Robot Dynamics – Newton- Euler Recursive Approach

27
Robot Dynamics – Newton- Euler Recursive Approach ME 4135 Robotics & Controls R. Lindeke, Ph. D.

description

Robot Dynamics – Newton- Euler Recursive Approach. ME 4135 Robotics & Controls R. Lindeke, Ph. D. Physical Basis:. This method is jointly based on: Newton’s 2 nd Law of Motion Equation: and considering a ‘rigid’ link Euler’s Angular Force/ Moment Equation: . - PowerPoint PPT Presentation

Transcript of Robot Dynamics – Newton- Euler Recursive Approach

Page 1: Robot Dynamics – Newton- Euler Recursive Approach

Robot Dynamics – Newton- Euler Recursive Approach

ME 4135 Robotics & ControlsR. Lindeke, Ph. D.

Page 2: Robot Dynamics – Newton- Euler Recursive Approach

Physical Basis:

This method is jointly based on:– Newton’s 2nd Law of Motion

Equation:

and considering a ‘rigid’ link

– Euler’s Angular Force/ Moment Equation:

i CF m

i imoment CM i i CM iN I I

Page 3: Robot Dynamics – Newton- Euler Recursive Approach

Again we will Find A “Torque” Model

Each Link Individually We will move from Base to End to find Velocities

and Accelerations We will move from End to Base to compute force

(f) and Moments (n) Finally we will find that the Torque is:

1 1(1 )i i iqT T

n z f z bi i i i i i

Gravity is explicitly included in the model by considering acc0 = g where g is (0, -g0, 0) or (0, 0, -g0)

i is the joint type parameter (is 1 if

revolute; 0 if prismatic) like in

Jacobian!

Page 4: Robot Dynamics – Newton- Euler Recursive Approach

Lets Look at a Link “Model”

X0

Y0

Z0

Zk-1

Xk-1Yk-1

ZK

XK

YK

dK

dK-1

sK

Page 5: Robot Dynamics – Newton- Euler Recursive Approach

We will Build Velocity Equations

Consider that i is the joint type parameter (is 1 if revolute; 0 if prismatic)

Angular velocity of a Frame k relative to the Base:

NOTE: if joint k is prismatic, the angular velocity of frame k is the same as angular velocity of frame k-1!

1 1k k k k kq z

Page 6: Robot Dynamics – Newton- Euler Recursive Approach

Angular Acceleration of a “Frame”

Taking the Time Derivative of the angular velocity model of Frame k:

1 1 1 1k k k k k k k kq z q z

Same as (dw/dt) the angular acceleration in

dynamics

Page 7: Robot Dynamics – Newton- Euler Recursive Approach

Linear Velocity of Frame k:

Defining sk = dk – dk-1 as a link vector, Then the linear velocity of link K is:

Leading to a Linear Acceleration Model of:

1 11k k k k k k kv v s q z

1

1 11 2k k k k k k k

k k k k k k

s s

q z q z

Normal component of acceleration (centrifugal

acceleration)

Page 8: Robot Dynamics – Newton- Euler Recursive Approach

This completes the Forward Newton-Euler Equations:

To evaluate Link velocities & accelerations, start with the BASE (Frame0)

Its Set V & A set (for a fixed or inertial base) is:

As advertised, setting base linear acceleration propagates gravitational effects throughout the arm as we advance toward the end!

0

0

0

0

000vg

Page 9: Robot Dynamics – Newton- Euler Recursive Approach

Now we define the Backward (Force/Moment) Equations

Work Recursively from the End We define a term rk which is the vector from

the end of a link to its center of mass:

k k k

k

r c dc

is location of center of mass of Link k

Page 10: Robot Dynamics – Newton- Euler Recursive Approach

Defining f and n Models

1k k k k k k k k kf f m r r

1 1k k k k k k k k k

k k k

n n s r f r f D

D

Inertial Tensor of Link k – in base space

The term in the brackets represents the linear acceleration of the center of mass of Link k

Page 11: Robot Dynamics – Newton- Euler Recursive Approach

Combine them into Torque Models:

1 11T Tk k k k k k k k kn z f z b q

NOTE: For a robot moving freely in its workspace without

carrying a payload, ftool = 0

We will begin our recursion by setting fn+1 = -ftool and nn+1= -ntool

Force and moment on the tool

Page 12: Robot Dynamics – Newton- Euler Recursive Approach

The overall N-E Algorithm:

Step 1: set T00 = I; fn+1 = -ftool; nn+1 = -ntool; v0 = 0;

vdot0 = -g; 0 = 0; dot

0 = 0 Step 2: Compute –

Zk-1’s Angular Velocity & Angular Acceleration of Link k Compute sk

Compute Linear velocity and Linear acceleration of Link k Step 3: set k = k+1, if k<=n back to step 2 else set k = n

and continue

Page 13: Robot Dynamics – Newton- Euler Recursive Approach

The N-E Algorithm cont.:

Step 4: Compute – rk (related to center of mass of Link k)fk (force on link k)

Nk (moment on link k)tk (torque on link k)

Step 5: Set k = k-1. If k>=1 go to step 4

1 10 0

T

k kD DR R

Page 14: Robot Dynamics – Newton- Euler Recursive Approach

So, Lets Try one:

Keeping it Extremely Simple

This 1-axis ‘robot’ is called an Inverted Pendulum

It rotates about z0 “in the plane” x0-y0 X0

Z0

Y0m1

Y1

X1

Z1

Page 15: Robot Dynamics – Newton- Euler Recursive Approach

Writing some info about the device:1

1

21 1

1

1 1 1 1

1 1 1 110 1

2001

0 0 00 1 0

120 0 1

00

0 0 1 00 0 0 1

l

c

m lD

C S l CS C l S

T A

“Link” is a thin cylindrical rod

Page 16: Robot Dynamics – Newton- Euler Recursive Approach

Continuing and computing:

1 1 10 0

11 1 1 1

1 1 1 1

1 1

1 1

0 21 0 0 00 00 1 0 0

0 0 1 0 00 0 1 00 0 0 1 1

2

20

c H T c

lC S l CS C l S

l C

l S

Page 17: Robot Dynamics – Newton- Euler Recursive Approach

Inertial Tensor computation:

1 11 0 1 0

1 1 1 121 1

1 1 1 1

21 1 12

21 11 1 1

0 0 0 0 00 0 1 0 0

120 0 1 0 0 1 0 0 1

00

120 0 1

TD R D R

C S C Sm lS C S C

S S Cm l S C C

Page 18: Robot Dynamics – Newton- Euler Recursive Approach

Let’s Do it (Angular Velocity & Accel.)!

1 1 1

1 1 1

1 1

1 111 0

1 1

1 1

0 00 0 0

1 1

0 00 0 0

1 1

1 0 0 0( ) 0 1 0 0

00 0 1 0

1

0

o

q q

q q

l Cl S

s H O O

l Cl S

Starting: Base (i=0)Ang. vel = Ang. acc = Lin. vel = 0

Lin. Acc = -g which is (0, -g0, 0)T

1 = 1

Page 19: Robot Dynamics – Newton- Euler Recursive Approach

Linear Velocity:

1 0 1 1 1 1 0

1

1 1 1 1

1

1 1 1

1

0 00 0 1 1 0

1 0 1

0

v v s q z

Cq l S q

Sl q C

Page 20: Robot Dynamics – Newton- Euler Recursive Approach

Linear Acceleration: 1 1 1 1 1 1

1 1

1 1 1 1 1 1 1

1 12

1 1 1 1 1 1

1 12

1 1 1 1 1 1

00

0 1 0

0 0

0 0

g s s

S Sg l q C q l q C

S Cg l q C l q S

S Cg l q C l q S

Note: g = (0, -g0, 0)T

Page 21: Robot Dynamics – Newton- Euler Recursive Approach

Thus Forward Activities are done!

Compute r1 to begin Backward Formations:

1 1 1

1 1

1 1

1 11 1

1

11

2

200

20

r c Ol C

l Cl S l S

Cl S

Page 22: Robot Dynamics – Newton- Euler Recursive Approach

Finding f1

Consider: ftool = 0

1 1 1 1 1 1 1

1 11 1 1 1

1 1 1 1 1

11 1

1 1 1

{ }

0 0 00 0 0

2 21 0 1 1 0

20

f m r r

C Cl q l qm S q S

Sl qm C

12

1 11

1 121 1 1 1

1 1 1 1

1 12 1 1

1 1 1 1 1 1 1

00

21 0

2 20 0

20 0

Sl q C

S Cl q l qm C S

S C Sl qm g l q C l q S

1 12

1 11 120 0

Cl qC S

Page 23: Robot Dynamics – Newton- Euler Recursive Approach

Collapsing the terms

1 121 1 1 1

1 1 1 1

21 1 1 1 1

21 1 1 1 1

1 1 0

2 20 0

2

20

S Cl q l qf m g C S

l q S q C

l q C q Sf m g

simplifying:

Page 24: Robot Dynamics – Newton- Euler Recursive Approach

Computing n1:

1 1 1 1 1 1 1 1 1

1 1 2 2 21 1 1 1 1 1 1

1 1 1 1

21 1 1 1 1

211 1 1 1 11

1 1 0

0 0 00 0 0

2 12 120 0 1 1 1

2

2 20

n s r f D D

C Cl m l q m l ql S S f

l q S q C

Cl q C q Sl S m g

21 1 1

2 2 21 1 1 1 1 1 1 1 1 1 1 1 11 1

1 0 1

00

1210

0 00 02 2 2 121 1

m l q

l q C q S l q S q C m l ql m C g S

This X-product goes to Zero!

The Link Force Vector

Page 25: Robot Dynamics – Newton- Euler Recursive Approach

Simplifying:

21 0 1 1 11 1 1

00

3 21

m g m l Cn l q

Page 26: Robot Dynamics – Newton- Euler Recursive Approach

Writing our Torque Model

1 1 1 0 1 1 0 1 1

21 0 1 1 11 1 1 1

21 1 0 1 1 1

1 1 1 1

1

0 01 0 0 0 1 1 0

3 21 1

3 2

T T

T

n z f z b q

m g m l Cl q f b q

m l g m l Cq b q

‘Dot’ (scalar) Products

Page 27: Robot Dynamics – Newton- Euler Recursive Approach

Homework Assignment (mostly for practice!):

• Compute L-E solution for “Inverted Pendulum & Compare torque model to N-E solution

• Compute N-E solution for 2 link articulator (of slide set: Dynamics, part 2) and compare to our L-E torque model solution computed there

• Consider Our 4 axis SCARA robot – if the links can be simplified to thin cylinders, develop a generalized torque model for the device.