Simulation of NG Processing Plant

6
8/10/2019 Simulation of NG Processing Plant http://slidepdf.com/reader/full/simulation-of-ng-processing-plant 1/6 SIMULATION OF NATURAL GAS PROCESSING PLANT FOR BUMPLESS SHIFT Ramzan, N*,  Naveed, S, Muneeb, R.*, Tahir, F. M. ^Department  of  Chemical Engineering, University of  Engineering & Technology, Lahore 54890, Pakistan  Email: [email protected][email protected] Phone: +92 42 -9029159, Mobile: +92 342- 5002555 Correspondence Author: [email protected] Abstract: A large fraction of  energy supplies in the world  are  fulfilled  through natural gas. The un-even variations in the supply and demand  often affect the production process. Modeling and simulation is  an effective tool to predict, plan and  handle such variations. Often it  is desired that a bumpless shift takes place in these situations. In this paper, a LPG/NGL recovery plant, which employs Turbo-expander technology for  LPG/NGL recovery, is simulated using a  steady state flow sheeting simulator (Aspen H YSYS). All major units such as Turbo-expander, separators, heat exchangers, distillation column, reboiler and  condenser  in the base case have  been simulated. The operating conditions are taken to match the field  conditions of  a plant in Pakistan PengRobinson (PR) equation of  state (EOS) has been employed. The simulation was  made offline with different inlet gas composition as if  changing wells lined up on the plant. The responses were recorded forvarious changes in the inlet gas composition and  pressure. The performance of  the  plant was studied  to  ensure that the steady state operation of  the plant is  not significantly affected  (bumpless shift). This shall lead to maximum productionusingcustomercontractual limits. KeyWords: Turboexpander, Process Simulation, AspenHYSYS, LPG/NGL recovery, Steady State Operation 1. Introduction Gas plants have several distinctive features that cause operation complexity. One unique characteristic is the fact that inlet feed  stream conditions do not remain constant. This is due to the combination of feed  streams from different well formations, variation of  pressure and composition of inlet stream with passage of time and depletion of reservoirs. As a result economic optimum set of  plant operating process parameters such as temperature and  pressure change. To obtain optimum production and  meet required quality standards, mathematical modeling and optimization of  gas  processing plant is mandatory. Computer Simulation is an important  tool for analysis and design of chemical processes. Oil and Gas processing is believed to be an area where Simulation could be used  very advantageously  because hydrocarbons and other organic compounds do not cause such troubles at calculations as strong  polar and ionized compounds. This  research is to counter the above mentioned problems of a Natural gas processing plant. At  this processing facility, during wells shifting (for any maintenance purpose or to maintain wellhead  pressure),  fluctuations in operating parameters take  place.  These fluctuations result (LPG), Natural Gas and  NGL. The obj ective of  this research is to obtain optimum and on spec  production of Natural gas, LPG and NGL by minimizing  the fluctuation during wells shifting. 2. Case Study Figure 1 describes the objectives and  strategy for the  production dynamics of the plant.The disturbances arrive in the process from feed in the form of variation in inlet temperature, pressure, or composition due to shift in the natural gas  source well. These disturbances mainly effect the operation of  Turbo Expander, De-Ethanizer Column and LPG/NGL Splitter Column units in the NG  processing plant which lead to off  spec product. In this situation, the product specifications (see figure 1)  are met by controlling the discharge temperature of  Turbo Expander, Top and Bottom stream temperature of De-Ethanizer column and the LPG/NGL Splitter Column. Now the expander PvPM, De-Ethanizer column refrigeration and reboiler  loads and reflux ratio, reboiler and condenser  loads for the LPG/NGL splitter column can be manipulated in order to control  these temperatures to eventually achieve the control objectives.

Transcript of Simulation of NG Processing Plant

Page 1: Simulation of NG Processing Plant

8/10/2019 Simulation of NG Processing Plant

http://slidepdf.com/reader/full/simulation-of-ng-processing-plant 1/6

SIMULATION OF NATURAL GAS PROCE SSI NG PLAN T

FOR  BUMPLESS SHIFT

Ramzan, N*, Naveed, S, Muneeb, R.*, Tahir, F. M .^Department  of  Chemical Engineering, University of  Engineering & Technology, Lahore  54890, Pakistan

 Email: [email protected][email protected]: +92 42 -9029159, Mobile: +92 342- 5002555

Correspondence Author: [email protected]. pk

Abstract: A large fraction of  energy supplies in the world  are fulfilled  through natural gas. The un-even variations in the supply anddemand  often affect the production process. Modeling and simulation is an effective tool to predict, plan and  handle such variations.Often it is desired that a bumpless shift takes place in these situations.  In this paper, a LPG/NGL recovery plant, which employsTurbo-expander technology for  LPG/NGL recovery, is simulated using a steady state flow sheeting simulator (Aspen H YSYS). All

major units such as Turbo-expander,  separators, heat exchangers, distillation column, reboiler and  condenser  in the base case have been simulated. The operating conditions are taken to match the field  conditions of  a plant in Pakistan PengRobinson  (PR)  equationof  state (EOS) has been employed. The simulation was made offline with different inlet gas composition as i f  changing wells linedup on the plant. The responses were recorded forvarious changes in the inlet gas composition and  pressure. The performance  of  the

 plant was studied  to ensure that the steady state operation of  the plant is not significantly affected  (bumpless shift). This shall lead tomaximum productionusingcustomercontractual  limits.

KeyWords: Turboexpander, Process Simulation, AspenHYSYS, LPG/NGL recovery, Steady State Operation

1. Introduction

Gas  plants  have  several  distinctive  features  that

cause  operation complexity. One unique

characteristic is the fact that inlet feed   stream

conditions do not remain constant. This is due to the

combination of feed   streams  from  different  well

formations, variation of  pressure and composition of

inlet  stream with  passage of time and depletion of

reservoirs. As a result economic optimum set o f  plantoperating  process parameters  such  as  temperature

and  pressure change. To obtain optimum production

and   meet  required quality  standards,  mathematical

modeling and optimization of  gas processing plant is

mandatory.

Computer Simulation is an important  tool  for

analysis  and design of chemical  processes. Oil andGas  processing  is believed to be an  area  where

Simulation  could be  used   very  advantageously

 because hydrocarbons and other organic compounds

do not cause such troubles at calculations as strong

 polar and ionized compounds. This  research  is to

counter the above mentioned problems of a Natural

gas processing plant.

At this processing facility,  during wells shifting (forany  maintenance  purpose  or to maintain wellhead

 pressure), fluctuations in operating parameters take

 place. These fluctuations result

(LPG), Natural Gas and  NGL.  The obj ective of  thisresearch  is to obtain optimum and on  spec

 production of Natural gas, LPG and NGL by

minimizing the fluctuation during wells shifting.

2. Case Study

Figure  1 describes the objectives and  strategy for the

 production dynamics of the plant.The  disturbances

arrive in the  process  from  feed in the  form  of

variation  in inlet  temperature,  pressure,  or

composition due to shift in the natural gas  source

well. These disturbances mainly effect the operation

of   Turbo  Expander,  De-Ethanizer Column and

LPG/NGL  Splitter Column units in the NG

 processing plant which lead to off  spec product. In

this situation, the product specifications (see figure

1) are met by controlling the discharge temperatureof   Turbo  Expander,  Top and Bottom  stream

temperature  of De-Ethanizer column and the

LPG/NGL  Splitter Column. Now the  expander

PvPM,  De-Ethanizer column refrigeration and

reboiler   loads  and reflux ratio, reboiler and

condenser  loads for the LPG/NGL splitter column

can be manipulated in order to control  these

temperatures  to eventually  achieve  the control

objectives.

Page 2: Simulation of NG Processing Plant

8/10/2019 Simulation of NG Processing Plant

http://slidepdf.com/reader/full/simulation-of-ng-processing-plant 2/6

Simulation of  Natural Gas Processing Plant for  Bumpless  Shift

DISTURBANCES

Feed Composition variations

Inlet Pressure variations

Inlet Temperature variations

Feed  From Wells

Manipulating Variables

Thru

Expander RPM Discharge Temperture

Refrigeration Load  T h m

Reboi ler Load

v-207 Bottom Temperature

 V-207 Top Temperature

Re*URa;e

Condenser; Load

Reboiler Load

Production and Quality Control Parameters

Sales Gas

Qual i ty:

Dew Point* -1 "C

Temp<49  5C

Water &ntent<11.2 g/IDO SCM

Production:

Gas Flow~7QMM5CFD

Com po in ts Recovery:

Propane < 0 .8 \'i

LPG

Production:

LPG Production-3600 Kgrtir

Quality:

4.&5<Vapor Pressure* 11.0 barg

95%  Boiling Point < 2 °C

Specific Gravity .53-.57

Pentane Content < 2%

 V-2D8 Bottom Tempera ture

 V-2Q8 Top Temperature

 NGL

Production:

NGL product flow rale ~ 4QDQ BPD

Quality:

Reid vapor pressure

(max.) 0.69 Bar

(avgj 0.56 Bar

(min.) 0.41 Bar

Sediment (ASTM D96)*0.Q5%

Fig.  1 Simplified block  diagram representation  of  problem

under  study

In  this  work,  a  simulation  model  of  Natural  gas

 process  plant  is  developed   in  order   to  study

disturbances, such  as  variation  in  inlet  gas

composition, pressure  and   temperature due to well

shifting. The  optimum operational parameters shall be  found   out  to ensure the on specs production of

 Natural gas, LPG and  NGL.

Page 3: Simulation of NG Processing Plant

8/10/2019 Simulation of NG Processing Plant

http://slidepdf.com/reader/full/simulation-of-ng-processing-plant 3/6

Simulation of  Natural Gas Processing Plant for Bumpless Shift

3. Process Description:

The Gas field  under consideration utilizes three oil &gas reservoirs  from  which  condensate, associated

gas and crude oil are produced. As shown in Figure 2,

hydrocarbon (HC)  fluid   from  different wells is

collected in Production and   test  manifold,

transmitted to production  separator   and the

Production separator  splits this feed  into HC gas, HC

liquid   and water. HC gas and   liquid   both contain

saturation water  which  is removed in Dehydration

 beds. Raw natural gas consists primarily of  methane(CH4)  as  well  as various amounts of heavier

hydrocarbon  gases.  The moisture free gas  passes

through Brazed   Aluminum  Heat Exchanger

(B AHX) and  its temperature is lowered  to almost -45

°C. From the BAHX, HCs condensed  are separated

in turbo expander  suction drum and the separated  gas

at high  pressure  is expanded into lower  pressure

causing temperature to drop to  less  than -65 °C

liquid   streams  from  low temperature  separator,

suction drum and moisture free hydrocarbons  liquid

are routed to de-ethanizer column where ethane andmethane  are stripped off. These  lighter HCs after

 passing through  BAHX  are  compressed   to line

 pressure  and injected into domestic transmission

Line.  Vapor   from  the top tray of the de-ethanizer

column is routed through the condenser  where it is

cooled to -35 °C causing all heavier  HCs to condense

and are returned back to the  distillation  column as

reflux.  The overhead gas product  from  the de-

ethanizeris  sent  through the  cold   box where it iswarmed by the inlet gas.  It is then compressed  in the

gas compressor driven by an electrical motor before

entering the distribution pipeline.The hot (165 °C)

LPG/NGL mixture feed  from  de-ethanizer   column is

transmitted to LPG/NGL splitter column at the 13th

 plate.The splitter reboiler temperature is 200 °C and

top temperature is maintained around 68 °C. These

temperatures  can be  used   to manipulate LPG

W M s l 1 i . i 3 . 1 0 r i 2 > M  18.16

M i x ed P h a u s

N a t u r a l G a s

H «Bv i s f    s L q u d

Fig.  2 Process diagram

causing further condensation. Condensed HCs are

separated  in low temperature  separator, from  where

 both HC liquid  streams and the gas stream are mixedand exchanged   in a BAHX causing their temperature

to  rise.The gas  from  low temperature  separator   is

transmitted to turbo compressor and then routed to

transmission line for domestic supplier The HC

 purity. The LPG recovered at the top of  the column is

further   cooled in a cooler through chilled  water and

moved to LPG storage bullets.The NGL from  the

column  is cooled in the de-ethanizer   preheater  and

its temperature is further lowered  in fined-fan cooler

and then sub-cooled in a  chilled   water cooler and

transmitted toNGL storage tanks

Page 4: Simulation of NG Processing Plant

8/10/2019 Simulation of NG Processing Plant

http://slidepdf.com/reader/full/simulation-of-ng-processing-plant 4/6

Simulation of  Natural Gas Processing Plant for Bumpless Shift

Aspen HYSYS Simulation model:

HYSYS  is an important simulation tool  with

  wide

application. For determination of  different operating

 parameters a base case is developed. First of all

simulation study of  base case is carried out. The NG

Processing plant under consideration is designed to

 process  nominal 29500 SmVh of  well  fluids.  The

well  fluid   is being processed   to obtain NGL, LPG

and Residual Gas products. Well fluid  conditions are

given in Table 1 and  composition is given in Table 2.

For the development  of  the case the Peng-Robinson

equation of   state  has  been  selected in the Basis

Environment as it is the most widely

 used  property

 package  for natural gas processing due to its

directness  and accuracy. The De-ethanizer column

separates  the feed into  ethane  as the distillate

 product, whereas the heavier componentsC3-C5  and

above  are fed to the splitter. The  following

constraints are considered in de-ethanizer column

simulation  for quality control and maximum

throughput.

Table 1: Well Fluid Conditions

Total  Feed   Rate  to

Processing Plant29500 Sm 3 /h

Battery  L i m i t  PressureOperating (min)

62.5 Barg

Battery  L i m i t  Temperature(min)  5 C

(max)  45 C

Battery  L i m i t  PressureDesign

94 Barg

Table 2: Base case inlet conditions at T = 45°C

Component Composition

CI 0.69

C2 0.08C3 0.04

i-C4 0.01

n-C4 0.02

i-C5 0.01

n-C5 0.01

C6 0.01

C7+ 0.12

1.  Reflux  condenser   outlet temperature: The

outlet temperature constraint of  -35 °C is used

in order to maintain top temperature up to -10

°C.

2.  Propane  Recovery:  Propane  recovery is

the  percentage  of   propane  product

recovered   from  the feed. This is the  initial

estimate.

3.  Ethane  Content in Bottoms:  Percentage  of

ethane in total LPG/NGL mixture should be

minimized   in order to control Reid Vapor

Pressure of  LPG.

4.  Propane  Content in column Top:  Propane

content is the Percentage of  propane in Ethane

stripped   from  the column. This  propane

should be  less  than 1% in order to recover

maximum of  propane in LPG.

For the case of  LPG/NGL splitter  column simulation

the LPG/NGL feed mixture  comes  from  the de-

ethanizerreboiler. The column employs eighteen

stages with the feed entering at the thirteenth plate.

The  parameters  used   as constraints or   initial

estimates in Splitter column simulation for quality

control  and maximum throughput are  propane

recovery, ethane content in LPQ pentane content in

LPG, Specific gravity of  LPQ vapor  pressure of  LPG

and  Reid  Vapor  Pressure of  NGL.

During Turbo expander  simulation the effect  of  inlet

Table 3.  Base case simulation results

Case K-201 out.Temp (°C)

V207

 bottomTemp.

(°C)

V-207 TopTemp. (°C)

V-208

BottomTemp

CQ

V-208

TopTemp

CQ

 Natural

Gas(MMscfd)

LPG

Prod(Kg/hr)

 NGL

Prod(Kg/hr)

Base-68 63 173 99 -4 45 169.62 59 60 19.52 3287 18931

Page 5: Simulation of NG Processing Plant

8/10/2019 Simulation of NG Processing Plant

http://slidepdf.com/reader/full/simulation-of-ng-processing-plant 5/6

Simulation of  Natural Gas Processing Plant for   Bumpless Shift

temperature, pressure and outlet pressure variations

has been studied.  Directly  this affects outlet

temperature of Turbo-expander.  With  decrease intemperature lighter components are condensed

causing more LPG  recovery.

For   inlet conditions discussed in Table 2, the main

 parameters to be controlled to obtain optimum and

on  specs Natural gas, LPG and NGL are  listed  in

Table 3.

4. Results and Discussions:

Figures 3 to 6 represent the dynamics of the splitter

and de-ethanizer   column. These profiles are typical

for  plate columns with sharp indentations appearing

at the plate location where feed is introduced. After

the development of  the base case, the introduction  of

disturbances is carried out in a systematic manner as

explained   under. Four different  cases  are thendeveloped.

Case 1: For Bumpless  shift  study we consider any

 pseudo case in which the first well is shut down and

feed   is increased   from  the  third   and   fourth  well

equally.  As the  first  well  is  rich  in heavier

components, so its shut down will change inlet  gas

compositions.

Case  2: The  first  well  is taken in service  with

maximum Load and feed reduced  from the third  and

fourth  well  equally to maintain their   Well  head

 pressure.

Case  3: The  third   well  is shut down and feed

increased  from the second and  fifth well equally.

Case 4: The second   well is shut down to maintain

wellhead  and feed adjusted   from  the third   and   fifth

well equally.

Table 4.  Simulation of  results of  various cases

Case#

K-201

out.

Temp

(°C)

V207

 bottom

Temp. (°C)

V-207

Top

Temp.

(°C)

V-208

Bottom

Temp

(°C)

V-208

Top

Temp

(°C)

 Natural  Gas

(MMscfd)

LPG

Prod

(Kg/hr)

 NGL

Prod

(Kg/hr)

Base

case-68.63 173.99 -4.45 169.62 59.60 19.52 3287 1 8931

Case-1 -67.85 165.47 -5.32 166.69 60.02 21.33 3652 17000

Case-2 -69.10 178.35 -4.00 171.27 59.48 18.61 3111 19888

Case-3 -68 80 180 73 -3 90 171 97 59 69 18 34 3013 20235

Summary of simulation results (Throughput &

 parameters to be adjusted to obtain these results) of

 base case and  all other  cases are given in Table4.

O  150 J

TTJ

JZIJ

r

Fig. 3: De-ethanizer column temperature profile

0.700¬

0.600 -

 s - Methar

ErhanE

e  (Light)

5

0.700¬

0.600 -PnHjar

i-Epar

e  (Light)

e  (LightV

5

   M  o   l  e   F  r  a  c   t   i  o  n

5

   M  o   l  e   F  r  a  c   t   i  o  n

\

5

   M  o   l  e   F  r  a  c   t   i  o  n

 I   X

5

l.D0e-001 - t3  • V.

5

l.D0e-001 -

5

l.D0e-001 -

50.000 -

1 D  15  20 25  3 )  35

Fig. 4: De-ethanizer column composition profile

<

 f

 I 1

Fig. 5: Splitter  temperature profile

- H -  M

i - a -  Et

:hai e /Lig

isns  (Lgh

ht)

)

 \S-  Pr

-4a-  i-E

•pane (Lig

utane (Lig

ht)

ht)

r

Fig. 6: Splitter compositionprofile

Page 6: Simulation of NG Processing Plant

8/10/2019 Simulation of NG Processing Plant

http://slidepdf.com/reader/full/simulation-of-ng-processing-plant 6/6

Simulation of Natural Gas Processing Plant for Bumpless Shift

Figure 7 gives the comparison  of  the entire variables

which have direct response on the specifications of

 products. As it can be seen they

remain somewhat  constant  throughout the changes

to the  process  indicating that  process  parameters'

change has been employed successfully.

200

150

100

50

-50

-100

rr

•   K -201 out

•   V - 2 0 7  b o t t o m

•   V - 2 0 7 t o p

•   V - 2 0 8  B o t t o m

•   V - 208 - T op

Base Case 1   Case 2   Case 3   Case 4

CaseSimulation Case

Fig. 7: Desiredproduct  stream temperatures

Conclusions:

The  change  in inlet conditions (Composition,

 pressure and temperature) effect the throughput and

quality o f  products. To counter the above mentioned

 problem, plant is simulated on HYSYS. From this

simulation  work about 80 % of  bumps have been

reduced. Different  cases  of inlet composition

variations  verify  the possibility of controlling

 product quality and

maintaining it at a  constant Based   on the  resultsobtained  from the cases study, it should be noted that

the optimum operating  parameters  change.  So,

during wells shifting, to obtain optimum and

References

[1] Bullin,  Keith:  A. "Economic Optimization of Natural Gas  Processing  Plants  IncludingBusiness Aspects." PhD.  Texas A & M University.1999.

[2]  K e i t h  A.  B u l l i n ,  P.E.,  Jason  Chipps ,"Optimization  of natura l gas gathe ringsystems  and gas plants" Bryan  Research  andEngineering, Inc., 1999

[3]  Jogei rMykle bust, Opti mal operation anddesign of natural gas processing networks,G as T e c h n o l o g y C e n t r e a t

 NTNU/SINTEF,Norway 2004

[4]  E l v i r a  Mar ie B. Ask St i g Stra nd,

SigurdSkogestad, "Implementation of MPCon  a  deethanizer   at kar sto gas pl an t"University  of   Science  and Technology, N-7491 Trondheim, Norway, 2005

[5]  John c.  Polasek, Stephen  t. Donnelly, jerry a. bu ll in ,  "Process  Simulation and Optimizationof   Cryogenic Operations Using Multi-StreamBrazed   Aluminum  Exchangers" Brya nResearch and Engineering, Inc, 2001

[6]  JaroslavPozivil "Use of Expansion Turbinesin  Natural Gas  Pressure  Reduction Stations"Dept. of Informatics and Control Engineering,Technickal995

[7]  "Fundamenta l Data and ThermodynamicModeling  for Cryogenic LNG Fluids toImprove  Process  Design, Simulation andOperation" ARC / Chevron, Austraila, 2001

[8]  J. K. ab del -la l and Moham ed aggour"Petroleum and gas field  processing"

[9]  Marshal l, W. R., and R. L. Pigford. TheApplication  of   Differential  Equations toChemical Engineering Problems.Universityof  Delaware, Newark, Delaware (1947).

[10]  Tiller,  F. M. , and R. S. Tour,  "StagewiseOperationsApplications of the Calculus ofFinite  Differences to Chemical Engineering,"Trans. AIChE, 40,317-332 (1944).

on specs production of  the desired products the plant

may be tuned to operating  parameters  determined

through this simulation.The results obtained through

this simulation will be very useful for

Fluctuation control of plant operating

 parameters, resulting in quality improvement

and production  enhancement  during wells

shifting

Simulation for changing inlet gas composition

and  pressure with  life  of gas  field,  causing up

to mark recovery  of  hydrocarbon reserves and

for line up of  future wells.

 NFC-IEF R   Journal of Engineering & Scientific Research