective unite weigth !1.01.8

g 0.8

Unit Conversion

1

10

100 or kPa

Unit Conversion

10

1

100 or kPa

Unit Conversion

100 or kPa

10

1 3.01.478825

1.23941240852164 1SPT (N) Value 10 1.23941240852164 1

f 30 1.259489

Water Unit Weigth, ton/m3 gwSaturate Unit Weigth, ton/m3 gsEffective Unit Weigth, ton/m3

kg/cm2

ton/m2

kN/m2

ton/m2

kg/cm2

kN/m2

kN/m2

ton/m2

kg/cm2

Kanıt (2003)

From Laboratory Data

C51
From Laboratory Data
B97
Kanıt (2003)
Page 53: SoilEngineering

6.54 1.12974469150673 11.12974469150673 1

1 0

c, ton/m2

Page 54: SoilEngineering

RESULTSSafety Factor

From Laboratory Data 3

Terzaghi (1943)'e GöreFondation Type

Strip Foundation 278.69 929Rectengular Foundation 284.50 948

Circular Foundation 257.86 860Square Foundation 285.95 953

Meyerhof (1963)

334.46 1115

From in Situ Tests

Avarage Value

from the Footing depth to 2B depth

SPT (corrected) 20

From SPT(N) Data

For Max 25 mm settlement

Bowles (1996) 295

Meyerhof (1956) 151

GWL (m) 1Df (m) 1.5B (m) 2

Cw (water corr. coefficient) 0.8

With Burland ve Burbridge (1985) ApprochSPT (N) (Uncorrected) 12

B (m) 2Ic 0.053

292

qult, ton/m2 qa , kPa

qult, ton/m2 qa , kPa

qa , kPa

qa , kPa

Dr. Ferhat Özçep

For qa obtained from SPT (N) data, grounwater effect correction coefficient. This (Cw) value must multyply with qa

value !

Craig (1992)

for Df ≤ B

Ground Water Level

J8
for Df ≤ B
H31
Ground Water Level
G34
Craig (1992)
I34
For qa obtained from SPT (N) data, grounwater effect correction coefficient. This (Cw) value must multyply with qa value !
Page 55: SoilEngineering

Seismic Soil Bearing Capacity (Richards at al., 1993)

Horizontal Acceleration kh 0.3Vertical Acceleration kv 0.2Acceleration Coefficient q 20.57

Angle of Shearing Resistanc f 30d 0

KpE 2.238

Seismic Bearin Capacity Factors 22.0NqE 13.7NcE 22.0

17.0

Foundation TypeStrip Foundation 181.25

Circular Foundation 170.69Square Foundation 182.90

Safety Factor3

Strip Foundation 604Circular Foundation 569Square Foundation 610

For Sandy Soils

With Zeveaert (1983) Approch, variation of Angle of Shearing Resistance with Acceleration

30

Acceleration (g) 0.2

c (coeficient) 0.666666666666667

24

With Okamoto (1984) Approch, variation of Angle of Shearing Resistance with Acceleration

30Acceleration (g) 0.2

kh 0.1SPT(N) 10

26

NgE

qult , ton/m2

qa , kPa

f static

f dynamic

f static

f dynamic

From Laboratory Data

Values must be between 5-20

Values must be between 25-35

Laboratory and structural data must be entered in related section !

G69
Laboratory and structural data must be entered in related section !
I85
Values must be between 25-35
I96
Values must be between 5-20
Page 56: SoilEngineering

c*ivvme 0.133333333333333

2/3*sinfi 0.3331800684287351-2/2sinfi 0.666819931571265

0.199954031096750.80004596890325

0.399839055997978

Page 57: SoilEngineering

Soil Bearing Capacity (qa)

With Geophysical (Vs velocity ) Data(Tezcan at al, 2006)

Avarage Valuefrom the Foundation depth to 2B depth

Vp 600 m/sn

Vs 400 m/sn

B 1.5 m

Soil Type 2

18

a 0.96

qa 169 kPa

qa 165 kN/m2

qa 175 kN/m2

qa 184 kN/m2

qa 204 kN/m2

birim hacim Tür 1 17.2 kN/m3

Tür 2 18.2 kN/m3Tür 3 19.2 kN/m3

Tür 4 21.2 kN/m3

qa 175vs>500 qa #NUM!

sv #NUM!

175

alfa1 1alfa2 0.965alfa3 0.815 0.71

0.82

alfa

gp kN/m3

For qa obtained from SPT (N) data, grounwater effect correction coefficient. This (Cw) value must multyply with qa

value !

for Df ≤ B

Select from Table 1

Vp Velocity

Vs Velocity

Unit Weigth from Vp

Soil Bearing Capacity

Foundation Width

M8
Vp Velocity
M9
Vs Velocity
M10
Foundation Width
M12
Select from Table 1
L13
Unit Weigth from Vp
L15
Soil Bearing Capacity
Page 58: SoilEngineering

Table 1.

If Vs>500 m/sn,

If B value is 1,2 ≤ B ≤ 3,0 m, then a = (1,13-0,11*B)

If B value is bigger then 12, then a = 0,71.

gp = go + 0.002 vp (kN/m3)

go = 16 for loose sandy, silty and clayey soils (Soil Type1)

go = 17 for dense sand and gravel (Soil Type2)

go = 18 for mudstone, limestone, claystone, conglomerate, etc. (Soil Type 3)

go = 20 for sandstone, tuff, graywacke, schist, etc. (Soil Type 4)

qa = 0.024 g vs a

qa = 0.024 g vs sv a ≥ 30.6 g

sv = 1 – 3 x 10 -6 ( vs- 500 ) 1.6

If B value is 0 ≤ B ≤ 1,2 m, then a = 1

If B value is 3,0 ≤ B ≤ 12 m , then a = (0,83 - 0,001*B)

Select from Table 1

Vp Velocity

Vs Velocity

Page 59: SoilEngineering

(Soil Type 3)

Page 60: SoilEngineering

sptden türeyen vs hızı

sptdüz üst #DIV/0!

#REF!

Page 61: SoilEngineering

spt

0

yas0 0

0.00

0.00

294.8814

327.2727

196.0364151.4357

Page 62: SoilEngineering

Structure Dataq 100

Depth of Footing, m Df 2Width of Footing , m B 3Footing Length, m L 2

g 1.8

Net Contact Presure 96.4

945.4

Analysis with Static LoadsSettlement (Immediate, Coarse Grained Soils)

Burland ve Burbrigde (1985) Approachq 100L 2 mB 3 mH 5 mt 10 yıl

10Df 2 m

1.8

Ic 7r 0.2

r3 0.3Z1 2.2 m

-0.7fs 0.8fı 1.0ft 1.4

96.40

945.4

Average (mm)

Si (Settlement 161.253.7

Settlemet (Consolidation) II 120000.3

0.00010000

mv 0.0001H 3 m

qnet 145

Sc (Settlement) 43.5 mm

SETTLEMENT ANALYSIS (Static& Dynamic)

Contact Presure, ton /m2

Unit Weigth, ton/m3

qnet ton/m2

kN/m2 yada kPa

ton/m2

SPT(N)Correct.

g ton/m3

qnet ton/m2

kN/m2

E (kN/m2)n (poison ratio)

mv (m2/kN)

m2/kN

kN/m2

Net Structure Load

Load

From Figure 1

Fom Table 1

Fom Table 1

Ticknes of Layer for Analysis

Duration (min 3 years)

To return "main options" , click the cell !

Average value for 2B depth

Dr. Ferhat Özçep

Francis (1964)

A1
To return "main options" , click the cell !
E3
Dr. Ferhat Özçep
A15
Load
A18
Ticknes of Layer for Analysis
A19
Duration (min 3 years)
A20
Average value for 2B depth
A24
From Figure 1
A25
Fom Table 1
A26
Fom Table 1
A33
Net Structure Load
E42
Francis (1964)
Page 63: SoilEngineering

Settlement (Clayed Soils) III

g 20

m0 0.9 Sands (normallly Consalidated)

m1 0.55

q 240

B 3 m

L 6 m

Df 1.5 m

H 3.5 m

Ed 7

qnet 210

Si 44.55 mm

Figure 3. Impact factors for settlements

kN/m3

kN/m2

MN/m2

kN/m2

form Figure 3

form Figure 3

From SPT Value or from Tables

C55
form Figure 3
C56
form Figure 3
C62
From SPT Value or from Tables
Page 64: SoilEngineering

Settlement IV

q 240L 6 mB 3.5 mDf 2 m

g 20n 0.5

E 7

qnet 200Is 1.44 Fexible FoundationIs 1.11 Rigit Foundation

Settlement (Si)107.9 mm (Flexible Foundation)

83.2 mm (Rigit Foundation)

Simple Approaches (1)Settlemet (from qa obtained SPT value) V

qnet 240

qa 250

Settlement (Si)

24.0 mm

Simple Approaches (2)from SPT Value (Meyerhof Approach) VI

qnet 240 25.2SPT (N) 15 20.3

B 1.5 m

Settlement (Si)25.2 mm30.4 mm

Simple Approaches (3)form SPT values (Terzaghi and Peck Approach) VII

qnet 240SPT (N) 15

B 1.5 mDf 1.5 m

G.W.L. 3 mSettlement (Si)

kN/m2

kN/m3

MN/m2

kN/m2

kN/m2

kN/m2

kN/m2

kN/m2

from SPT Value of Tables

from Table 3

for Raft Foundations

C107
from Table 3
C108
from SPT Value of Tables
D137
for Raft Foundations
Page 65: SoilEngineering

34.6 mm

Simple Approaches (4)form SPT value (Bowles, 1977) VIII

SPT 15B 1.5 m 24

q 240 20.80971222.998982

Settlement (Si)23.0 mm

Simple Approaches (5)from SPT value (Meyerhof, 1974) IX

SPT 15B 1.5 m

q 240

Settlement (Si)for Silty Sand 32.7 mmfor Sand and Gravel 16.3 mm

Simple Approaches (6)form SPT value (Meyerhof 1965) X

SPT 15B 1.5 m 24

q 240 33.29553934.498474

Settlement (Si)34.5 mm

KN/m2

KN/m2

KN/m2

Page 66: SoilEngineering

Analysis with Dynamic Loads (1)

Ishihara ve Yoshimine (1992) Approach

For this analysis, you must do soil liquefaction analysis and must find Safety factor (SF) !

SF 0.45N1(60) 6

Dr 40h (m) 1

N1 6.6 Settlement 4.24.2 cm

Analysis with Dynamic Loads (2)

Tokimatsu ve Seed (1984) Approach

For this analysis, you must do soil liquefaction analysis and must find CSR !

CSR 0.4N1(60) 10h (m) 10

2.5Settlement 25

cm

Analysis with Dynamic Loads (2)For Dry SandsKrinitsky et al. (1993)

Acceleration 0.45N1(60) 9h (m) 10

0.35Settlement 3.5

cm

DH/H %

DH/H%

DH/H %

From Figure 5; by CSR and N1 (60) value

From Figure 4; by SF and N1 (or Dr)

value

From figure 6, by acceleration adn N1 (60) value

Dr. Ferhat Özçep

Safety factor for soil liquefaction

Corrected SPT60 value

Relative density of soils

tickness of liqeufable layer

Cylic Stress Ratio

Corrected SPT60 value

tickness of liqeufable layer

Acceleration of earthquake

Corrected SPT60 value

tickness of sand layer

E204
Dr. Ferhat Özçep
B211
Safety factor for soil liquefaction
B212
Corrected SPT60 value
B213
Relative density of soils
B214
tickness of liqeufable layer
B216
From Figure 4; by SF and N1 (or Dr) value
B226
Cylic Stress Ratio
B227
Corrected SPT60 value
B228
tickness of liqeufable layer
B229
From Figure 5; by CSR and N1 (60) value
B236
Acceleration of earthquake
B237
Corrected SPT60 value
B238
tickness of sand layer
B239
From figure 6, by acceleration adn N1 (60) value
Page 67: SoilEngineering

1

Table 1r 0.2

r3 0.3

Duration (min 3 years)

To return "main options" , click the cell !

Francis (1964)

Page 68: SoilEngineering

Estimation Elastisity Modulus form emprical relations

Estimation of Elastisity Modulus form SPT (N) Value for SandsSPT (N) Value 5

E

Sands (normallly Consalidated) 9545 kPa 10

21132 kPa 21

Sands (Saturate) 4773 kPa 5

Sands (Overconsolidated) 29250 kPa 29

Gravelly Sand and Gravel 12109 kPa 12

Clayed Sand 6109 kPa 6

Silty Sand 3027 kPa 3

Estimation of Elastisity Modulus form qu value for claysqu 98 kPa

E

Ip > 30 min 4900 kPa 4.9

max 24500 kPa 24.5

Ip < 30 or Stiff Clay min 24500 kPa 24.5

max 73500 kPa 73.5

Min Max

kPa kPaNormally Consollidated Sensitive Clay 9800 10 24500 25Normally Consolidated Sensitive and weak Consolidated Clay 36750 37 58800 59Strong Overconsolidated Clay 73500 74 98000 98

Table 2 . Elastisity modulus for different type of soils

Soil TypesSoft Clays 2 ila 5Stiff Clay 4 ila 8Firm Clay 7 ila 20Sandy Clays 30 ila 40Silty Clays 7 ila 20Loose Sand 10 ila 25Dense Sand 50 ila 90Dense Gravel-Sand 100 ila 200

Table 3. Poison ratio for different types of SoilsSoil TypeSatutated Clay 0,4-0,5Unsturated Clayor Sandy Clay 0,2-0,4

0,3-0,40,1-0,2

Silt 0,3-0,4

MN/m2

MN/m2

MN/m2

MN/m2

MN/m2

MN/m2

MN/m2

MN/m2

MN/m2

MN/m2

MN/m2

MN/m2 MN/m2

E Value (MN/m2)

n (poison Oranı)

Sand (f = 40)Sand (f = 20)

Bowles (1988)

J71
Bowles (1988)
Page 69: SoilEngineering

Rock 0,1-0,4

(Flexible Foundation)

for Raft Foundations

Page 70: SoilEngineering

Saf

ety

Fac

tor

(S

F)

Figure 4

From Figure 5; by CSR and N1 (60) value

From figure 6, by acceleration adn N1 (60) value

Page 71: SoilEngineering

Figure 1. Estiamtion of Ic coefficient form SPT Values For sands and gravels(Burland ve Burbrigde (1985).

Page 72: SoilEngineering

Estimation of elastisity modulus form SPT valueSPT value 5

E

Sand 9560 kPa 10

Clayed Sand 3187 kPa 3

Silt (with sand) 3237 kPa 4

Gravel (with sand) 2747 kPa 3

Sand(min) 23999 kPa 24

Sand (max) 34284 kPa 34

3630 2747

3237 12949

Estimation of elastisity modulus both SPT value and poison ratio

Poison Ratio

SPT value 5 0.3

E

Sand 3908 kPa 4

MN/m2

MN/m2

MN/m2

MN/m2

MN/m2

MN/m2

MN/m2

Bowles (1988)

Webb (1969)

Webb (1969)

Begeman (1974)

Begeman (1974)

Tromifenkov (1974)

Tromifenkov (1974)

Farrent (1963)

Q55
Webb (1969)
Q56
Webb (1969)
Q57
Begeman (1974)
Q58
Begeman (1974)
Q59
Tromifenkov (1974)
Q60
Tromifenkov (1974)
Q68
Farrent (1963)
Page 73: SoilEngineering
Page 74: SoilEngineering

D H / H (%)

Figure 5

Page 75: SoilEngineering

Figure 1. Estiamtion of Ic coefficient form SPT Values For sands and gravels

Page 76: SoilEngineering

Webb (1969)

Webb (1969)

Begeman (1974)

Begeman (1974)

Tromifenkov (1974)

Tromifenkov (1974)

Farrent (1963)

Page 77: SoilEngineering

Acceleration (g)

0.2 0.40.30.1 0.5

Figure 6

Page 78: SoilEngineering

0

Page 79: SoilEngineering

1. APPROACHSPT Data

Scot (1981)

SPT (N) Value 15

ks 2700

ks 27000

2. APPROACH

From Figure

qu 2.0SPT(N) 13

By using qu or SPT(N) values, Angle of Shearing Resistance or qu, please estimate the subgrade reaction coefficient from following Figure1 !

ESTIMATION OF SUBGRADE REACTION COEFFICIENT

ton/m3

kN/m3

kg/cm2

To return "main options" , click the cell !

Scott (1981)

Dr. Ferhat Özçep

A1
To return "main options" , click the cell !
A3
Scott (1981)
D4
Dr. Ferhat Özçep
Page 80: SoilEngineering

Figure 1. Estimation od Subgrade Reaction coefficient ffrom SPT, qu and Angle of Shearing Resistance ( f ) (from Şekercioğlu, 2002)

Page 81: SoilEngineering

3. APPROCH

Bowles (1988)

qa 110

SF (safety Factor) 4

ks 17600

4. APPROCH

Bowles (1988)

620

ks 24.000-48.000

5. APPROCH

By using the following Table , please select the subgrade reaction coefficient !

Table (Bowles, 1988)

Soil TypeLoose Sand 4.800 - 16.000Medium Dense Sand 9.600 – 80.000Dense Sand 64.000 - 128.000Silty Medium DenseSand 24.000 - 48.000Clayed Medium Dense Sand 32.000 - 80.000

12.000 - 24.000Clayed Soil (200 < qu ≤ 800 kPa) 24.000 - 48.000Clayed Soil (qu > 800 kPa) >48.000

kN/m2

kN/m3

qu kN/m2

kN/m3

(ks), kN/m3

Clayed Soil (qu ≤ 200 kPa)

To return "main options" , click the cell !

Bowles (1988) Yaklaşımı

For Clayed Soils

F4
Bowles (1988) Yaklaşımı
F15
For Clayed Soils
Page 82: SoilEngineering
Page 83: SoilEngineering

0

7. YAKLAŞIM

Bowles (1988)Yaklaşımı

S (Oturma) 30 mm

qnet 250

ks 8333

kN/m2

kN/m3

Bowles (1988) Yaklaşımı

M4
Bowles (1988) Yaklaşımı
Page 84: SoilEngineering

Birim Dönüşümü

1

10

100 yada kPa

Birim Dönüşümü

10

1

100 yada kPa

Birim Dönüşümü

100 yada kPa

10

1

kg/cm2

ton/m2

kN/m2

ton/m2

kg/cm2

kN/m2

kN/m2

ton/m2

kg/cm2

Page 85: SoilEngineering

Necessary Data1525

Acceleration (g) 0.4

Cohesion, c 3

1.7

1. Approch : With Static Loads

For Sandy Soils

24

36

FS 1.6

SLOPE STABILITY ANALYSIS ( STATIC AND DYNAMIC)

Slope angel, aAngle of Shearing Resistance, f

ton/m2

g (Unit weigth) ton/m3

Slope Angle, a

Angle of Shearing Resistance, f Safety Factor

To return "main options" , click the cell !

Dr. Ferhat Özçep

A1
To return "main options" , click the cell !
G1
Dr. Ferhat Özçep
B16
Safety Factor
Page 86: SoilEngineering

Figure 1. Slope Parameters

2. Approach: With Dynamic (Earthquake) Loads (Siyahi and Ansal, 1993)

Earthquake Acceleration (g) 0.445 0 0.1 0.229 3.90 3.42 2.93

N1(min) 2.17 1.2

FS 1.2MEDIUM RISK / BSL

Slope Angle, aAngle of Shearing Resistance, f Safety Factor

Please select one of the following values , 1g; 0,2g; 0,3g ve 0,4g !

B36
Please select one of the following values , 1g; 0,2g; 0,3g ve 0,4g !
B41
Safety Factor
Page 87: SoilEngineering

Figure 2. Variation of N1(min) values with acceleration and slope angle (Siyahi and Ansal, 1993)

3. Approch: Slope triggered earthquake, and estimation of critical acceleration (ac) (Wilson et al., 1979)

g (gravitation) 980 0.38 g

c (cohesion) 335

24 0.30 g

1.7 NO RISKh ( sliding layer tickness) 3 m

cm/sn2 ac

ton/m2

Slope Angle, a

Angle of Shearing Resistance, f ad

g (Unit weigth) ton/m3

ad (design acceleration)

ac = Critical Acceleration

E73
ac = Critical Acceleration
F76
ad (design acceleration)
Page 88: SoilEngineering

4. Approch: Slices Method (Static State)

FS 1.1

slice width

b (m) h (m) hw (m) a c'

1 3.0 1.0 1.0 19 -22.0 12 242 2.4 2.5 2.4 19 -18.0 12 243 2.4 4.2 4.0 19 -9.0 12 244 2.4 5.8 5.4 19 -3.0 18 245 2.4 7.0 6.4 19 1.0 12 246 2.4 8.0 7.4 19 7.0 12 247 2.4 8.9 7.6 19 13.0 18 458 2.4 9.4 7.5 19 19.5 12 249 2.4 9.6 6.1 19 26.0 12 2410 2.4 9.5 6.1 19 33.0 12 2411 2.4 8.8 4.9 19 40.5 12 2412 2.4 7.1 2.8 19 48.5 12 2413 1.6 4.5 0.2 19 56.7 12 2414 1.5 1.6 0.0 19 65.5 12 24

slice length

Slice length under GWL

unite weigth

angle form vertical

cohesion (kN/m2)

Angle of Shearing

Resistance

slice number

g (kN/m3) f'

Page 89: SoilEngineering

5. Approch: Slices Method (Dynamic/Earthquake State) (Das, 1993)kh 0.12R 22.83

FS 0.8

slice width slice length

Lslice number b (m) h (m) hw (m) a c'1 3.0 1.0 1.0 19 -22.0 21 12 242 2.4 2.5 2.4 19 -18.0 20 12 243 2.4 4.2 4.0 19 -9.0 19 12 244 2.4 5.8 5.4 19 -3.0 18 12 245 2.4 7.0 6.4 19 1.0 17 12 246 2.4 8.0 7.4 19 7.0 16 12 247 2.4 8.9 7.6 19 13.0 15 12 248 2.4 9.4 7.5 19 19.5 14 12 249 2.4 9.6 6.1 19 26.0 13 12 2410 2.4 9.5 6.1 19 33.0 12 12 2411 2.4 8.8 4.9 19 40.5 11 12 2412 2.4 7.1 2.8 19 48.5 10 12 2413 1.6 4.5 0.2 19 56.7 9 12 2414 1.5 1.6 0.0 19 65.5 8 12 24

slice length under GWL

unite weigth

angle form vertical

cohesion (kN/m2)

Angle of Shearing

Resistance

g (kN/m3) f'

kh= acceleration coeficient

radius (m)

G132
kh= acceleration coeficient
G133
radius (m)
Page 90: SoilEngineering

0

#DIV/0!

#DIV/0!0 #DIV/0!

#DIV/0!

R, Odaktan Uzaklık (km)

#REF!

Dr. Ferhat Özçep

O8
Dr. Ferhat Özçep
Page 91: SoilEngineering

0.3 0.42.52 2.17

Table 1. Risk Levels for Microzonation

SF Risk Level Symbol

<=1 Higher Risk

1< GK <=2 Medium Risk

>2 Lower Risk

ASL

BSL

CSL

Page 92: SoilEngineering

Dilim Ağırlığı

wi ui (7)-(9)

57 3.24 52.85 10 32 21114 2.52 108.43 24 61 48192 2.43 189.16 40 97 92264 2.40 264.12 54 130 134319 2.40 319.15 64 154 166365 2.42 362.08 74 179 183406 2.46 395.45 76 187 208429 2.55 404.08 75 191 213438 2.67 393.50 61 163 231433 2.86 363.38 61 175 189401 3.16 305.23 49 155 151324 3.62 214.63 28 101 113137 2.91 75.16 2 6 69

46 3.61 18.93 0 0 19S 39.25 1836

bi/cosai wi.cosai ubi/cosai

Page 93: SoilEngineering

Dilim Ağırlığı

wi ui (7)-(9)

57 3.24 52.85 10 32 21114 2.52 108.43 24 61 48192 2.43 189.16 40 97 92264 2.40 264.12 54 130 134319 2.40 319.15 64 154 166365 2.42 362.08 74 179 183406 2.46 395.45 76 187 208429 2.55 404.08 75 191 213438 2.67 393.50 61 163 231433 2.86 363.38 61 175 189401 3.16 305.23 49 155 151324 3.62 214.63 28 101 113137 2.91 75.16 2 6 69

bi/cosai wi.cosai ubi/cosai

Page 94: SoilEngineering

46 3.61 18.93 0 0 19S 39.25 1836

Page 95: SoilEngineering

R, Odaktan Uzaklık (km)

Page 96: SoilEngineering

Table 1. Risk Levels for Microzonation

Page 97: SoilEngineering

tanfi tan fi x 7-9

toplam bi/cosa i * cohesion-21 0.444974 9.122033 38.8242-35 0.444974 21.29868 30.28055-30 0.444974 40.92385 29.15863-14 0.444974 59.77795 43.25923

6 0.444974 73.65573 28.8043844 0.444974 81.49757 29.0160691 0.999204 208.0902 44.33516

143 0.444974 94.84067 30.55058192 0.444974 102.626 32.03934236 0.444974 84.03431 34.33355261 0.444974 67.02298 37.86292242 0.444974 50.40111 43.44275114 0.444974 30.85433 34.94454

41 0.444974 8.425168 43.350461270 932.5705 500.2023

wi.sinai

Page 98: SoilEngineering

tanfi tan fi x 7-9

kh wi (L/R) toplam bi/cosa i * cohesion-21 6.3 0.444974 9.122033 38.8242-35 12.0 0.444974 21.29868 30.28055-30 19.1 0.444974 40.92385 29.15863-14 25.0 0.444974 59.77795 28.83948

6 28.5 0.444974 73.65573 28.8043844 30.7 0.444974 81.49757 29.0160691 32.0 0.444974 92.66854 29.55677

143 31.5 0.444974 94.84067 30.55058192 29.9 0.444974 102.626 32.03934236 27.3 0.444974 84.03431 34.33355261 23.2 0.444974 67.02298 37.86292242 17.0 0.444974 50.40111 43.44275114 6.5 0.444974 30.85433 34.94454

wi.sinai

Page 99: SoilEngineering

41 1.9 0.444974 8.425168 43.350461270 291.0 817.1489 471.0042

Page 100: SoilEngineering

Year Interval 105Poison Probability Distribution

Point number for regression 6

Magnitude Intervals

Ni (Occurence Numbers) 28 11 5 1 1

Average Magnitude M or (Xi) 4.7 5.2 5.7 6.2 6.747 19 8 3 2

0.447619047619048 0.180952380952381 0.076190476190476 0.0285714285714286 0.01904761904762-0.349091441134221 -0.742435698117109 -1.11809931207799 -1.54406804435028 -1.720159303406

35.7000000 a 2.735499955-7.4950431 b -0.669693076

216.7900000

-47.52541361274.4900000

PROBABILISTIC SEISMIC HAZARD ANALYSIS

4.5 M <5.0 5.0 M < 5.5 5.5 M <6.0 6.0 M <6.5 6.5 M <7.0

SNi (cummulative)

SNi/t

Log SNi/t yada (Yi)

SXi

SYi

SXi^2

SXiYi Log (N) = a - b* MS(Xi)^2

4 4.5 5 5.5 6 6.5 7 7.5

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

f(x) = − 0.669693076446709 x + 2.73549995516534R² = 0.986539565125292

Magnitude - Frequency Relation(Recurrence Relationships)

MAGNİTUDE

FR

EQ

UE

NC

Y (

N)

Prapared by :Dr.Ferhat Özçep

(İstanbul University) Department of Geophysical Engineering

To draw corectly the graph, erase "0" cell !

Dr. Ferhat Özçep

To return "main options" , click the cell !

A1
To return "main options" , click the cell !
E1
Prapared by : Dr.Ferhat Özçep (İstanbul University) Department of Geophysical Engineering
B10
To draw corectly the graph, erase "0" cell !
G18
Dr. Ferhat Özçep
Page 101: SoilEngineering

Poison Probability Distribution

Risk = Rm = 1- e-(N(M) *D) Average

Probability (%) For D (Year) Return Period

N(M) Magnitude 10 50 75 100 (Yıl)

0.2438 5 91.3 100.0 100.0 100.0 40.1128 5.5 67.6 99.6 100.0 100.0 90.0522 6 40.6 92.6 98.0 99.5 190.0241 6.5 21.4 70.1 83.6 91.0 410.0112 7 10.6 42.8 56.7 67.2 900.0052 7.5 5.0 22.7 32.1 40.3 194

D (year) Probability of Exceedence (%) M (magnitude)

30 20 7.3

∆, Epicentral Distance (km) H, Focal depth (km)

25 15 29.2

Esteva (1970) Donavan(1973c) Oliviera (1974) Joyner ve Boore (1981) Campbell (1997)

a (g) 0.14 0.21 0.14 0.37 0.38

-0.2231435513142-0.0074381183771-4.9011373684217-2.1285369141554

-4.864036869

5 10 20 40 80aşılma olasıbüyüklük

0.64 0.49 0.37 0.27 0.18

8.2 7.7 7.3 6.7 6.0

-0.051293 -0.105360515657826 -0.22314355131421 -0.510825623765991 -1.6094379124341-0.00171 -0.00351201718859421 -0.00743811837714 -0.0170275207921997 -0.05364793041447

-6.371393 -5.6515647089746 -4.90113736842167 -4.07292437375428 -2.92531238633504-2.767061 -2.45444336722683 -2.12853691415536 -1.76884858073074 -1.270447027228540.10 0.20 0.30 0.40 0.50 0.60 0.70

0

10

20

30

40

50

60

70

80

90

Joyner ve Boore (1981) Attenuation Relationship

Acceleration (g)

Pro

bab

ilit

y

of

Exceed

en

ce (

%)

Acceleration values for D (year) and exceedence of probability

Dr. Ferhat Özçep

F56
Dr. Ferhat Özçep
A63
Acceleration values for D (year) and exceedence of probability
Page 102: SoilEngineering

### -5.189943322 -4.864036869 -4.504348536 -4.005946982Figure. Hazard Curve

Spectral Acceleration Attenuation Relationship by Boore et al. (1997)

Design Earthquake Magnitude (Mw) 7.3Rjb 20

Vs, 30 800

unspecified faulting mechanism strike-slip fault reverse-slip fault

Period (s) Acceleration (g)0.0 0.18 0.17 0.200.2 0.42 0.38 0.451.0 0.17 0.16 0.18

bıss -0.313 0.999 -1.113bırv -0.117 1.17 -1.009bıall -0.242 1.089 -1.08

0.10 0.20 0.30 0.40 0.50 0.60 0.700

10

20

30

40

50

60

70

80

90

Joyner ve Boore (1981) Attenuation Relationship

Acceleration (g)

Pro

bab

ilit

y

of

Exceed

en

ce (

%)

0.0 0.2 0.4 0.6 0.8 1.0 1.20.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Spectral Acceleration Attenuation Relationship

unspecified faulting mechanism

strike-slip fault

revers-slip fault

Period (s)

Acc

eler

atio

n (

g)

average shear-wave velocity (m/s) to a depth of 30 m

closest horizontal distance from the station to a point in km

Moment Magnitude (Mw>=5)

C88
Moment Magnitude (Mw>=5)
C89
closest horizontal distance from the station to a point in km
C90
average shear-wave velocity (m/s) to a depth of 30 m
Page 103: SoilEngineering

b2 0.527 0.711 1.036b3 0 -0.207 -0.032b5 -0.778 -0.924 -0.798bv -0.371 -0.292 -0.698Va 1396 2118 1406h 5.57 7.02 2.9

-0.1053605156578-0.0021072103132-6.1623903327406-2.6762921168432

-4.722921644

10 10 20 40 80aşılma olasıbüyüklük

0.64 0.64 0.46 0.32 0.20

8.2 8.2 7.7 7.0 6.2

-0.105361 -0.105360515657826 -0.22314355131421 -0.510825623765991 -1.6094379124341-0.002107 -0.00210721031315653 -0.004462871026284 -0.0102165124753198 -0.03218875824868

-6.16239 -6.16239033274059 -5.41196299218766 -4.58374999752027 -3.43613801010104-2.676292 -2.67629211684318 -2.35038566377171 -1.9906973303471 -1.4922957768449

### -4.722921644 -4.397015191 -4.037326857 -3.538925304

Page 104: SoilEngineering

GUMBEL EXTREME VALUES

Seismic Hazard Analysis t (year interval) 70Point Number for Regression 14

YiMagnitude (xi) Occurence Numbers, J J / (t+1) G(M) [-lnG(M)] [log[-lnG(M)]]

4.5 50 0.7042 0.7042 0.3507 -0.45514.6 3 0.0423 0.7465 0.2924 -0.5340

1 4.8 1 0.0141 0.7606 0.2737 -0.56275.0 3 0.0423 0.8028 0.2196 -0.6583

7.2 5.1 1 0.0141 0.8169 0.2022 -0.69411 5.2 1 0.0141 0.8310 0.1851 -0.7325

0.00952381 5.3 1 0.0141 0.8451 0.1683 -0.7738-2.0211893 5.4 1 0.0141 0.8592 0.1518 -0.8187

5.5 2 0.0282 0.8873 0.1195 -0.92255.6 3 0.0423 0.9296 0.0730 -1.13656.1 1 0.0141 0.9437 0.0580 -1.23676.4 1 0.0141 0.9577 0.0432 -1.3648

6.7 1 0.0141 0.9718 0.0286 -1.54407.4 1 0.0141 0.9859 0.0142 -1.8482

0.0000 0.9859 0.01420.0000 0.9859 0.01420.0000 0.9859 0.01420.0000 0.9859 0.01420.0000 0.9859 0.01420.0000 0.9859 0.01420.0000 0.9859 0.01420.0000 0.9859 0.01420.0000 0.9859 0.01420.0000 0.9859 0.01420.0000 0.9859 0.01420.0000 0.9859 0.01420.0000 0.9859 0.01420.0000 0.9859 0.01420.0000 0.9859 0.01420.0000 0.9859 0.01420.0000 0.9859 0.0142

70

7.0 M <7.5

Prapared by :Dr.Ferhat Özçep

(İstanbul University) Department of Geophysical Engineering

Prapared by :Dr.Ferhat Özçep

(Istanbul University) Department of Geophysical Engineering

Dr. Ferhat Özçep

For each year, Select single extreme ( or

maximum) value for magnitude in the t (year interval). If

there is no earthquake data in any year, designate

4,5 value for magnitude for that

year.

This value must be equal t (year interval)

O1
Prapared by : Dr.Ferhat Özçep (Istanbul University) Department of Geophysical Engineering
J6
For each year, Select single extreme ( or maximum) value for magnitude in the t (year interval). If there is no earthquake data in any year, designate 4,5 value for magnitude for that year.
K37
This value must be equal t (year interval)
Page 105: SoilEngineering

77.55-13.2820501

438.6525000-78.0680836

6014.0025000

0.434294482a 1.793211066 b 1.14

-0.494996841 a 62.12

PROB= 1 - G(M)

M (MAGNITUDE) D (year) 1 10 25 50 100

5 18.8 87.5 99.4 100.0 100.05.5 11.1 69.2 94.7 99.7 100.06 6.4 48.6 81.1 96.4 99.9

6.5 3.7 31.4 61.0 84.8 97.77 2.1 19.2 41.3 65.5 88.1

7.5 1.2 11.3 26.0 45.2 70.0

SXiSYi

SXi^2SXiYiS(Xi)^2

ln b

G (M) = exp (-a D exp (-b M))

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

-2.0-1.8-1.6-1.4-1.2-1.0-0.8-0.6-0.4-0.20.0

f(x) = − 0.494996841033411 x + 1.79321106642413R² = 0.983036972131124

MAGNITUDE- FREQUENCY RELATIONS(Recurrence Relationships)

MAGNITUDEF

RE

QU

EN

CY

Page 106: SoilEngineering

Gumbel Extreme Values -0.10536051566Probability of 5.6538667E-05

D (year) Exceedence (%) M (magnitude) -9.7805857791130 10 8.6

∆, Epicentral Distance (km) H, Focal depth (km)

50 15 52.2

Esteva (1970) Donavan(1973c) Oliviera (1974) Joyner ve Boore(1981) Campbell (1997)

Acceleration (g) 0.20 0.25 0.20 0.35 0.71

5 10 20 40 80

0.50 0.35 0.24 0.16 0.09

-0.051293294388 -0.10536051565783 -0.223143551314 -0.51082562376599 -1.60943791243412.75250599E-05 5.65386671748E-05 0.00011974352 0.00027411976627 0.000863658211062

-10.50041370084 -9.78058577911478 -9.030158438562 -8.20194544389445 -7.054333456475229.2 8.6 7.9 7.2 6.2

Figure. Hazard Curve

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.550

102030405060708090

Joyner ve Boore (1981) Attenuation Relationship

Acceleration (g)

Pro

bability o

f E

xceedence

(%)

Page 107: SoilEngineering

TIME DISTRIBUTION OF EARTHQUAKES

4.7 5.2 5.7 6.2 6.7 7.247 19 8 3 2 1

0.4476190 0.1809524 0.0761905 0.0285714 0.0190476 0.0095238### -0.74243570 -1.118099 -1.54406804 -1.72015930 -2.02118930

1900

1903

1906

1909

1912

1915

1918

1921

1924

1927

1930

1933

1936

1939

1942

1945

1948

1951

1954

1957

1960

1963

1966

1969

1972

1975

1978

1981

1984

1987

1990

1993

1996

1999

2002

2005

0

1

2

3

4

5

6

7

8

9

10

Year

Fre

qu

en

cy

Prapared by :Dr.Ferhat Özçep

(Istanbul University) Department of Geophysical Engineering

Page 108: SoilEngineering

Years Numbers of Eartquakes1900

1901 119021903 11904 71905190619071908 51909 2191019111912

1913

1914191519161917 11918 1

1919 11920 11921 1192219231924 11925 11926 21927 11928 31929

19301931 1193219331934193519361937 1

Page 109: SoilEngineering

19381939 219401941 3

1942 619431944 31945194619471948

1949 31950 119511952 31953 91954 5

1955 41956 11957 11958 11959 11960 1196119621963 119641965 21966 71967 119681969 31970 21971 11972 31973 11974 119751976 41977 51978 1

Page 110: SoilEngineering

1979 51980 219811982 11983 21984 41985 31986 11987 21988 21989 2

1990 119911992 319931994 619951996 319971998 11999 2

2000 12001 22002 22003 42004 12005 9

Page 111: SoilEngineering

Magnitude Number Magnitude Number Realesed Total Energy2.1 200 5.5 2 7.0159748936574E+022 Erg2.2 200 5.6 22.3 200 5.7 12.4 200 5.8 22.5 200 5.9 12.6 200 6.0 1 Mw 72.7 200 6.1 1 Ms 6.92.8 200 6.2 12.9 200 6.3 1 Ms 6.93.0 100 6.4 1 Mb 6.83.1 100 6.5 13.2 100 6.6 1 Mw 73.3 100 6.7 1 Mb 6.83.4 100 6.8 13.5 100 6.9 1 Ms 6.9

3.6 100 7.0 1 Md 6.93.7 100 7.1 03.8 100 7.2 0 3.83.9 100 7.3 0 Magnitude 7.64.0 25 7.4 0 Duration (Eartquake) 31 sn4.1 25 7.5 0 38 sn4.2 25 7.6 0 33 sn4.3 20 7.7 04.4 154.5 154.6 144.7 144.8 124.9 125.0 105.1 35.2 25.3 25.4 3

Gutenberg ve Richter (1956)

Hausner

Watanabe (1977)

Donovan (1973)

Moment Magnitude

Surface Wave Magnitude

Body Wavde Magnitude

Duration Magnitude

AM3
Gutenberg ve Richter (1956)
AM8
Moment Magnitude
AM9
Surface Wave Magnitude
AM12
Body Wavde Magnitude
AM18
Duration Magnitude
AN22
Hausner
AN23
Watanabe (1977)
AN24
Donovan (1973)
Page 112: SoilEngineering

MAXIMUM INTENSITY (Io) & MAGNITUDE AND ACCELARATION RELATION

Maximum Intensity (Io) 8Magnitude (Gutenberg ve Richter, 1956) 6.3

Magnitude (İpek) 6.4Magnitude (Tabban ve Gençoğlu) 6.3

Magnitude (Bath, 1973) 6.3Magnitude (Karnik) 6.3

Magnitude (Ansal, 1997) 6.1

Maximum Intensity (Io) 8Accel. (Gutenberg ve Richter, 1956) 0.15 g

Accel. (Bath, 1973) 0.15 g

Accel. (Wang ve Law, 1994) 0.26 gAccel. (Wald ve diğ., 1999) 0.43 g

0.34 gAccel. (Murphy, 1997) 0.18 g

Accel. (Hessberger, 1956)

Page 113: SoilEngineering

FAULT RAPTURE & MAGNITUDE RELATION

Enerji Toplam E Enerji Fault Rapture (km)8.91251E+14 1.7825E+17 8.9E+14 1101.25893E+15 2.51785E+17 1.3E+151.77828E+15 3.55656E+17 1.8E+15 Researcher Ms (magnitude) Conditions Region2.51189E+15 5.02377E+17 2.5E+15 Abraseys ve Zatopek (1968) 7.4 between 5,8 and 8.0 Turkey

4.2 3.54813E+15 7.09627E+17 3.5E+15 Bolinger (1968) 7.7 between 5,8 and 8.0 (shallow World3.8 5.01187E+15 1.00237E+18 5E+15 Bolinger (1968) 7.5 between 5,8 and 8.0 (deep earthqaukes) World

7.07946E+15 1.41589E+18 7.1E+15 Douglas ve Ryall (1975) 7.5 bigger than 6,4 Nevada3.8 1E+016 2E+018 1E+016 Ezen (1981) 7.3 6 ile 8 North Anatolia5 1.41254E+16 2.82508E+18 1.4E+16 Matsuda (1975) 8.2 - Japan

1.99526E+16 1.99526E+18 2E+16 Patwardan ve diğ. (1975) 8.4 smaller than 6 -4.2 2.81838E+16 2.81838E+18 2.8E+16 Patwardan ve diğ. (1975) 7.4 bigger than 6 -5 3.98107E+16 3.98107E+18 4E+16 Tocher (1958) 7.6 smaller than 6 -

5.62341E+16 5.62341E+18 5.6E+16 Toksöz ve diğ. (1979) 7.3 between 5,9 and 7,9 North Anatolia6.9 7.94328E+16 7.94328E+18 7.9E+16 Gündoğdu (1986) 7.4 - Turkey

6.9 1.12202E+17 1.12202E+19 1.1E+17 Wells ve Coppersmith (1994) 7.4 (Strike Slipe) World1.58489E+17 1.58489E+19 1.6E+17 Wells ve Coppersmith (1994) 7.5 (Reverse) World

6.9 2.23872E+17 2.23872E+19 2.2E+17 Wells ve Coppersmith (1994) 7.6 (Normal) World3.16228E+17 3.16228E+19 3.2E+17 Wells ve Coppersmith (1994) 7.4 (All Fault Types) World4.46684E+17 4.46684E+19 4.5E+176.30957E+17 1.57739E+19 6.3E+17 Ms (Magnitude) Mw (Magnitude)8.91251E+17 2.22813E+19 8.9E+17 7.6 7.61.25893E+18 3.14731E+19 1.3E+181.77828E+18 3.55656E+19 1.8E+18 Researcher Fault Rapture ( Conditions Region2.51189E+18 3.76783E+19 2.5E+18 Abraseys ve Zatopek (1968) 176.8 between 5,8 and 8.0 Turkey3.54813E+18 5.3222E+19 3.5E+18 Bolinger (1968) 94.3 between 5,8 and 8.0 (shallow World5.01187E+18 7.01662E+19 5E+18 Bolinger (1968) 134.9 between 5,8 and 8.0 (deep earthqaukes) World7.07946E+18 9.91124E+19 7.1E+18 Douglas ve Ryall (1975) 162.2 bigger than 6,4 Nevada

1E+019 1.2E+020 1E+019 Ezen (1981) 156.7 6 ile 8 North Anatolia1.41254E+19 1.69505E+20 1.4E+19 Matsuda (1975) 45.7 - Japan1.99526E+19 1.99526E+20 2E+19 Patwardan ve diğ. (1975) 56.0 smaller than 6 -2.81838E+19 8.45515E+19 2.8E+19 Patwardan ve diğ. (1975) 168.0 bigger than 6 -3.98107E+19 7.96214E+19 4E+19 Tocher (1958) 98.2 smaller than 6 -5.62341E+19 1.12468E+20 5.6E+19 Toksöz ve diğ. (1979) 203.2 between 5,9 and 7,9 North Anatolia7.94328E+19 2.38298E+20 7.9E+19 Gündoğdu (1986) 161.1 - Turkey1.12202E+20 2.24404E+20 1.1E+20 Wells ve Coppersmith (1994) 118.6 (Strike Slipe) World1.58489E+20 3.16979E+20 1.6E+20 Wells ve Coppersmith (1994) 84.7 (Reverse) World2.23872E+20 2.23872E+20 2.2E+20 Wells ve Coppersmith (1994) 61.7 (Normal) World3.16228E+20 6.32456E+20 3.2E+20 Wells ve Coppersmith (1994) 105.7 (All Fault Types) World

Bath (1973)

Hausner

Watanabe (1977)

Donovan (1973)

Ulusay et al. (2004)

AO11
Bath (1973)
AO17
Ulusay et al. (2004)
Page 114: SoilEngineering

4.46684E+20 4.46684E+20 4.5E+20

6.30957E+20 6.30957E+20 6.3E+20 DISPLACEMENT (max) & MAGNITUDE RELATION8.91251E+20 8.91251E+20 8.9E+20

1.25893E+21 1.25893E+21 1.3E+21 Ms (Magnitude) Mw (Magnitude)1.77828E+21 1.77828E+21 1.8E+21 7.6 7.62.51189E+21 2.51189E+21 2.5E+213.54813E+21 3.54813E+21 3.5E+215.01187E+21 5.01187E+21 5E+21 Researcher Conditions Region7.07946E+21 7.07946E+21 7.1E+21 Chinery (1969) 3.4 between 3,4 and 8,3 -

1E+22 1E+22 1E+22 Chinery (1969) 3.4 bigger than 6,4 -1.41254E+22 1.41254E+22 1.4E+22 Ezen (1981) 3.2 6 and 8 North Anatolia1.99526E+22 1.99526E+22 2E+22 Matsuda (1975) 3.6 - Japan

0 0 2.8E+22 Nikonow (1978) 2.6 6 and 8,5 Asia0 0 4E+22 Gündoğdu (1986) 3.3 - Turkey0 0 5.6E+22 Wells ve Coppersmith (1994) 6.3 (Strike Slipe) World

0 0 7.9E+22 Wells ve Coppersmith (1994) 2.3 (Reverse) World

0 0 1.1E+23 Wells ve Coppersmith (1994) 7.3 (Normal) World0 0 1.6E+23 1.45E+23 Wells ve Coppersmith (1994) 5.9 (All Fault Types) World0 0 2.2E+23

5

Researcher Magnitude Conditions RegionChinery (1969) 7.8 between 3,4 and 8,3 -Chinery (1969) 7.8 bigger than 6,4 -

Ezen (1981) 7.9 6 and 8 North AnatoliaMatsuda (1975) 7.8 - JapanNikonow (1978) 7.9 6 and 8,5 Asia

Gündoğdu (1986) 7.9 - TurkeyWells ve Coppersmith (1994) 7.4 (Strike Slipe) World

Wells ve Coppersmith (1994) 6.8 (Reverse) WorldWells ve Coppersmith (1994) 7.1 (Normal) WorldWells ve Coppersmith (1994) 7.2 (All Fault Types) World

Displacement (m)

Displacement (m)

Page 115: SoilEngineering

Magnitude TypeMsMsMsMsMsMsMsMsMsMsMs

MwMwMwMw

Magnitude TypeMsMsMsMsMsMsMsMsMsMsMsMwMwMwMw

Page 116: SoilEngineering

Magnitude TypeMsMsMsMsMsMsMw

Mw

MwMw

Magnitude TypeMsMsMsMsMsMsMw

MwMwMw

Page 117: SoilEngineering

M (

ma

gn

itu

de

)

∆,

Ep

ice

ntr

al

Dis

tan

ce

Uza

klı

k (

km

)

H,

foc

al

de

pth

(k

m)

Es

tev

a (

19

70

)

Da

ve

np

ort

(1

97

2)

Do

no

va

n (

19

73

a)

Es

tev

a a

nd

Vil

lav

erd

e (

19

73

)

Do

na

va

n(1

97

3b

)

Do

na

va

n(1

97

3c

)

Mc

Gu

ier

(19

74

)

Orp

ha

l a

nd

La

ho

ud

(1

97

4)

Sh

ah

et

al.

(1

97

3)

Oli

vie

ra (

19

74

)

Ka

tay

am

a

Es

tev

a e

t a

l. (

19

78

)

Jo

yn

er

an

d B

oo

re (

19

81

)

Ca

mp

be

ll (

19

81

a)

Ca

mp

be

ll (

19

81

b)

7.3 25 15 0.15 0.38 0.30 0.41 0.20 0.22 0.29 0.72 0.37 0.15 0.26 0.22 0.38 0.16 0.167.3 30 15 0.13 0.30 0.26 0.36 0.18 0.20 0.26 0.60 0.32 0.13 0.23 0.17 0.31 0.15 0.147.3 35 15 0.11 0.25 0.23 0.32 0.16 0.18 0.23 0.51 0.29 0.11 0.21 0.13 0.26 0.13 0.137.3 40 15 0.09 0.20 0.21 0.29 0.14 0.16 0.21 0.44 0.26 0.09 0.19 0.10 0.22 0.12 0.117.3 45 15 0.08 0.17 0.19 0.26 0.13 0.15 0.20 0.38 0.23 0.08 0.17 0.09 0.19 0.11 0.107.3 50 15 0.07 0.15 0.17 0.23 0.12 0.14 0.18 0.34 0.21 0.07 0.15 0.07 0.17 0.10 0.097.3 55 15 0.06 0.13 0.15 0.21 0.11 0.13 0.17 0.30 0.19 0.06 0.14 0.06 0.15 0.09 0.087.3 60 15 0.06 0.11 0.14 0.19 0.10 0.12 0.15 0.27 0.17 0.06 0.13 0.05 0.13 0.09 0.087.3 65 15 0.05 0.10 0.13 0.17 0.09 0.11 0.14 0.25 0.15 0.05 0.12 0.05 0.12 0.08 0.077.3 70 15 0.05 0.09 0.12 0.16 0.08 0.10 0.13 0.23 0.14 0.05 0.11 0.04 0.11 0.07 0.067.3 75 15 0.04 0.08 0.11 0.14 0.08 0.10 0.13 0.21 0.13 0.04 0.10 0.04 0.10 0.07 0.067.3 80 15 0.04 0.07 0.10 0.13 0.07 0.09 0.12 0.19 0.12 0.04 0.09 0.03 0.09 0.07 0.057.3 85 15 0.03 0.06 0.09 0.12 0.07 0.08 0.11 0.18 0.11 0.03 0.09 0.03 0.08 0.06 0.057.3 90 15 0.03 0.06 0.09 0.11 0.06 0.08 0.11 0.16 0.10 0.03 0.08 0.03 0.07 0.06 0.057.3 95 15 0.03 0.05 0.08 0.11 0.06 0.08 0.10 0.15 0.09 0.03 0.08 0.03 0.07 0.06 0.047.3 100 15 0.03 0.05 0.08 0.10 0.06 0.07 0.10 0.14 0.09 0.03 0.07 0.02 0.06 0.05 0.047.3 105 15 0.03 0.05 0.07 0.09 0.05 0.07 0.09 0.14 0.08 0.02 0.07 0.02 0.06 0.05 0.047.3 110 15 0.02 0.04 0.07 0.09 0.05 0.06 0.09 0.13 0.08 0.02 0.06 0.02 0.05 0.05 0.047.3 115 15 0.02 0.04 0.06 0.08 0.05 0.06 0.08 0.12 0.07 0.02 0.06 0.02 0.05 0.05 0.037.3 120 15 0.02 0.04 0.06 0.08 0.04 0.06 0.08 0.11 0.07 0.02 0.06 0.02 0.05 0.04 0.037.3 125 15 0.02 0.03 0.06 0.07 0.04 0.06 0.08 0.11 0.06 0.02 0.05 0.02 0.04 0.04 0.037.3 130 15 0.02 0.03 0.05 0.07 0.04 0.05 0.07 0.10 0.06 0.02 0.05 0.02 0.04 0.04 0.037.3 135 15 0.02 0.03 0.05 0.06 0.04 0.05 0.07 0.10 0.06 0.02 0.05 0.01 0.04 0.04 0.037.3 140 15 0.02 0.03 0.05 0.06 0.04 0.05 0.07 0.09 0.05 0.02 0.05 0.01 0.04 0.04 0.037.3 145 15 0.01 0.03 0.05 0.06 0.04 0.05 0.06 0.09 0.05 0.01 0.04 0.01 0.03 0.04 0.027.3 150 15 0.01 0.03 0.05 0.05 0.03 0.05 0.06 0.09 0.05 0.01 0.04 0.01 0.03 0.04 0.027.3 155 15 0.01 0.02 0.04 0.05 0.03 0.04 0.06 0.08 0.05 0.01 0.04 0.01 0.03 0.03 0.027.3 160 15 0.01 0.02 0.04 0.05 0.03 0.04 0.06 0.08 0.04 0.01 0.04 0.01 0.03 0.03 0.027.3 165 15 0.01 0.02 0.04 0.05 0.03 0.04 0.06 0.08 0.04 0.01 0.04 0.01 0.03 0.03 0.027.3 170 15 0.01 0.02 0.04 0.04 0.03 0.04 0.05 0.07 0.04 0.01 0.04 0.01 0.02 0.03 0.027.3 175 15 0.01 0.02 0.04 0.04 0.03 0.04 0.05 0.07 0.04 0.01 0.03 0.01 0.02 0.03 0.027.3 180 15 0.01 0.02 0.04 0.04 0.03 0.04 0.05 0.07 0.04 0.01 0.03 0.01 0.02 0.03 0.027.3 185 15 0.01 0.02 0.03 0.04 0.03 0.04 0.05 0.07 0.03 0.01 0.03 0.01 0.02 0.03 0.027.3 190 15 0.01 0.02 0.03 0.04 0.02 0.04 0.05 0.06 0.03 0.01 0.03 0.01 0.02 0.03 0.027.3 195 15 0.01 0.02 0.03 0.04 0.02 0.03 0.05 0.06 0.03 0.01 0.03 0.01 0.02 0.03 0.027.3 200 15 0.01 0.02 0.03 0.03 0.02 0.03 0.04 0.06 0.03 0.01 0.03 0.01 0.02 0.03 0.027.3 205 15 0.01 0.02 0.03 0.03 0.02 0.03 0.04 0.06 0.03 0.01 0.03 0.01 0.02 0.03 0.01

ACCELERATION ATTENUATION RELATIONSHIPS To return "main options" , click the cell !

A1
To return "main options" , click the cell !
Page 118: SoilEngineering

Ne

wm

ark

an

d R

os

eb

lue

th (

19

71

)

Ka

na

i (1

96

6)

Es

tev

a a

nd

Ro

se

blu

eth

(1

96

4)

Fu

kis

him

a e

t a

l. (

19

88

)

Ab

rah

am

so

n a

nd

Lit

eh

ise

r (1

98

9)

Ca

mp

be

l (1

99

7)

Av

era

ge

R, O

dak

tan

Uza

klık

(km

)0.24 0.29 0.29 0.26 0.25 0.39 0.29 29.2

0.20 0.24 0.24 0.24 0.23 0.35 0.25 33.5

0.16 0.20 0.21 0.21 0.21 0.32 0.22 38.1

0.14 0.18 0.18 0.19 0.19 0.29 0.19 42.7

0.12 0.15 0.15 0.18 0.18 0.27 0.17 47.4

0.10 0.13 0.13 0.16 0.16 0.25 0.15 52.2

0.09 0.12 0.12 0.14 0.15 0.23 0.14 57.0

0.08 0.11 0.10 0.13 0.14 0.22 0.12 61.8

0.07 0.10 0.09 0.12 0.14 0.20 0.11 66.7

0.06 0.09 0.08 0.11 0.13 0.19 0.10 71.6

0.05 0.08 0.08 0.10 0.12 0.18 0.10 76.5

0.05 0.07 0.07 0.09 0.12 0.17 0.09 81.4

0.04 0.07 0.06 0.09 0.11 0.17 0.08 86.3

0.04 0.06 0.06 0.08 0.11 0.16 0.08 91.2

0.04 0.06 0.05 0.07 0.10 0.15 0.07 96.2

0.03 0.05 0.05 0.07 0.10 0.15 0.07 101.1

0.03 0.05 0.04 0.06 0.09 0.14 0.06 106.1

0.03 0.05 0.04 0.06 0.09 0.14 0.06 111.0

0.03 0.04 0.04 0.05 0.09 0.13 0.06 116.0

0.02 0.04 0.04 0.05 0.08 0.13 0.05 120.9

0.02 0.04 0.03 0.05 0.08 0.12 0.05 125.9

0.02 0.04 0.03 0.04 0.08 0.12 0.05 130.9

0.02 0.03 0.03 0.04 0.08 0.11 0.05 135.8

0.02 0.03 0.03 0.04 0.07 0.11 0.04 140.8

0.02 0.03 0.03 0.04 0.07 0.11 0.04 145.8

0.02 0.03 0.02 0.03 0.07 0.11 0.04 150.7

0.01 0.03 0.02 0.03 0.07 0.10 0.04 155.7

0.01 0.03 0.02 0.03 0.07 0.10 0.04 160.7

0.01 0.02 0.02 0.03 0.06 0.10 0.04 165.7

0.01 0.02 0.02 0.03 0.06 0.10 0.03 170.7

0.01 0.02 0.02 0.02 0.06 0.09 0.03 175.6

0.01 0.02 0.02 0.02 0.06 0.09 0.03 180.6

0.01 0.02 0.02 0.02 0.06 0.09 0.03 185.6

0.01 0.02 0.02 0.02 0.06 0.09 0.03 190.6

0.01 0.02 0.02 0.02 0.06 0.09 0.03 195.6

0.01 0.02 0.01 0.02 0.05 0.08 0.03 200.6

0.01 0.02 0.01 0.02 0.05 0.08 0.03 205.5

25 35 45 55 65 75 85 95 105

115

125

135

145

155

165

175

185

195

205

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Esteva (1970)

Davenport (1972)

Donovan (1973a)

Esteva and Villaverde (1973)

Donavan(1973b)

Donavan(1973c)

McGuier (1974)

Orphal and Lahoud (1974)

Shah et al. (1973)

Oliviera (1974)

Katayama

Esteva et al. (1978)

Joyner and Boore (1981)

Campbell (1981a)

Campbell (1981b)

Newmark ve Roseblueth (1971)

Kanai (1966)

Esteva ve Roseblueth (1964)

Fukishima et al. (1988)

Abrahamson ve Liehiser (1989)

Campbell (1997)

Epicentral Distance (km)

Acc

eler

atio

n (

g)

Dr. Ferhat Özçep

To return "main options" , click the cell !

AD2
Dr. Ferhat Özçep
Page 119: SoilEngineering

M (magnitude) 7.3

25 35 45 55 65 75 85 95 105

115

125

135

145

155

165

175

185

195

205

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Esteva (1970)

Davenport (1972)

Donovan (1973a)

Esteva and Villaverde (1973)

Donavan(1973b)

Donavan(1973c)

McGuier (1974)

Orphal and Lahoud (1974)

Shah et al. (1973)

Oliviera (1974)

Katayama

Esteva et al. (1978)

Joyner and Boore (1981)

Campbell (1981a)

Campbell (1981b)

Newmark ve Roseblueth (1971)

Kanai (1966)

Esteva ve Roseblueth (1964)

Fukishima et al. (1988)

Abrahamson ve Liehiser (1989)

Campbell (1997)

Epicentral Distance (km)

Acc

eler

atio

n (

g)

Page 120: SoilEngineering

M 7.4 7.4 Earthquake & Soil Interaction

25 25 T Displace. (cm) Vel.(cm/sn)h1 15 0.1 2391 0.60 38h2 35 0.15 1629 0.92 39

1.8 0.2 1265 1.27 40VS1 300 0.25 1071 1.68 42

2.1 0.3 979 2.21 47VS2 600 0.35 989 3.04 55a 0.43 0.43 0.4 1171 4.70 74

To 0.43 0.43 0.45 1103 5.61 790.5 679 4.26 54

0.55 493 3.74 430.6 398 3.60 38

0.65 339 3.60 350.7 299 3.68 33

0.75 269 3.79 320.8 245 3.93 31

0.85 225 4.09 300.9 209 4.26 30

0.95 195 4.43 291 184 4.61 29

1.05 173 4.80 291.1 164 4.98 29

1.15 156 5.18 281.2 148 5.37 28

1.25 142 5.57 281.3 136 5.76 28

1.35 130 5.96 281.4 125 6.16 28

1.45 120 6.36 281.5 116 6.56 28

1.55 112 6.77 281.6 108 6.97 27

1.65 105 7.17 271.7 102 7.38 27

1.75 99 7.58 271.8 96 7.79 27

1.85 93 7.99 271.9 90 8.20 27

1.95 88 8.40 272 86 8.61 27

2.05 84 8.82 272.1 81 9.02 27

2.15 80 9.23 272.2 78 9.44 27

2.25 76 9.65 272.3 74 9.85 27

2.35 73 10.06 272.4 71 10.27 27

2.45 69 10.48 27

ACCELERATION / VELEOCITY / DISPLACEMENT SPECTRA

D Accel. (cm/sn2)

g1

g2

Kanai (1961) Approach

Soil Fundemantal Period:4h/VS

A (Acustic Empedence): (g1 x VS1) / (g2 xVS2)

To return "main options" , click the cell !

Epicentral Distance

(km)

A1
To return "main options" , click the cell !
B4
Epicentral Distance (km)
B11
A (Acustic Empedence): (g1 x VS1) / (g2 xVS2)
B12
Soil Fundemantal Period: 4h/VS
A20
Kanai (1961) Approach
Page 121: SoilEngineering

2.5 68 10.69 27

II. ApproachKawashima et al. (1984) Appraoch

M Epicentral Distance Period Accl. (SS Accl. (MS) Accl. (LS)7.5 25 0.1 804 668 4347.5 25 0.15 950 832 5297.5 25 0.2 841 1035 5297.5 25 0.3 538 995 4997.5 25 0.5 333 759 6467.5 25 0.7 229 605 8207.5 25 1 126 589 7347.5 25 1.5 105 338 5307.5 25 2 72 195 3287.5 25 3 42 85 145

0 0.5 1 1.5 2 2.5 3 3.50

200

400

600

800

1000

1200

Acceleration Spectra for different kind of Soils

Acceleration (Stiff Soil)

Acceleration (Medium Soil)

Acceleration (Loose Soil)

Period (s)

Accele

rati

on

(cm

/sn

2)

Stiff Soil Medium Soil Loose Soil

D61
Stiff Soil
E61
Medium Soil
F61
Loose Soil
Page 122: SoilEngineering

III. Approach

Acceleration Estimation by Boore et al. (1997) Approach

Mw 7.3Rjb 25

Vs, 30 250

Mechanism StrikeUncertain Slipe Fault Reverse Fault

Period Acceleration (g)

0.0 0.24 0.22 0.270.2 0.49 0.44 0.531.0 0.31 0.30 0.34

bıss -0.313 0.999 -1.113bırv -0.117 1.17 -1.009bıall -0.242 1.089 -1.08b2 0.527 0.711 1.036b3 0 -0.207 -0.032b5 -0.778 -0.924 -0.798bv -0.371 -0.292 -0.698Va 1396 2118 1406h 5.57 7.02 2.9

0.0 0.2 0.4 0.6 0.8 1.0 1.20.00

0.10

0.20

0.30

0.40

0.50

0.60

Acceleration Spectrum

Mechamism Uncertain

Strike Slipe Fault

Reverse Fault

Period (s)

Acc

eler

atio

n (

g)

Page 123: SoilEngineering

0 0.5 1 1.5 2 2.5 30.00

2.00

4.00

6.00

8.00

10.00

12.00

Soil Displacement Spectrum

T period (sn)

Dis

plac

emen

t (c

m)

0 0.5 1 1.5 2 2.5 30

10

20

30

40

50

60

70

80

90

Soil Velocity Spectrum

Period (sn)

Vel

ocity

(m

/sn)

0 0.5 1 1.5 2 2.5 30

500

1000

1500

2000

2500

3000

Soil Acceleraton Spectrum

Period (sn)

Acc

eler

atio

n (c

m/s

n2)

To return "main options" , click the cell ! Dr. Ferhat Özçep

J2
Dr. Ferhat Özçep
Page 124: SoilEngineering

Çizelge. Kawashima ve diğ. (1984) Yaklaşımı için katsayılar

c Sert Zemin Orta Zemin Yumuşak Zemina b a b a b

-1.18 2420 0.21 848 0.26 1307 0.21-1.18 2407 0.22 629 0.29 948 0.24-1.18 1269 0.25 466 0.32 1128 0.23-1.18 575 0.27 267 0.35 1263 0.22-1.18 212 0.3 102 0.39 581 0.28-1.18 103 0.32 34.3 0.44 65.7 0.42-1.18 40.1 0.34 5 0.55 7.4 0.54-1.18 7.1 0.43 0.72 0.63 0.8 0.65-1.18 5.8 0.42 0.35 0.64 0.35 0.67-1.18 1.7 0.46 0.36 0.59 0.26 0.64

0 0.5 1 1.5 2 2.5 30.00

2.00

4.00

6.00

8.00

10.00

12.00

Soil Displacement Spectrum

T period (sn)

Dis

plac

emen

t (c

m)

Page 125: SoilEngineering

0 0.5 1 1.5 2 2.5 30

10

20

30

40

50

60

70

80

90

Soil Velocity Spectrum

Period (sn)

Vel

ocity

(m

/sn)

Page 126: SoilEngineering

Amplification Analysis (Relative) IAmplification

Midorikawa (1987) A 2.8Joyner and Fumal (1984) A 2.1Borcherdt et al. (1991) Weak Motion AHSA 3.5

Strong Motion AHSA 3.0

Depth (m) Tickness (m) Vs Velocity, (m/s)

1.8 1.8 200 Vs, 30 (m/s)3.3 1.5 200 200.04.8 1.5 2006.3 1.5 2007.8 1.5 2009.3 1.5 200

10.8 1.5 20012.3 1.5 20013.8 1.5 20015.3 1.5 20016.8 1.5 20018.3 1.5 20019.8 1.5 20021.3 1.5 20022.8 1.5 20024.3 1.5 20025.8 1.5 20027.3 1.5 20028.8 1.5 20030 1.2 200

SOIL AMPLIFICATION ANALYSIS

Average horizontal spectral amplification between 0,4and 2,0 s periods

Average horizontal spectral amplification between 0,4and 2,0 s periods

Amplification

To return "main options" , click the

cell !

Dr. Ferhat Özçep

Shear Wave Velocity

A1
To return "main options" , click the cell !
D5
Amplification
D7
Average horizontal spectral amplification between 0,4and 2,0 s periods
D8
Average horizontal spectral amplification between 0,4and 2,0 s periods
C11
Shear Wave Velocity
E18
Dr. Ferhat Özçep
Page 127: SoilEngineering

Amplification Analysis (for two layers) IIh1 30vs1 140

1.7vs2 600

2.1To 0.86p 3.14a 0.19

Period Relative Amplification0.1 1.550.2 1.100.3 3.440.4 1.020.5 1.110.6 1.560.7 2.580.8 4.580.9 4.931 3.46

1.1 2.601.2 2.141.3 1.871.4 1.691.5 1.561.6 1.471.7 1.40

1.8 1.341.9 1.302 1.26

2.1 1.242.2 1.212.3 1.192.4 1.172.5 1.16

r1

r2

0 0.5 1 1.5 2 2.5 30.00

2.00

4.00

6.00

Amplification Spectrum (Two Layers)

Period (sn)

Re

lati

ve

Am

pli

fic

ati

on

Bu Program iki tabakalı zemin koşuları için BÜYÜTME hesabı yapar.

Hazırlayan: Dr. Ferhat Özçep İ.Ü. Müh. Fak. Jeofizik Müh. Böl.

r1 : density for 1st layer (gr/cm3)r2 : density for 2nd layer (gr/cm3)VS1 : Shear wave velocity for 1st layer (m/s)VS2 : Shear wave velocity for 2st layer (m/s)h1: tickness of layer (m)

B57
Bu Program iki tabakalı zemin koşuları için BÜYÜTME hesabı yapar. Hazırlayan: Dr. Ferhat Özçep İ.Ü. Müh. Fak. Jeofizik Müh. Böl.
B67
r1 : density for 1st layer (gr/cm3) r2 : density for 2nd layer (gr/cm3) VS1 : Shear wave velocity for 1st layer (m/s) VS2 : Shear wave velocity for 2st layer (m/s) h1: tickness of layer (m)
Page 128: SoilEngineering

Amplification Analysis (Damped Soil) III

h1 30vs1 140

Damping 0.2p 3.14To 0.86

Period Relative Amplification0.1 0.360.2 0.620.3 1.080.4 0.840.5 0.950.6 1.300.7 1.940.8 2.820.9 3.241 2.86

1.1 2.391.2 2.051.3 1.821.4 1.661.5 1.541.6 1.451.7 1.391.8 1.341.9 1.292 1.26

2.1 1.232.2 1.212.3 1.192.4 1.172.5 1.16

0 0.5 1 1.5 2 2.5 30.00

2.00

4.00

6.00

Amplification Spectrum (Two Layers)

Period (sn)R

ela

tiv

e A

mp

lifi

ca

tio

n

0 0.5 1 1.5 2 2.5 30.00

1.00

2.00

3.00

4.00

Amplification Spectrum (Damped Soil)

Period (s)

Re

lati

ve

Am

plifi

ca

tio

n

Bu Program Rijit anakaya üzerinde üniform sönümlü zemin koşuları

için BÜYÜTME hesabı yapar.

Hazırlayan: Dr. Ferhat Özçep

İ.Ü. Müh. Fak. Jeofizik Müh. Böl.

VS1 : Shear wave velocity for 1st layer (m/s)h1: tickness of layer (m)

C114
Bu Program Rijit anakaya üzerinde üniform sönümlü zemin koşuları için BÜYÜTME hesabı yapar. Hazırlayan: Dr. Ferhat Özçep İ.Ü. Müh. Fak. Jeofizik Müh. Böl.
D124
VS1 : Shear wave velocity for 1st layer (m/s) h1: tickness of layer (m)
Page 129: SoilEngineering

Amplification (Undamped Soil) IV

h1 30vs1 140

Tz 0.86p 3.14

Period Relative Amplification0.1 1.590.2 1.110.3 4.450.4 1.030.5 1.110.6 1.610.7 2.900.8 9.000.9 13.251 4.48

1.1 2.941.2 2.301.3 1.961.4 1.751.5 1.601.6 1.501.7 1.421.8 1.361.9 1.322 1.28

2.1 1.252.2 1.222.3 1.202.4 1.182.5 1.16

0 0.5 1 1.5 2 2.5 30.00

1.00

2.00

3.00

4.00

Amplification Spectrum (Damped Soil)

Period (s)R

ela

tiv

e A

mp

lifi

ca

tio

n

0 0.5 1 1.5 2 2.5 30.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00Amplification Spectrum (Undamped Soil)

Period (s)

Re

lati

ve

Am

plifi

ca

tio

n

Rijit Anakaya üzerinde sönümsüz bir zemin içinBüyütme'nin hesaplanması

Hazırlayan:Dr.Ferhat Özçepİ.Ü. Müh. Fak.Jeofizik Müh. Böl.

VS1 : Shear wave velocity for 1st layer (m/s)h1: tickness of layer (m)

D172
Rijit Anakaya üzerinde sönümsüz bir zemin için Büyütme'nin hesaplanması Hazırlayan: Dr.Ferhat Özçep İ.Ü. Müh. Fak. Jeofizik Müh. Böl.
D188
VS1 : Shear wave velocity for 1st layer (m/s) h1: tickness of layer (m)
Page 130: SoilEngineering

0 0.5 1 1.5 2 2.5 30.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00Amplification Spectrum (Undamped Soil)

Period (s)R

ela

tiv

e A

mp

lifi

ca

tio

n

Page 131: SoilEngineering

755 760 765 770 775 780 785 790 795 800 8050

5

10

15

20

25

30

35

Shear Modulus, Gmax (kg/cm2)

Dep

th (

m)

Average horizontal spectral amplification between 0,4and 2,0 s periods

Average horizontal spectral amplification between 0,4and 2,0 s periods

Amplification

Page 132: SoilEngineering

150 200 250 300 350 4000

5

10

15

20

25

30

35

Dep

th (

m)

Shear Wave (Vs) Velocity, m/s (m/sn)

Page 133: SoilEngineering

Depth (m) Gmax Sear Wave Velocity (m

1.8 760 200 1.93.3 760 200 1.94.8 760 200 1.96.3 760 200 1.97.8 760 200 1.99.3 760 200 1.9

10.8 760 200 1.912.3 760 200 1.913.8 760 200 1.915.3 760 200 1.916.8 760 200 1.918.3 760 200 1.919.8 760 200 1.921.3 760 200 1.922.8 800 200 2.024.3 800 200 2.025.8 800 200 2.027.3 800 200 2.028.8 800 200 2.030 800 200 2.0

Density (gr/cm3)

Page 134: SoilEngineering

G.W.L 1 Magnitude 7.2

Data MSF 1.11016017 Acceleration, a (g) 0.4

De

pth

WT

(m

)

rd CS

R (

E)

1.8 1.7 4 30.0 22.2 0.80 0.9881470 0.3483.3 1.8 4 56.5 33.9 2.30 0.9773893 0.4234.8 1.8 4 83.0 45.7 3.80 0.9669309 0.4566.3 1.8 4 109.5 57.5 5.30 0.9551352 0.4737.8 1.8 4 136.0 69.3 6.80 0.9397014 0.4809.3 1.8 4 162.5 81.0 8.30 0.9179441 0.478

10.8 1.8 4 188.9 92.8 9.80 0.8875651 0.47012.3 1.8 4 215.4 104.6 11.30 0.8478937 0.45413.8 1.8 4 241.9 116.3 12.80 0.8008678 0.43315.3 1.8 4 268.4 128.1 14.30 0.7507104 0.40916.8 1.8 4 294.9 139.9 15.80 0.7022129 0.38518.3 1.8 4 321.4 151.7 17.30 0.6589112 0.36319.8 1.8 4 347.9 163.4 18.80 0.6223666 0.344

21.3 1.8 4 374.3 175.2 20.30 0.5925368 0.329

Soil Liquefaction Analysis

g (g

r/cm

3)

FN

=F

ine

Co

nte

nt

sv (

kP

a)

sv' (

kP

a)

To return "main options" , click the cell !

Dr. Ferhat Özçep

to continue the analysis

II IV

Ground Water Level

A1
To return "main options" , click the cell !
F3
Ground Water Level
I22
Dr. Ferhat Özçep
E23
to continue the analysis I I I V
Page 135: SoilEngineering

Liquefaction Anaysis by Shear Wave VelocitySeismic Site Yalova

Seismic Point: SK1

De

pth

Vs

(fi

eld

) m

/s

CV

Vs

1,

m/s

Vs

1c

SF

Lp

(V

s1

'de

n)

Lp

Gru

bu

Sıv

ılaş

ma

zeyi

1.8 120 1.46 174.88 220 0.1195 0.3434 11.2869 BL SV3.3 120 1.31 157.22 220 0.0937 0.2215 23.5720 AL SV4.8 120 1.22 145.94 220 0.0799 0.1750 34.8471 AL SV6.3 120 1.15 137.81 220 0.0709 0.1498 45.1239 AL SV7.8 120 1.10 131.54 220 0.0644 0.1342 54.3619 AL SV9.3 120 1.05 126.48 220 0.0594 0.1242 62.5137 AL SV

10.8 120 1.02 122.26 220 0.0555 0.1181 69.5326 AL SV12.3 120 0.99 118.67 220 0.0522 0.1150 75.3839 AL SV13.8 120 0.96 115.54 220 0.0495 0.1143 80.0586 AL SV15.3 120 0.94 112.79 220 0.0471 0.1153 83.5837 AL SV16.8 120 0.92 110.34 220 0.0451 0.1172 86.0171 AL SV18.3 120 0.90 108.13 220 0.0433 0.1194 87.4270 AL SV19.8 120 0.88 106.13 220 0.0417 0.1212 87.8700 AL SV21.3 120 0.87 104.30 220 0.0403 0.1225 87.3782 AL SV Figure 1. CSR - Vs Relationships (Andrus and Stokoe, 2001)

CR

R (S

)

If VS1>VS1c, then "SY"

to continue the analysis

II IV

To continue the analyis

II IV

Safety Factor

D35
If VS1>VS1c, then "SY"
G35
Safety Factor
E52
To continue the analyis I I I V
Page 136: SoilEngineering

Liquefaction Analysis by SPT DataBoring Site Yalova

Boring Point S1

De

pth

SP

T (

fie

ld)

CN

CB

CS

CR

N1

(60

)

CR

R (

Z)

SF PL

(%

)

1.8 20 1.70 1.0 1.0 0.80 20.4 0.24473 0.70353 823.3 20 1.70 1.0 1.0 0.80 20.4 0.24473 0.5785 944.8 20 1.48 1.0 1.0 0.80 17.7 0.20983 0.45974 996.3 20 1.32 1.0 1.0 0.80 15.8 0.18703 0.39547 1007.8 20 1.20 1.0 1.0 0.80 14.4 0.17127 0.35708 1009.3 20 1.11 1.0 1.0 0.80 13.3 0.15953 0.33341 100

10.8 20 1.04 1.0 1.0 0.80 12.5 0.15035 0.32001 10012.3 20 0.98 1.0 1.0 0.80 11.7 0.14291 0.31469 10013.8 20 0.93 1.0 1.0 0.80 11.1 0.13674 0.31583 10015.3 20 0.88 1.0 1.0 0.80 10.6 0.13151 0.32162 10016.8 20 0.85 1.0 1.0 0.80 10.1 0.12701 0.33001 10018.3 20 0.81 1.0 1.0 0.80 9.7 0.12308 0.33905 10019.8 20 0.78 1.0 1.0 0.80 9.4 0.11962 0.34732 10021.3 20 0.76 1.0 1.0 0.80 9.1 0.11654 0.35405 100

Figure 2. CRR - N1 (60) Relationships

Probability Liquefaction

Liao et al. (1988)If N1(60) value is

bigger than 30, then write "SY"

If SPT (field) value is bigger than 50, then write "SY"

To continue the analyis

II IV

to continue the analyis

II IV

Safety Factor

B66
If SPT (field) value is bigger than 50, then write "SY"
I66
Safety Factor
J66
Probability Liquefaction Liao et al. (1988)
G67
If N1(60) value is bigger than 30, then write "SY"
E84
to continue the analyis I I I V
Page 137: SoilEngineering

Iwasaki et al. (1978) ApproachD50, Fine Content (FC), SPT (N) value

FN

SP

T (

fiel

d)

R2 R3Factors R1 R2 (a) R2(b) R2( c ) R2 R3(a) R3(b) R3

Soil Earthq. 0.41085 0.19 0.12241531 -0.05 0.12242 0 0 0.000

Depth D50 R L GK 0.38689 0.19 -0.0348529 -0.05 -0.03485 0 0 0.000

1.8 0.1 4 20 0.5 0.5 1.0 0.36668 0.19 -0.0348529 -0.05 -0.03485 0 0 0.000

3.3 0.5 4 20 0.4 0.7 0.5 0.34934 0.19 -0.0348529 -0.05 -0.03485 0 0 0.000

4.8 0.5 4 20 0.3 0.7 0.5 0.33425 0.19 -0.0348529 -0.05 -0.03485 0 0 0.000

6.3 0.5 4 20 0.3 0.7 0.4 0.32096 0.19 -0.0348529 -0.05 -0.03485 0 0 0.000

7.8 0.5 4 20 0.3 0.7 0.4 0.30914 0.19 -0.0348529 -0.05 -0.03485 0 0 0.000

9.3 0.5 4 20 0.3 0.7 0.4 0.29853 0.19 -0.0348529 -0.05 -0.03485 0 0 0.000

10.8 0.5 4 20 0.3 0.7 0.4 0.28895 0.19 -0.0348529 -0.05 -0.03485 0 0 0.000

12.3 0.5 4 20 0.3 0.7 0.4 0.28023 0.19 -0.0348529 -0.05 -0.03485 0 0 0.000

13.8 0.5 4 20 0.3 0.7 0.4 0.27226 0.19 -0.0348529 -0.05 -0.03485 0 0 0.000

15.3 0.5 4 20 0.2 0.6 0.4 0.26493 0.19 -0.0348529 -0.05 -0.03485 0 0 0.000

16.8 0.5 4 20 0.2 0.6 0.4 0.25817 0.19 -0.0348529 -0.05 -0.03485 0 0 0.000

18.3 0.5 4 20 0.2 0.6 0.4 0.25189 0.19 -0.0348529 -0.05 -0.03485 0 0 0.00019.8 0.5 4 20 0.2 0.5 0.421.3 0.5 4 20 0.2 0.5 0.4

M 7.2

to continue the analyis

II IV

Before the analysis, please enter the data related cell !

Before the analysis, please enter the data

related cell !

Before the analysis, please enter the data related cell !

C101
Before the analysis, please enter the data related cell !
D101
Before the analysis, please enter the data related cell !
E120
Before the analysis, please enter the data related cell !
Page 138: SoilEngineering

İvme, a (g olarak) 0.40

LIQUEFACTION ANALYSIS BY RELATIVE DENSITY

Sample 1Accl. (g) 0.2Dr (%) 0.5

Figure 3. Liquefaction risk by relative density and acceleration(Tezcan ve Teri, 1996)

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1Acceleration - Relative Density (%) Relationships

Acceleration (g)

Dr

(Rel

ativ

e D

en

sit

y)

%(Medium Risk)

(No Risk)

(Higher Risk)

Before the analysis, please enter the data related cell !

Before the analysis, please enter the data related cell !

E121
Before the analysis, please enter the data related cell !
Page 139: SoilEngineering

Table . Corrections to SPT as listed by Robertson & Wride (1998)(after Youd et al., 2001).

Liquefaction possibility of Silty and clayed sands (Andrews ve Martin, 2000)

Clay Content %4

LL<32 İSE SIVILAŞMAYA HASSAS, LL>=32 İSE AYRINTI ÇALIŞMALAR GEREKİR

Page 140: SoilEngineering

VARIATION OF SAFETY FACTOR (SF) WITH DEPTH

SPT Vs SPT Vs

De

pth

(m

)

SF

SF S

F

SF

1.8 0.70 0.703.3 0.58 0.22 0.58 0.224.8 0.46 0.18 0.46 0.186.3 0.40 0.15 0.40 0.157.8 0.36 0.13 0.36 0.139.3 0.33 0.12 0.33 0.12

10.8 0.32 0.12 0.32 0.1212.3 0.31 0.11 0.31 0.1113.8 0.32 0.11 0.32 0.1115.3 0.32 0.12 0.32 0.1216.8 0.33 0.12 0.33 0.1218.3 0.34 0.12 0.34 0.1219.8 0.35 0.12 0.35 0.12

21.3 0.35 0.12 0.35 0.12

0.00 0.20 0.40 0.60 0.80 1.00 1.20

-25

-20

-15

-10

-5

0

Safety Factor (SF) & Depth

SPT Data

Safety Factor Boundary

Vs Data

SF

Dep

th (

m)

To daw the graph, please erease the "VeriYok" !!!

To daw the graph, please erease the "VeriYok" !!!

AF6
To daw the graph, please erease the "VeriYok" !!!
AG6
To daw the graph, please erease the "VeriYok" !!!
Page 141: SoilEngineering

Andrus andStokoe (1999)

10159 m/s

159 m/sn10

Figure 1. CSR - Vs Relationships (Andrus and Stokoe, 2001)

(N1)60

Vs1

Vs1

(N1)60

Corrected SPT Value

Corrected Shear Wave Velocityı (m/s)

Y38
Corrected SPT Value
X40
Corrected Shear Wave Velocityı (m/s)
Page 142: SoilEngineering

Estimation of treshold acceleration by shear wave velocity by Dobry ve diğ. (1981) approach

Vs 200 m/snz 3 m

G/Gmax 0.8Unite Shear Deformation 0.0001

0.11 g0.18 g0.30 g

SF 0.6Liquafaction

Figure 2. CRR - N1 (60) Relationships

Treshold Acceleration Value (at)Design Acceleration (ad)

Expected Acceleration (amax) estimate from seismic hazard analysis and

atenuation relationships

Ticknes of soil layer

Shear wave velocity

AB70
Shear wave velocity
AB71
Ticknes of soil layer
AB76
estimate from seismic hazard analysis and atenuation relationships
Page 143: SoilEngineering

GRAIN SIZE DISTRIBUTION & LIQUEFACTION

Sample A

37.500 95.0020.000 89.6014.000 86.4010.000 82.906.300 72.303.350 35.701.180 15.400

0.6 9.600.212 1.2

Figure. Liquefaction supectibility & grain size relationships (Finn, 1972)

Grain Size (mm)

Percentange Finer (%)

0.001 0.01 0.1 1 10 1000

20

40

60

80

100 12345

Liquafection lower limit

Liquefaction upper limit

Sample A

Grain Size (mm)

Weig

ht

Perc

en

tan

ge (

%)

Critical Zone

Page 144: SoilEngineering

EVALUATION OF MAXIMUM AREA FOR LIQUEFACTION

A) Earthquake magnitude (Mj) & maximum epicentral distance of liquefation

Mj 6.5R (km) 25.4R (km) 108.8R (km) 52.5

B) Epicentral/Fault distance & triggering of liquefacion by earthquake magnitude (Mw)

Re (km) 50.0 Mw 6.5Rf (km) 50.0 Mw 6.7

C) For Turkey, Earthquake magnitude (Ms) that trigger the liquefation (Ulusay et al. (2000)

25h (km) 10

R (km) 26.9 Ms 5.2 Lower LimitMs 6.3 MediumMs 7.4 Upper Limit

Ms 7.4

R (km) 106.4 Upper Limit

66.4 Medium

D (km)

Kuribayashi ve Tatsuoka (1975)

Wakamatsu (1991)

Wakamatsu (1993)

Epicentral distance (km)

Ambraseys (1988)

Faydan Uzaklık

Ambraseys (1988)

Epicentral distance (km)

Focal depth (km)

Hipocetral distance (km)

Yüzey Dalgası Magnitüdü

Y129
Kuribayashi ve Tatsuoka (1975)
Y130
Wakamatsu (1991)
Y131
Wakamatsu (1993)
X135
Epicentral distance (km)
AA135
Ambraseys (1988)
X136
Faydan Uzaklık
AA136
Ambraseys (1988)
X144
Epicentral distance (km)
X145
Focal depth (km)
Y148
Yüzey Dalgası Magnitüdü
X154
Hipocetral distance (km)
Page 145: SoilEngineering

26.4 Lower Limit

Symbols/ Abreviations

for SPTN (N), respectively Borehole Diameter, Sampling Method and Road Length correction factors

Not: Bu programda (1) eğer su içeren tabaka kalınlığı sıfırsa sıvılaşma olmayacağından otomatik olarak GK=2 alınmaktadır.

(2) Teorik olarak N1(60) değeri 30'dan, SPT (Arazi) değeri 50'den ve Vs1 değeri de vs1c (maksimum 220 m/sn)den büyük değerlerde sıvılaşma beklenmez

sv =overburden presuresv' =efective overburden presureSITK = tickness of saturated soil layer (m)D = Depth of Analysis (m)FC =Fine ContentG.W.L.= Ground Water Level (m)g = Unit weigth M = Magnitude of design earthquakeAcceleration (a) = acceleration of design earthquake (g)SPT fields = SPT(N) value in the field N1(60) = corrected SPT (N) valueVs (field)= shear wave velocity in the fieldVs1 = overburden stress corrected shear wave velocityrd=Stres reduction factorCN ve CV = for SPT(N) and Vs, efective presure correction facotor CB, CS and CRCSR and CRR = Cyclic Stress Ratio and Cyclic Resistance Ratio

MSF= Magnitude Scaling FactorDr (%) = Relative density (%) Rf= Distance from active fault (km)Re= Epicentral or hipocentral distance (km)Mw= Moment magnitudeMJ=Japon Meteorology Agancy Magnitude ScaleSY = No Liquefaction, SO= Liquefaction Possible and SV=LiquefactionLp = Liquefaction PotentialPL = Liquefaction Probality

Page 146: SoilEngineering

Program bu değerden büyük değerler için, SY (Sıvılaşma Yok) ifadesi vermektedir.

Page 147: SoilEngineering

To daw the graph, please erease the "VeriYok" !!!

Page 148: SoilEngineering

for SPTN (N), respectively Borehole Diameter, Sampling Method and Road Length correction factors

Page 149: SoilEngineering

These programs were prepared by Dr Ferhat OZCEP

Web page: www.istanbul.edu.tr/eng2/jfm/ozcep

Attention !!!

E mail : [email protected]

Data must enter only via red colored cell/letters

To return begining, please click !!!