Euler formula for intersecting sets Newton binomial ... fileEuler formula for intersecting sets...

12
Euler formula for intersecting sets Newton binomial, asymptotic combinatorial identities Theorem 1 If โ‰ฅ 6 3 < !< 2 Proof Prove by induction on n the upper estimate. Assume that ! โ‰ค 2 then +1 2 +1 = +1 2 +1 2 = 2 1+ 1 +1 2 โ‰ฅ! 1+1+ 2 2 + โ‹ฏ + +1 2 > ! โˆ™ 2 โˆ™ +1 2 = +1! Similarly prove the lower estimate Let us assume that ! โ‰ฅ 3 then considering ! โ‰ฅ 2 โˆ’1 if โ‰ฅ 2 +1 3 +1 = +1 3 +1 3 = 3 1+ 1 +1 3 โ‰ค ! 1+1+ 2 2 + 3 3 + โ‹ฏ + ! +1 3 < ! 1+1+ 2 2! 2 + 3 3! 3 + โ‹ฏ + ! +1 3 < ! 1+1+ 1 2 1 + 1 2 2 + โ‹ฏ + 1 2 โˆ’1 +1 3 < +1! QED Theorem 2 If โ‰ฅ 1 โˆ™ โ‰ค! โ‰ค โˆ™ Proof When n=1, 2 we can verify the inequality by substitution of these values of n. Further it is easy to see if kโ‰ฅ2 for ln k

Transcript of Euler formula for intersecting sets Newton binomial ... fileEuler formula for intersecting sets...

Euler formula for intersecting sets Newton binomial, asymptotic combinatorial identities

Theorem 1

If ๐‘› โ‰ฅ 6 ๐‘›

3

๐‘›

< ๐‘›! < ๐‘›

2

๐‘›

Proof

Prove by induction on n the upper estimate.

Assume that ๐‘›! โ‰ค ๐‘›

2

๐‘›

then

๐‘› + 1

2

๐‘›+1

=

๐‘›+1

2

๐‘› ๐‘› + 1

2=

๐‘›

2

๐‘›

1 +1

๐‘›

๐‘› ๐‘› + 1

2

โ‰ฅ ๐‘›! 1 + 1 + ๐‘›2

๐‘›2+ โ‹ฏ +

๐‘›๐‘›

๐‘›๐‘›

๐‘› + 1

2> ๐‘›! โˆ™ 2 โˆ™

๐‘› + 1

2= ๐‘› + 1 !

Similarly prove the lower estimate

Let us assume that ๐‘›! โ‰ฅ ๐‘›

3

๐‘›

then considering ๐‘›! โ‰ฅ 2๐‘›โˆ’1 if ๐‘› โ‰ฅ 2

๐‘› + 1

3

๐‘›+1

=

๐‘›+1

3

๐‘› ๐‘› + 1

3=

๐‘›

3

๐‘›

1 +1

๐‘›

๐‘› ๐‘› + 1

3

โ‰ค

๐‘›! 1 + 1 + ๐‘›2

๐‘›2 + ๐‘›3

๐‘›3 + โ‹ฏ +๐‘›๐‘›

๐‘› !๐‘›๐‘› ๐‘› + 1

3

<๐‘›! 1 + 1 +

๐‘›2

2!๐‘›2 +๐‘›3

3!๐‘›3 + โ‹ฏ +๐‘›๐‘›

๐‘› !๐‘›๐‘› ๐‘› + 1

3

<๐‘›! 1 + 1 +

1

21 +1

22 + โ‹ฏ +1

2๐‘›โˆ’1 ๐‘› + 1

3< ๐‘› + 1 !

QED

Theorem 2

If ๐‘› โ‰ฅ 1 ๐‘’ โˆ™ ๐‘›

๐‘’

๐‘›

โ‰ค ๐‘›! โ‰ค ๐‘›๐‘’ โˆ™ ๐‘›

๐‘’

๐‘›

Proof

When n=1, 2 we can verify the inequality by substitution of these values of n. Further it is easy

to see if kโ‰ฅ2 for ln k

ln ๐‘ฅ ๐‘‘๐‘ฅ < ln ๐‘˜ < ln ๐‘ฅ ๐‘‘๐‘ฅ ๐‘˜+1

๐‘˜

๐‘˜

๐‘˜โˆ’1 (2.1)

therefore

ln ๐‘ฅ ๐‘’๐‘‘๐‘ฅ < ln ๐‘›! < ln ๐‘ฅ ๐‘‘๐‘ฅ๐‘›+1

2

๐‘›

1 (2.2)

Transform the right-hand inequality (2.2) given that ๐‘› โ‰ฅ 3

ln ๐‘›! < ln ๐‘ฅ ๐‘‘๐‘ฅ = ๐‘ฅ๐‘™๐‘› ๐‘ฅ โˆ’ ๐‘ฅ |2๐‘›+1 = ๐‘› + 1 ln ๐‘› + 1 โˆ’ ๐‘› + 1 โˆ’ 2๐‘™๐‘›2 + 2

๐‘›+1

2

= ๐‘› + 1 ๐‘™๐‘›๐‘› + 1

๐‘’โˆ’ 2๐‘™๐‘›2 + 2

= ๐‘› + 1 ln๐‘›

๐‘’+ ๐‘› + 1 ln 1 +

1

๐‘› โˆ’ 2๐‘™๐‘›2 < ๐‘› + 1 ln

๐‘›

๐‘’+ 2

Hence

๐‘›! < ๐‘›๐‘’ < ๐‘›

๐‘’

๐‘›

QED

Lemma 1

If ๐‘˜ โ‰ฅ 2

ln ๐‘ฅ ๐‘‘๐‘ฅ + ln 2๐‘˜ โˆ’ ln 2๐‘˜ โˆ’ 1 โ‰ค ln ๐‘˜ โ‰ค ln ๐‘ฅ ๐‘‘๐‘ฅ +1

2(ln ๐‘˜ โˆ’ ln(๐‘˜ โˆ’ 1))

๐‘˜

๐‘˜โˆ’1

๐‘˜

๐‘˜โˆ’1

Proof

The image below shows the part of the graph of the function ln x between points x=k-1 and x=k

It can be seen that ln ๐‘ฅ ๐‘‘๐‘ฅ๐‘˜

๐‘˜โˆ’1 exceeds the difference between the values ln k and the area of

a triangle, which is bounded by a segment b and straight lines x = k-1 and y = ln k. Thus

ln ๐‘ฅ ๐‘‘๐‘ฅ โ‰ฅ ln ๐‘˜ โˆ’1

2(ln ๐‘˜ โˆ’ ln(๐‘˜ โˆ’ 1))

๐‘˜

๐‘˜โˆ’1

It is also can be seen, that ln ๐‘ฅ ๐‘‘๐‘ฅ๐‘˜

๐‘˜โˆ’1 does not exceed the area of the trapezoid, which is

bounded by a line a and lines x=k-1, x=k and y=0. As the area of the trapezoid is equal to the

multiplication of the mean line, which is equal to ln(๐‘˜ โˆ’1

2) and the height, which is equal to

one, then

ln ๐‘ฅ ๐‘‘๐‘ฅ โ‰ค ln ๐‘˜ โˆ’1

2 = ln ๐‘˜ + ln 1 โˆ’

1

2๐‘˜ = ln ๐‘˜ โˆ’ ln 2๐‘˜ + ln 2๐‘˜ โˆ’ 1 .

๐‘˜

๐‘˜โˆ’1

Using these inequalities we estimate ln k

ln ๐‘ฅ ๐‘‘๐‘ฅ + ln 2๐‘˜ โˆ’ ln 2๐‘˜ โˆ’ 1 โ‰ค ln ๐‘˜ โ‰ค ln ๐‘ฅ ๐‘‘๐‘ฅ +1

2(ln ๐‘˜ โˆ’ ln(๐‘˜ โˆ’ 1))

๐‘˜

๐‘˜โˆ’1

๐‘˜

๐‘˜โˆ’1

.

QED

Theorem 3

0.8 โˆ™ ๐‘’ ๐‘› ๐‘›

๐‘’

๐‘›

โ‰ค ๐‘›! โ‰ค ๐‘’ ๐‘› ๐‘›

๐‘’

๐‘›

Proof

It is sufficient to sum the inequalities from the previous lemma with ๐‘˜ โˆˆ [2, ๐‘›]

Sum the right inequalities

ln ๐‘˜ โ‰ค ln ๐‘ฅ ๐‘‘๐‘ฅ +1

2(ln ๐‘› โˆ’ ln 1) = ๐‘› ln ๐‘› โˆ’ ๐‘› + 1 +

1

2ln ๐‘› .

๐‘›

1

๐‘›

๐‘˜=2

Hence ๐’! < ๐’† ๐’ ๐’

๐’†

๐’

To estimate the sum of the left inequalities assume that

๐‘Ž1 = (ln 2๐‘˜ โˆ’ ln 2๐‘˜ โˆ’ 1 ), ๐‘Ž2 = (ln 2๐‘˜ + 1 โˆ’ ln(2๐‘˜)).

๐‘›

๐‘˜=2

๐‘›

๐‘˜=2

It can be seen that ๐‘Ž1 + ๐‘Ž2 = ln(2๐‘› + 1) โˆ’ ln 3

Since ๐‘Ž1 > ๐‘Ž2

๐‘Ž1 >1

2ln 2๐‘› + 1 โˆ’

1

2ln 3 >

1

2ln ๐‘› โˆ’

1

2ln

3

2.

ln ๐‘˜ > ๐‘› ln ๐‘› โˆ’ ๐‘› + 1 +1

2ln ๐‘› โˆ’

1

2ln

3

2.

๐‘›

๐‘˜=2

Note that 2

3> 0.8

Hence ๐‘›! > 0.8 โˆ™ ๐‘’ โˆ™ ๐‘› ๐‘›

๐‘’

๐‘›

QED

Lemma 2

sin2๐‘› ๐‘‘๐‘ฅ = 2๐‘› โˆ’ 1 2๐‘› โˆ’ 3 โˆ™ โ€ฆ โˆ™ 3 โˆ™ 1

2๐‘›(2๐‘› โˆ’ 2โˆ™ โ€ฆ 4 โˆ™ 2

๐œ‹

2

0

โˆ™๐œ‹

2=

2๐‘› โˆ’ 1 โ€ผ

2๐‘›โ€ผโˆ™๐œ‹

2

sin2๐‘›+1 ๐‘‘๐‘ฅ =2๐‘› 2๐‘› โˆ’ 2 โˆ™ โ€ฆ 4 โˆ™ 2

2๐‘› + 1 2๐‘› โˆ’ 1 โˆ™ โ€ฆ โˆ™ 3 โˆ™ 1

๐œ‹

2

๐‘œ

=2๐‘›โ€ผ

2๐‘› + 1 โ€ผ

Proof

Denote sin๐‘› ๐‘‘๐‘ฅ = ๐ผ๐‘›๐œ‹

20

then

๐ผ๐‘› = โˆ’ sin๐‘›โˆ’1 ๐‘‘ cos ๐‘ฅ = โˆ’ sin๐‘›โˆ’1 ๐‘ฅ cos ๐‘ฅ โ”‚0

๐œ‹

2

๐œ‹

2

๐‘œ

+ cos ๐‘ฅ ๐‘‘ sin๐‘›โˆ’1 ๐‘ฅ

๐œ‹

2

0

= ๐‘›

โˆ’ 1 cos2 ๐‘ฅ sin๐‘›โˆ’2 ๐‘ฅ ๐‘‘๐‘ฅ

๐œ‹

2

0

= ๐‘› โˆ’ 1 1 โˆ’ sin2 ๐‘ฅ sin๐‘›โˆ’2 ๐‘ฅ ๐‘‘๐‘ฅ = ๐‘› โˆ’ 1 ๐ผ๐‘›โˆ’2 โˆ’ ๐ผ๐‘›

๐œ‹

2

0

Hence

๐ผ๐‘› =๐‘›โˆ’1

๐‘›โˆ™ ๐ผ๐‘›โˆ’2

Consistently applying it to the integrals ๐ผ2๐‘›๐‘Ž๐‘›๐‘‘ ๐ผ2๐‘›+1

๐ผ2๐‘› = 2๐‘›โˆ’1 2๐‘›โˆ’3 โˆ™โ€ฆโˆ™3โˆ™1

2๐‘› 2๐‘›โˆ’2 โˆ™โ€ฆ4โˆ™2โˆ™ ๐ผ0

๐ผ2๐‘›+1 =2๐‘› 2๐‘› โˆ’ 2 โˆ™ โ€ฆ โˆ™ 4 โˆ™ 2

2๐‘› + 1 2๐‘› โˆ’ 1 โˆ™ โ€ฆ โˆ™ 3 โˆ™ 1โˆ™ ๐ผ1

As ๐ผ0 =๐œ‹

2๐‘Ž๐‘›๐‘‘ ๐ผ1 = 1

Substituting these values into the above expression obtain the required equality

QED

Lemma 3

22๐‘›

๐œ‹๐‘›๐‘’โˆ’

1

4๐‘› โ‰ค 2๐‘›๐‘›

โ‰ค22๐‘›

๐œ‹๐‘›

Proof

As sin x varies from 0 to 1 between 0 and ฯ€/2, then

sin2๐‘›+1 ๐‘ฅ โ‰ค sin2๐‘› ๐‘ฅ โ‰ค sin2๐‘›โˆ’1 ๐‘ฅ , ๐‘ฅ โˆˆ [0,๐œ‹

2]

Hence

sin2๐‘›+1 ๐‘ฅ ๐‘‘๐‘ฅ โ‰ค sin2๐‘› ๐‘ฅ ๐‘‘๐‘ฅ โ‰ค sin2๐‘›โˆ’1 ๐‘ฅ ๐‘‘๐‘ฅ

๐œ‹

2

0

๐œ‹

2

0

๐œ‹

2

0

Using lemma 2

2๐‘›โ€ผ

2๐‘› + 1 โ€ผโ‰ค

2๐‘› โˆ’ 1 โ€ผ

2๐‘›โ€ผโˆ™๐œ‹

2โ‰ค

2๐‘› โˆ’ 2 โ€ผ

2๐‘› โˆ’ 1 โ€ผ

2๐‘›โ€ผ โˆ™ 2๐‘›โ€ผ

2๐‘› + 1 โ€ผ โˆ™ 2๐‘› โˆ’ 1 โ€ผโ‰ค

๐œ‹

2โ‰ค

2๐‘›โ€ผ โˆ™ 2๐‘› โˆ’ 2 โ€ผ

2๐‘› โˆ’ 1 โ€ผ โˆ™ 2๐‘› โˆ’ 1 โ€ผ

1

2๐‘› + 1โˆ™

2๐‘›โ€ผ

2๐‘› โˆ’ 1 โ€ผโ‰ค

๐œ‹

2โ‰ค

1

2๐‘›โˆ™

2๐‘›โ€ผ

2๐‘› โˆ’ 1 โ€ผ

Divide all members of the resulting inequalities on 2n!! and ๐œ‹

2 and multiply it on (2n-1)!! and

22๐‘›

1

1+1

2๐‘›

โˆ™22๐‘›

๐œ‹๐‘›โ‰ค 22๐‘› โˆ™

2๐‘›โˆ’1 โ€ผ

2๐‘›โ€ผโ‰ค

22๐‘›

๐œ‹๐‘› (*)

Note that

2๐‘› โˆ’ 1 โ€ผ

2๐‘›โ€ผ=

2๐‘› โˆ’ 1 โ€ผ โˆ™ 2๐‘›!!

2๐‘›โ€ผ โˆ™ 2๐‘›โ€ผ=

(2๐‘›)!

22๐‘› โˆ™ ๐‘›! โˆ™ ๐‘›!=

2๐‘›

๐‘› โˆ™ 2โˆ’2๐‘›

Given that if 0 < ๐‘ฅ < 1 ๐‘’โˆ’๐‘ฅ โ‰ค 1/(1 + ๐‘ฅ) substitute the last equality in (*)

and obtain the required estimates for 2๐‘›๐‘›

QED

Theorem 4

2๐œ‹๐‘› โˆ™ ๐‘›

๐‘’

๐‘›

๐‘’โˆ’1/4๐‘› โ‰ค ๐‘›! โ‰ค 2๐œ‹๐‘› โˆ™ ๐‘›

๐‘’

๐‘›

๐‘’1/4๐‘›

Proof

As 2๐‘›๐‘›

= 2๐‘›!

๐‘› ! โˆ™๐‘›!=

2๐‘› 2๐‘›โˆ’1 โˆ™โ€ฆโˆ™(๐‘›+1)

๐‘› !, it can be seen that ๐‘›! = 2๐‘› 2๐‘› โˆ’ 1 โˆ™ โ€ฆ โˆ™ (๐‘› + 1)/ 2๐‘›

๐‘›

Estimate the logarithm of 2๐‘› 2๐‘› โˆ’ 1 โˆ™ โ€ฆ โˆ™ (๐‘› + 1)

We will use

ln ๐‘˜ โ‰ฅ ln ๐‘ฅ ๐‘‘๐‘ฅ + ln 2๐‘˜ โˆ’ ln(2๐‘˜ โˆ’ 1)๐‘˜

๐‘˜โˆ’1 (1)

ln ๐‘˜ โ‰ค ln ๐‘ฅ ๐‘‘๐‘ฅ +1

2 (ln ๐‘˜ โˆ’ ln ๐‘˜ โˆ’ 1 )

๐‘˜

๐‘˜โˆ’1 (2)

from lemma 1

Summing the inequalities (2) for ๐‘˜ โˆˆ [๐‘› + 1, 2๐‘›]

ln ๐‘˜ โ‰ค ln ๐‘ฅ ๐‘‘๐‘ฅ2๐‘›

๐‘›

+

2๐‘›

๐‘˜=๐‘›+1

1

2 ln 2๐‘› โˆ’ ln ๐‘›

= ln ๐‘ฅ ๐‘‘๐‘ฅ +1

2ln 2 = ๐‘› ln ๐‘› + 2๐‘› ln 2 โˆ’ ๐‘› +

1

2ln 2

2๐‘›

๐‘›

To estimate the sum of inequalities (1) assume

๐‘Ž1 = (ln 2๐‘˜ โˆ’ ln(2๐‘˜ โˆ’ 1)) , ๐‘Ž2 = (ln 2๐‘˜ + 1 โˆ’ ln(2๐‘˜))

2๐‘›

๐‘˜=๐‘›+1

2๐‘›

๐‘˜=๐‘›+1

๐‘Ž1 + ๐‘Ž2 = ln 4๐‘› + 1 โˆ’ ln(2๐‘› + 1)

As ๐‘Ž1 > ๐‘Ž2 then

๐‘Ž1 >1

2ln 4๐‘› + 1 โˆ’

1

2ln 2๐‘› + 1 =

1

2ln 2 โˆ™

2๐‘›+1

2

2๐‘›+1 =

1

2ln 2 +

1

2ln 1 โˆ’

1

4๐‘›+2 โ‰ฅ

1

2ln 2 โˆ’

1

4๐‘›.

Thus

ln ๐‘˜ > ๐‘› ln ๐‘› + 2๐‘› ln 2 โˆ’ ๐‘› +1

2ln 2 โˆ’

1

4๐‘›

2๐‘›

๐‘˜=๐‘›+1

Hence

2 ๐‘›

๐‘’

๐‘›

22๐‘›๐‘’โˆ’1

4๐‘› โ‰ค 2๐‘› 2๐‘› โˆ’ 1 โˆ™ โ€ฆ โˆ™ ๐‘› + 1 โ‰ค 2 ๐‘›

๐‘’

๐‘›

22๐‘›

From lemma 3

๐œ‹๐‘›

22๐‘›โ‰ค

1

2๐‘›๐‘›

โ‰ค

๐œ‹๐‘›

22๐‘› ๐‘’

1

4๐‘›

Term by term, we multiply the last inequalities

2๐œ‹๐‘› โˆ™ ๐‘›

๐‘’

๐‘›

๐‘’โˆ’1

4๐‘› โ‰ค ๐‘›! โ‰ค 2๐œ‹๐‘› โˆ™ ๐‘›

๐‘’

๐‘›

๐‘’1

4๐‘›

QED

Theorem 5

If min ๐‘˜, ๐‘› โˆ’ ๐‘˜ โ†’ โˆž

๐‘›

๐‘˜ =

2๐‘›๐ป ๐‘˜

๐‘›

2๐œ‹๐‘˜ ๐‘›โˆ’๐‘˜

๐‘›

(1 + ๐‘œ 1 )

Proof

Using Stirlingโ€™s formula

๐‘›

๐‘˜ =

๐‘›!

๐‘˜! ๐‘› โˆ’ ๐‘˜ ! ~

2๐œ‹๐‘›

2๐œ‹๐‘˜ โˆ™ 2๐œ‹(๐‘› โˆ’ ๐‘˜)โˆ™

๐‘›

๐‘’

๐‘›

๐‘˜

๐‘’

๐‘˜

๐‘›โˆ’๐‘˜

๐‘’

๐‘›โˆ’๐‘˜

=1

2๐œ‹๐‘˜ ๐‘›โˆ’๐‘˜

๐‘›

โˆ™๐‘›๐‘›

๐‘˜๐‘˜ ๐‘› โˆ’ ๐‘˜ ๐‘›โˆ’๐‘˜=

1

2๐œ‹๐‘˜ ๐‘›โˆ’๐‘˜

๐‘›

โˆ™ ๐‘˜

๐‘›

โˆ’๐‘˜

โˆ™ 1 โˆ’๐‘˜

๐‘›

โˆ’ ๐‘›โˆ’๐‘˜

=1

2๐œ‹๐‘˜ ๐‘›โˆ’๐‘˜

๐‘›

โˆ™ 2๐‘›๐ป ๐‘˜

๐‘›

QED

Theorem 6

If ๐‘› โ†’ โˆž ๐‘Ž๐‘›๐‘‘ ๐‘ก = ๐‘œ(๐‘›2

3) then

๐‘›๐‘›

2โˆ’๐‘ก

=2๐‘›๐‘’โˆ’

2๐‘ก2

๐‘›

๐œ‹๐‘›

2

1 + ๐‘œ 1 = ๐‘›

๐‘›

2 ๐‘’โˆ’

2๐‘ก2

๐‘› 1 + ๐‘œ 1 .

Proof

With the use of the previous theorem we transform the exponent on the right part of its

equality

๐ป

๐‘›

2โˆ’ ๐‘ก

๐‘› = ๐ป

1

2 1 โˆ’

2๐‘ก

๐‘›

= โˆ’1

2 1 โˆ’

2๐‘ก

๐‘› log2

1

2 1 โˆ’

2๐‘ก

๐‘›

โˆ’1

2 1 +

2๐‘ก

๐‘› log2

1

2 1 +

2๐‘ก

๐‘›

= 1 โˆ’1

2 1 โˆ’

2๐‘ก

๐‘› log2(1 โˆ’

2๐‘ก

๐‘›) + 1 +

2๐‘ก

๐‘› log2 1 +

2๐‘ก

๐‘›

Using (3)

โˆ’ 1 โˆ’2๐‘ก

๐‘› log2 1 โˆ’

2๐‘ก

๐‘› โˆ’ 1 +

2๐‘ก

๐‘› log2 1 +

2๐‘ก

๐‘› = โˆ’

4๐‘ก2

๐‘›2+ ๐’ช

๐‘ก3

๐‘›3 log2 ๐‘’.

so

๐‘›๐ป

๐‘›

2โˆ’ ๐‘ก

๐‘› = ๐‘› 1 โˆ’

1

2 4๐‘ก2

๐‘›2 + ๐’ช ๐‘ก3

๐‘›3 log2 ๐‘’ = ๐‘› โˆ’

2๐‘ก2

๐‘›+ ๐’ช

๐‘ก3

๐‘›2 log2 ๐‘’.

Substituting this equality in equality from theorem 5, taking into account ๐‘ก = ๐‘œ(๐‘›2

3) we will

have

๐‘›

๐‘›

2โˆ’ ๐‘ก

=2๐‘›๐‘’

โˆ’2๐‘ก2

๐‘›+๐’ช

๐‘ก3

๐‘›2

2๐œ‹ ๐‘›

2โˆ’๐‘ก

๐‘›

2+๐‘ก

๐‘›

1 + ๐‘œ 1 =2๐‘›๐‘’โˆ’

2๐‘ก2

๐‘›

๐œ‹๐‘›

2

1 + ๐‘œ 1 .

QED

Theorem 7

If ๐‘› โ†’ โˆž ๐‘Ž๐‘›๐‘‘ ๐‘˜ = ๐‘œ(๐‘›2

3) then

๐‘›

๐‘˜ =

๐‘›๐‘˜๐‘’โˆ’๐‘˜2

2๐‘›

๐‘˜! (1 + ๐‘œ 1 )

Proof

Using Stirlingโ€™s formula, equality 1 + ๐‘ฅ ๐‘› = ๐‘›๐‘˜ ๐‘ฅ๐‘˜๐‘›

๐‘˜=0 and ๐‘˜ = ๐‘œ(๐‘›2

3)

๐‘›

๐‘˜ =

๐‘›!

๐‘˜! (๐‘› โˆ’ ๐‘˜!) ~

2๐œ‹๐‘›

2๐œ‹(๐‘› โˆ’ ๐‘˜)โˆ™

๐‘›

๐‘’

๐‘›

๐‘˜! ๐‘›โˆ’๐‘˜

๐‘’

๐‘›โˆ’๐‘˜

=๐‘›๐‘˜

๐‘˜!โˆ™

๐‘’โˆ’๐‘˜

1 โˆ’๐‘˜

๐‘›

โˆ™ 1 โˆ’๐‘˜

๐‘›

๐‘˜โˆ’๐‘›

~๐‘›๐‘˜๐‘’โˆ’๐‘˜

๐‘˜!โˆ™ ๐‘’

๐‘˜โˆ’๐‘› ln 1โˆ’๐‘˜

๐‘›

=๐‘›๐‘˜๐‘’โˆ’๐‘˜

๐‘˜!โˆ™ ๐‘’

๐‘˜โˆ’๐‘› โˆ’๐‘˜

๐‘›โˆ’

๐‘˜2

2๐‘›2โˆ’๐’ช ๐‘˜3

๐‘›3 =

๐‘›๐‘˜๐‘’โˆ’๐‘˜

๐‘˜!โˆ™ ๐‘’

๐‘˜โˆ’๐‘˜2

2๐‘›โˆ’๐’ช

๐‘˜3

๐‘›2

=๐‘›๐‘˜๐‘’โˆ’

๐‘˜2

2๐‘›

๐‘˜! 1 + ๐‘œ 1 .

QED

Theorem 8

If 1 โ‰ค ๐œ‘ ๐‘› โ‰ค ๐‘›

2 then

๐‘›๐‘˜ โ‰ค

2๐‘›โˆ’3

๐œ‘(๐‘›)

๐‘›

2โˆ’ ๐‘›๐œ‘ ๐‘›

๐‘˜=0

Proof

We estimate the sum of the binomial coefficients, the lower index of which differs from ๐‘›

2 more

than on t units.

๐‘›๐‘˜

๐‘˜ : ๐‘›

2โˆ’๐‘˜ >๐‘ก

=

๐‘›

2โˆ’ ๐‘˜

2

๐‘›

2โˆ’ ๐‘˜

2 ๐‘›๐‘˜

๐‘˜ : ๐‘›

2โˆ’๐‘˜ >๐‘ก

โ‰ค1

๐‘ก2

๐‘›

2โˆ’ ๐‘˜

2

๐‘›๐‘˜ โ‰ค

1

๐‘ก2

๐‘˜ : ๐‘›

2โˆ’๐‘˜ >๐‘ก

๐‘›

2โˆ’ ๐‘˜

2

๐‘›๐‘˜

๐‘›

๐‘˜=0

(4)

Find the sum of the right side of the inequality

๐‘›๐‘˜

๐‘›

2โˆ’ ๐‘˜

2

= ๐‘›๐‘˜

๐‘›2

4โˆ’ ๐‘›๐‘˜ + ๐‘˜2 =

๐‘›2

4

๐‘›๐‘˜ โˆ’

๐‘›๐‘˜ ๐‘› โˆ’ ๐‘˜ ๐‘˜.

๐‘›

๐‘˜=0

๐‘›

๐‘˜=0

๐‘›

๐‘˜=0

๐‘›

๐‘˜=0

The first sum of the right side is equal to ๐‘›22๐‘›โˆ’2, now find the second sum

๐‘› โˆ’ ๐‘˜ ๐‘˜ ๐‘›๐‘˜

๐‘›

๐‘˜โˆ’0

= ๐‘› โˆ’ ๐‘˜ ๐‘˜ ๐‘›๐‘˜

๐‘›โˆ’1

๐‘˜=1

= ๐‘› โˆ’ ๐‘˜ ๐‘˜๐‘›!

๐‘› โˆ’ ๐‘˜ ! ๐‘˜!

๐‘›โˆ’1

๐‘˜=1

= ๐‘› ๐‘› โˆ’ 1 ๐‘› โˆ’ 2 !

๐‘› โˆ’ ๐‘˜ โˆ’ 1 ! ๐‘˜ โˆ’ 1 != ๐‘› ๐‘› โˆ’ 1

๐‘› โˆ’ 2 ๐‘˜

= ๐‘› ๐‘› โˆ’ 1 2๐‘›โˆ’2

๐‘›โˆ’2

๐‘˜=0

๐‘›โˆ’1

๐‘˜=1

From the two previous inequalities

๐‘›๐‘˜

๐‘›

2โˆ’ ๐‘˜

2

= ๐‘›22๐‘›โˆ’2 โˆ’ ๐‘› ๐‘› โˆ’ 1 2๐‘›โˆ’2 = ๐‘›2๐‘›โˆ’2

๐‘›

๐‘˜=0

Substitute this equality into the right side of (4) and assume ๐‘ก = ๐‘›๐œ‘ ๐‘›

๐‘›๐‘˜ โ‰ค

๐‘›2๐‘›โˆ’2

๐‘›๐œ‘ ๐‘› =

2๐‘›โˆ’2

๐œ‘(๐‘›)๐‘˜ :

๐‘›

2โˆ’๐‘˜ > ๐‘›๐œ‘ ๐‘›

QED

Theorem 9

If 1 โ‰ค ๐‘ก โ‰ค๐‘›

2 then

๐‘›๐‘˜ โ‰ค 2๐‘›๐ป

๐‘ก

๐‘›

๐‘ก

๐‘˜=0

Proof

Assume 0 < ๐‘ฅ < 1

๐‘›๐‘˜ โ‰ค ๐‘ฅ๐‘˜โˆ’๐‘ก

๐‘›๐‘˜ =

1

๐‘ฅ๐‘ก ๐‘ฅ๐‘˜

๐‘›๐‘˜ โ‰ค

1

๐‘ฅ๐‘ก ๐‘ฅ๐‘˜

๐‘›๐‘˜ =

1 + ๐‘ฅ ๐‘›

๐‘ฅ๐‘ก

๐‘›

๐‘˜=0

๐‘ก

๐‘˜=0

๐‘ก

๐‘˜=0

๐‘ก

๐‘˜=0

Differentiate the function ๐‘“ ๐‘ฅ = 1+๐‘ฅ ๐‘›

๐‘ฅ ๐‘ก on x

1 + ๐‘ฅ ๐‘›

๐‘ฅ๐‘ก

โ€ฒ

=๐‘› 1 + ๐‘ฅ ๐‘›โˆ’1

๐‘ฅ๐‘กโˆ’

๐‘ก 1 + ๐‘ฅ ๐‘›

๐‘ฅ๐‘ก+1=

1 + ๐‘ฅ ๐‘›โˆ’1

๐‘ฅ๐‘ก+1 ๐‘›๐‘ฅ โˆ’ ๐‘ก 1 + ๐‘ฅ

Its derivative between 0 and 1 has the only root ๐‘ฅ0 =๐‘ก

๐‘›โˆ’๐‘ก

As f(x) increases without limit as x tends to 0 on the right and ๐‘“ 1 = 2๐‘› then on the interval

(0, 1) f(x) reaches its minimum value at ๐‘ฅ0

๐‘›๐‘˜ โ‰ค

๐‘ก

๐‘› โˆ’ ๐‘ก

โˆ’๐‘ก

1 +๐‘ก

๐‘› โˆ’ ๐‘ก

๐‘›

= ๐‘ก

๐‘› โˆ’ ๐‘ก

โˆ’๐‘ก

๐‘›

๐‘› โˆ’ ๐‘ก

๐‘›

= ๐‘ก

๐‘›

โˆ’๐‘ก

๐‘›

๐‘› โˆ’ ๐‘ก

๐‘›โˆ’๐‘ก๐‘ก

๐‘˜=0

= ๐‘ก

๐‘›

โˆ’๐‘ก

1 โˆ’๐‘ก

๐‘›

โˆ’ ๐‘›โˆ’๐‘ก

= ๐‘ก

๐‘›

โˆ’๐‘ก

๐‘›

1 โˆ’๐‘ก

๐‘›

โˆ’ 1โˆ’๐‘ก

๐‘›

๐‘›

= 2๐‘›๐ป ๐‘ก

๐‘›

QED

Theorem 10

If ๐ŸŽ โ‰ค ๐’• โ‰ค๐’

๐Ÿ

๐‘›๐‘˜ โ‰ค 2๐‘›๐‘’โˆ’

2๐‘ก2

๐‘›

๐‘›

2โˆ’๐‘ก

๐‘˜=0

Proof

From theorem 9 and

๐‘›๐‘˜ ๐‘€ โ‰ค 2

๐‘›๐ป

๐‘›2

โˆ’๐‘ก

๐‘›

โ‰ค 2๐‘›๐ป

1

2 1โˆ’2๐‘ก๐‘›

โ‰ค 2(๐‘›(1โˆ’1/2( 1โˆ’2๐‘ก

๐‘› log 2 1โˆ’

2๐‘ก

๐‘› + 1+

2๐‘ก

๐‘› log 2 1+

2๐‘ก

๐‘› ))

๐‘›

2โˆ’๐‘ก

๐‘˜=0

๐ป ๐‘›

2โˆ’๐‘ก

๐‘› = 1 โˆ’ 1/2( 1 โˆ’

2๐‘ก

๐‘› log2 1 โˆ’

2๐‘ก

๐‘› + 1 +

2๐‘ก

๐‘› log2 1 +

2๐‘ก

๐‘› ). (5)

To estimate exponent on the right side of the inequality show that

๐‘“ ๐‘ฅ = 1 โˆ’ ๐‘ฅ ln 1 โˆ’ ๐‘ฅ + 1 + ๐‘ฅ ln 1 + ๐‘ฅ โˆ’ ๐‘ฅ2 โ‰ฅ 0

๐‘ฅ โˆˆ (โˆ’1,1)

f(x) is an even function, so we can prove it only for [0,1) and as ๐‘“ 0 = 0 it is enough to prove

that on this interval derivative of a function f(x) is non-negative.

๐‘“ โ€ฒ ๐‘ฅ = โˆ’1 โˆ’ ๐‘ฅ

1 โˆ’ ๐‘ฅโˆ’ ln 1 โˆ’ ๐‘ฅ +

1 + ๐‘ฅ

1 + ๐‘ฅ+ ln 1 + ๐‘ฅ โˆ’ 2๐‘ฅ = ln 1 + ๐‘ฅ โˆ’ ln 1 โˆ’ ๐‘ฅ โˆ’ 2๐‘ฅ

๐‘“ โ€ฒ 0 = 0

๐‘“ โ€ฒโ€ฒ ๐‘ฅ =1

1 + ๐‘ฅ+

1

1 โˆ’ ๐‘ฅโˆ’ 2 =

2

1 โˆ’ ๐‘ฅ2โˆ’ 2

These derivatives are non-negative on the interval 0,1 hence

1 โˆ’ ๐‘ฅ ln 1 โˆ’ ๐‘ฅ + 1 + ๐‘ฅ ln 1 + ๐‘ฅ โ‰ฅ ๐‘ฅ2for all ๐‘ฅ โˆˆ (โˆ’1, 1)

Hence

โˆ’ 1 โˆ’2๐‘ก

๐‘› log2 1 โˆ’

2๐‘ก

๐‘› โˆ’ 1 +

2๐‘ก

๐‘› log2 1 +

2๐‘ก

๐‘› โ‰ค โˆ’

4๐‘ก2

๐‘›2 log2 ๐‘’

Substitute this inequality into (5)

๐‘›๐‘˜ โ‰ค 2

๐‘› 1โˆ’1

2โˆ™4๐‘ก2

๐‘›2 โˆ™log 2 ๐‘’ = 2๐‘›

๐‘›

2โˆ’๐‘ก

0

๐‘’โˆ’2๐‘ก2

๐‘›

QED

ะ›ะธั‚ะตั€ะฐั‚ัƒั€ะฐ:

ะ.ะ’. ะงะฐัˆะบะธะฝ โ€œะ›ะตะบั†ะธะธ ะฟะพ ะดะธัะบะตั‚ะฝะพะน ะผะฐั‚ะตะผะฐั‚ะธะบะตโ€

A First Course in Discrete Mathematics 2nd ed

Discrete Mathematics for Computing