Ryuichi IWATA1 Takeo KAJISHIMATakeo KAJISHIMA11...

16
Ryuichi IWATA Takeo KAJISHIMA Takeo KAJISHIMA Shintaro TAKEUCHI 2 1 Osaka university 2 The university of Tokyo

Transcript of Ryuichi IWATA1 Takeo KAJISHIMATakeo KAJISHIMA11...

  • Ryuichi IWATA1Takeo KAJISHIMA1Takeo KAJISHIMA1Shintaro TAKEUCHI 2

    1 Osaka university2 The university of Tokyo

  • ex. Three-phase fluidized bed, flotation, air lift

    Microscopic

    Interface phenomena– Bubble deformation, surface tension

    Three-phase flows include

    Microscopic,– Particle rotation, vortex shedding

    – Interface phenomena– Collective behavior Mesoscopic

    ◎ Multi-fluid model (Tomiyama1994)◎ Euler/Lagrange Calculations ( Bourloutski, Sommerfeld 2002) ◎Turbulent structure (Kitagawa 2000)◎Front Tracking-DEM coupling

    h d (A l d 2005)

    (Kitagawa 2000) (Annaland 2005)

    method (Annaland 2005)

  • – Fluid-Solid Interaction: Immersed boundary method of body force type (Kajishima 2001)

    – Gas-Liquid Interface Capturing: Volume of fluid method – Cartesian coordinate system– Finite difference method – Dispersed-phases described by volumetric fraction

    in each computational cell.

    Multiple bubbles and particle interaction

  • • Fluids-Solid Interaction :– Clusterization of 1024-particle system (Kajishima and co-workers, 2001,2002)– Hindered settling in 105-particle system (Hidaka and co-workers, 2006)

    Particle of arbitrarily (time dependent) geometry (Yuki and co workers 2007)– Particle of arbitrarily (time dependent) geometry (Yuki and co-workers 2007)

    gg

    Particle distribution Induced vortices Sedimentation Deformable particles

  • Unified velocity field

    The equation of continuity and N-S equation based on one-fluid formulation

  • Interaction force

    Momentum and angler momentum equations

    No leakage of momentum

  • Basic equationsBasic equations0.10 0.300.00

    1.000.820.22

    1.00 1.000.61

    Interface reconstruction

    Mixed Youngs-centered method(by Aulisa 2007)(by Aulisa, 2007)

    Advection scheme Split Lagrangian-explicit scheme (by Gueyffier 1999)(by Gueyffier 1999)

    Surface tension Continuum Surface Force Model

  • Start

    Set up

    Time increment

    Start

    Fluids interface

    Advection term,Viscous term

    VOF StepFluids interfacecapturing phaseAdvection of VOF

    VOF Step

    Prediction of fluid velocity

    Degitize interface(volumetoric fraction)

    Interactionphase

    Momentum exchange

    Solve momentum eq. Solid phaseIBM Step

    Solve poisson eq.C ti St

    Update of displacement

    Correction Step

  • 37.8D

    D

    w t

    Periodic

    12.6

    D

    Inle

    t flo

    w

    Out

    let

    Re=200

    x

    y 6.3D Periodic

    N i l diti

    Computational domainSt

    Numerical conditions

    Re

  • axis

    n out

    let

    on

    rm in

    let

    cond

    ition

    nvec

    tive

    ow

    con

    ditioa

    b

    Fixed particleU

    nifo

    rflo

    w c

    Con

    flow

    Ellipticity

    Free slip condition

    p y

    Reynolds number y

  • L w

    Dp

    Re=100, Dp/Dx=10

  • Numerical conditionsgas

    liquid

    Free slip condition

    particle

  • A floating object A floating object g jg j

  • IB-VOF coupling method for three-phase flow◦ Validated by comparison with other solutions◦ Applicability for non-spherical objects◦ Capability for large scale simulation involving multiple◦ Capability for large-scale simulation involving multiple

    dispersed-phases