Riyaziyyat ensiklopediyası

1185

Click here to load reader

Transcript of Riyaziyyat ensiklopediyası

  • - ; Abel integral equation

    )(xf = x

    sxdss

    0

    )(, x 0 (1)

    , )( xf , )(s - . )( xf , - ( )(xf - ) . . .- . , )0(f = 0 ,

    )( s =

    s

    zsdzzf

    0

    )( (2)

    . )0(f = 0 -, . . .- :

    )( s =

    + s

    zsdzzf

    sf

    0

    )()0(1

    .

    . . .- . X = = )( 21 , XX , )( 21, ,21 xxp XX

    r = 2221 xx + - ( X ) ; 1X )( 11 xp X - . X ( ;

    ). R = ,2221 XX + X - , )( rpR ;

    )( 21, ,21xxp

    XX= .)()2( 1 rpr R

    1X - - ; - R - , e = )( 21 , ee 1e - ; e - ( , [2], 1, 10 ). - 1x > 0

    )( 11 xp X = =

    dzzpz

    xpz eR

    )(11

    11

    0

    = .1

    02

    1

    1

    1221 dz

    zzxp

    R

    21

    1x

    = ,x

    2zx = ,s

    xp

    x X11

    1= ,)( xf

    sp

    s R11

    = )( x

    , )( xf )( s - (1) . f (2) . , . . .- . - 2 , . . . . . . . ( , [1] ) 1823- - ( ) . )( , xu . - x )00( , t )( xt . .

    . . . (1), )(xf = )(2 xtg , g

    , )( s =sin

    1, s -

    .

    u = x

    dss0

    2 1)(

    . )(xf = const -; )( xt = const , [ . ( Ch. Huygens, 1673 ) ]. .: [1] A b e l N. H., Oeuvers compltes, t. 1, Christiania, 1839, p. 2730; [2] ., , . ., . 2, ., 1984; [3] . ., , 2 ., . ., 1937; [4] ., ., , . ., . 1, 3 ., ., 1951.

    7

  • ; Abelian group , ( ) . . .- n - ( ) - . . .- - ( , , ). . .- - . ( 2mod ). 0 1 ,

    00 + = 0 , 10 + = 01 + = ,1 11 + = 0

    . . G . ,...,,...,, 21 n 0 1 , n{P = }0 = nq ,

    n{P = }1 = np = nq1

    nS = n +++ ...21

    , (

    ,nS n ,...,, 21 -

    2 - - ). : ) 0n 0n G - ,

    0np = 0nq = 21 , n > 0n n nS ; )

    = 1

    )(min ,n

    nn qp =

    , n nS . ) ) , ) nS - , ; G -. . .- , ( , - ). .: [1] ., , . ., ., 1965; [2] . ., - . ., . ., 1966, . 11, . 1, . 335; [3] ., - , . ., ., 1981; [4] D v o r e t z k y A., W o l f o w i t z J., Duke Math. J., 1951, v. 18, p. 50107; [5] Proba-bility measures on metric spaces, L. N. Y., 1967. ; Abel theo-rems , - . 8

    1.

    0

    1 dxxe xs =

    s)(

    , 0> , s > 0

    , x )( xf ,

    )(xf ~ 1x

    , 0s

    0

    )( dxxfe xs ~

    s)(

    . )( xf , , . 2. ,

    = 1nna

    A - . || z < 1 z -

    )(zf =

    = 1n

    nn za

    1z

    Azf )(

    ( - ). 1- . 0 < z < 1 z = se

    )( xG = xn

    na

    .

    )( zf =

    0

    )( xGde xs = .0

    )(

    dxxGes xs

    x AxG )( , 0s

    )( zf ~

    0

    dxAes xs = A

    . , . . -. .: [1] ., , . ., . 2, ., 1984. -; Abel theorems , .

  • ; abstract ergodic theorem , . ; abstract decision rule , . ; open queueing system , . - ; open random set G . G gT

    : S , G ; ,GG ,K S - .

    GG = GMMM I,:{ G = ,}

    KG = KMMM I,:{ G = ,}

    ( ) gT ,

    G . , . ( ) ( ) - ; sample range , niiX 1}{ =

    niiX 1)( }{ =

    nW = )1()( XX n -. iX , 1 i n , F , nW -

    nW{P < }x =

    + )())()(( 1 tFdtFtxFn n , x 0

    . . - . ( - , ) . - ( . ) srW , = ,)()( rs XX 1 r < s n . - . - . .: [1] ., , . ., ., 1979; [2] . ., . ., - , 3 ., ., 1983. ; Hada-mard matrix - 1+ 1 N > 1

    NH ,

    NN HHT = NEN

    , NE . . .- - . - ( , [1] ). , N = 2 . ( , [2] ).

    . .- 1+ , . . .- : N )4mod(0 N = 2

    . -, , -. , . .- p -

    p( )N . I , II I . , I . .- 1N 1p II . .- p , ( - ). . .- . .: [1] H a d a m a r d J., Bull. sci. math., sr. 2, 1893, t. 17, p. 24046; [2] S y l v e s t e r J. J., Phil. Mag. 1867, v. 34, p. 46172; [3] , ., 1969; [4] H e d a y a t A., W a l l i s W. D., Ann. Statist., 1978, v. 6, p. 1184238. -; adaptation algorithm - , - , - . . . - ( ) . - . . .- ( ) . .: [1] . ., , ., 1984; [2] B i c k e l P. J., Ann. Statist., 1982, v. 10, 3, p. 64771. ( ) - ; adapted random process , .

    F F - ; F adapted function , . ; adaptive controlled random process i n d i s c r e t e t i m e , . - ; adaptive procedure , -.

    ; adaptive estimator - ; - . . . . . .: [1] B i c k e l P. J., Ann. Statis., 1982, v. 10, 3, p. 64771. ( ) - ; spain o f a d i s t r i b u t i o n , .

    9

  • ; step fac-tor , . , ; step of arithme-tic distribution , , .

    - ; additive functional o f i n t e g r a l e t y p e

    st = s

    t

    uduuf ,, ))(( 0 t < s

    , )(

    , 11]0[: , RR +f , . .: [1] . ., - , 2 ., ., 1986; [2] . ., . ., - , ., 1970. ( ) - ; additive functional o f M a r - k o v p r o c e s s , ; . ( ) ; additiv functional o f t h e W i e n e r p r o c e s s , ( st = suut + , t < u < s )

    )(tw , t 0 ( ,st ,)(uw ,, ][ stu t < s stA ) -

    ,st 0 t < s . .: [1] . ., - , 2 ., ., 1986; [2] . ., . ., , ., 1970. ; additive function , ( ) , - . - ; additive set func- tion ( ) . K , G + ( G ). KA , KB , BAI = , KBAU A B

    )( BAU = )()( BA +

    10

    , GK: . K , , G )( = 0 . G ,1R C , n ,nR , . - - . , K - ,

    KA KB KBAU ( K U - ). . . . - . , K , , K ,

    )( ...1 mAA UU = )()( ...1 mAA ++

    K - miiA 1)( . K U I ,

    GK:

    )()( BABA IU + = )()( BA +

    , ,, BA K . , , - .

    .: [1] ., , . . ., ., 1953. ; additive noise , . ( ) - - ; additive problems o f n u m b e r t h e o r y ( ) . . )( xf - , p . N

    N = )()()( ...21 nxfxfxf +++

    )( , nNI , 0 nxxx ...,,, 21 1p n - . - . n ...,,, 21

    1{ P = })(kf = ,1 p k = 110 ...,,, p

    , a = ,1M 1D = 2 > 0 . n = n ++ ...1 .

  • n{P = }N = dzepen

    p

    k

    xfziNzi

    =

    1

    0

    1

    0

    )(22 1 . (*)

    ,

    n{P = }N = )( , nNIp n .

    (*) , )( , nNI : 1) n , p ; 2) n , p ; 3) n p = )(np . - . )( , nNI - . )( , nNI - . , - - ,

    )( , zfS =

    =

    1

    0

    )(21p

    x

    xfziep

    z - p , )( , zfS - , . )( xf . . .- . ( G. Castelnuovo, 1933 ) , , )(xf = x - , )( , nNI . . . ( 1956, , [1] ) . ,

    )(xf = x )(xf = 2x )( , nNI . . .- : , ( , [3] ). . . - , ., [4].

    .: [1] . ., , ., 1971; [2] . ., - . ., . ., - , ., 1975; [3] . ., . . . , 8, 1983, . 121, . 6282; [4] . ., - . ., ., ., 1984. ; additive model , , . ; additive measure , .

    * ; additive random ( stochastic ) process , .

    ; affine shape , .

    ( ) ; f a u l t tree , .

    ; r a n d o m tree , .

    - ; linear tree code , .

    ; tree code , ( ) . ( ) -. - ; . , . . .- , - ( ) . . .- .

    .: [1] ., , - , . ., ., 1986. ; flow )( ,, AX - }{ , RtT t :

    R21, tt xTtt 21 + = xTT tt 21

    Xx . tT - t - .

    , ; B e r - n o u l l i f l o w , . ; c o n t i -n u o u s flow , . ; m e a s u r - a b l e flow , . K K ; K flow , K .

    * ; parameter of flow , . , ; filtra-tion / family of algebras )( ,, PA . T ; , Tt )( ,, PA tA . Ttt )( A

    Tt AA t ,, Tts s t ts AA , Ttt )( A

    . )( ,BM )(tX ,B ,Ts s T

    11

  • })(:{ , sX - tN - Ttt )(N . T = +R -, 0)( ttA : ) , t 0 tA = ;I

    tss

    >

    A ) A P

    0A A - . .: [1] ., , . ., ., 1975. ; intensity of flow , . ( ) - ( ); last income first outcome ( LIFO ) - . , , . - . . , n - . 1 - - )( tB . - ; n - , , n - .

    .: [1] . ., - , . ., ., 1965. ; Akaike information criterion, AIC , , , .

    ; Akaike criterion , ; .

    ; axio-matic quantum field theory - ; . . . -

    ( , [2] ). ., dM , H - , )( dMSf

    dMSff d ,, )()({ }2 ; )( ff f - , 12

    )( 1f )( 2f 1f 2f - , - . , ) H ( dM - ) gUg , g )(

    dMSf

    1)( gg UfU = ,)( fg

    )()( xfg = ,)( 1xgf dMx ;

    ) dM - gU

    ,{ P = }...,, dq dM - ; ) - H gUg -

    )}()({ , dMSff .

    )( ...,,1 nn ffw = Hnff ))()(( ,...,,1 - ( , [1] ). - .

    .: [1] ., , . ., ., 1967; [2] W i g h t m a n A., G a r d i n g L., Ark. Phys., 1964, v. 28, p. 12984; [3] . ., [ .], , ., 1987.

    ; active variable , .

    ; active experiment - -. ; Aldous Rebolled condition , ; .

    -; Alexandrov space , . -; Alexandrow theorem -. ,M )( , GX MP . 21 \ GBG X )( 1GP = = )\( 2GXP G21,GG -, )(G B P - . M - )( P - MP : 1) P , )(G B

    )(lim

    BP = )( BP

    ;

  • 2) GG

    )(inflim

    GP )(GP )(lim XP = )(XP

    ; 3) F

    )(suplim

    FP )( FP )(lim XP = )(XP

    . . , . . . [1]- .

    .: [1] . ., . ., 1940, . 8, . 30748; 1941, . 9, . 563628; 1943, . 13, . 169238; [2] - . ., . , 1976, . 31, . 2, . 368. - ; alpha excessive function , . ; alpha faktor analysis , ; .

    , ; potential alpha kernel , .

    ; alpha potential , - . ; Kolmogorov complexity entropy , - , , . . .

    ( ) - - ( , ) . G - x - )( xKG , p - , )( pG = x . - F , G

    )( xKF )1()( OxKG +

    ( , [1] ). - ( - ) , )( xK .

    . . ; , . .- . .- . . .- ( )1(O+ ); - ( - ). . .- ( , [2] ). . .- , . . - ( , [2] [4] ); ., y x -

    . . ;)|( yxK

    ):(I xy = )|()( yxKxK y - x . .. I , :

    ):(I):(I xyyx = ,)))()((log( ylxlO +

    ,)( zl z . . .- - . . )(xMK - - ( [3] [5] ). - : n . .-, - , )1(On + - , ]10[ , ( , - ) ( , [3], [5] ). )(xM -, x )(log2 xM . M .

    (1) )( xM < + ; (2) r )( xM - xr , ; - . . .- ( , [3] ). . . . ( C. Shannon ) , . 1) x , p ,q x - , H = + pp

    2log(

    ,)log2

    qq+ 0 1 , p q . )( xl , )()( xlxK )1(OH + . , . ., ( ) . x , ; , x - . 2) 0 1 - p q ( ) n . .- K - n ,

    )loglog( 22 qqpp + - . .: [1] . ., -, 1965, . 1, . 1, . 311; ( , . ., , ., 1987, . 21323 ); [2] - . ., . ., . , 1970, . 25, . 6, . 85127; [3] . ., , ., 1981, . 16, . 1443; [4] . ., . , 1984, . 276, 3, . 56366; [5] . ., . , 1973, . 212, 3, . 54850; [6] H a r t m a n i s J., Bull. European Ass. Theor. Comp. Sci., 1984, 24 ( Oct. ) p. 7378 [7] ., ., . , 1988, . 43, . 6, . 12966.

    13

  • ; Allais para-dox . }{F - f }{F -

    F f )(FUG > )(GU , (1)

    ]10[ ,

    ))1(( GFU + = )()1()( GUFU + (2)

    U ( , ). . [1]- { 0 ., 5 . ., 25 . . } - , ,, 21 FF

    43 , FF . - .

    0 .

    5 . .

    25 . .

    1F

    2F

    3F

    4F

    0

    0,01

    0,9

    0,89

    1

    0,89

    0

    0,11

    0

    0,1

    0,1

    0

    -, 5 . , , 5 .- 25 .- . , ( ) . , , - , -, . , f , 1F f 2F 3F f 4F . (1) (2)- U ,

    21)( 31 FF + f ,21)( 42 FF +

    ,

    21)( 31 FF + = .21)( 42 FF +

    ( , ). ( , [2] ). .: [1] A l l a i s M., Econometrika, 1953, v. 21, p. 50346; [2] . ., . ., . ., -- , ., 1980. * - ; lower ladder time , . 14

    * - ; lower ladder height , . * -; lower ladder index , . * - ; lower ladder random variables , .

    ; alternative , - , - ( ) , . , -, , . . - . ., . - .

    -; alternative hypothesis , . - ; forecast of meteorological binary variables of events / alterna-ting meteorolgical forecast , - - - ( ., - . ). . . . - - . . . .- ( , , Y - Y - ), , . . . , , . . . . - ( , , ; ) . .: [1] . ., . . . ., 1937, . 14, . 4957; [2] . ., . . . ., 1955, 4, . 33949; [3] . ., - , ., 1981. * - ; alternating rene-wal process . }{ ,..., 21 XX

    }{ ,..., 21 YY . )(1 xf )(2 xf . , -. , ( 1 ) .

    o

    ; ;

    - - - - - ; o - . 1. . . ,

  • . , . . .-.

    2. - . t = 0

    1X ; 1X - )(1 xf -. . 1X 1X . 1X

    1X - xe - . , 2X

    1X 2X - - )(2 xf -. )1( i i - ii XX + - . ( ) , ; , )(1 xf -

    xe . , , xe - . . ( - ) , . , . . . .

    . ., - k . , k

    ijp ; ,jip i - j - . - .

    .: [1] . ., . ., , . ., ., 1967. ; subprocess .

    )( ,BX

    ))(( ,,, xss

    tt PF )~~)(

    ~( ,,, xs

    stt PF -

    . , :

    ) )(~ < )( ;

    ) 0 t < )(~ , )(~ t = )(t ;

    ) stF = ]~[ t

    st F , t

    ~ = )(~:{ > }t , ]~[ tst F , stF st

    ~ , stA F

    tA ~

    I .

    )~~

    )(~

    ( ,,, xss

    tt PF ))(( ,,, xss

    tt PF - , .

    , ~ . )( , xs {,xsP ~ } = 1 t < ~

    )( t = )(~ t , )(~ t )(t - , .

    )~~~

    )(~

    ( ,,, xss

    tt PF ))(( ,,, xss

    tt PF - , )~~

    ~)(

    ~( ,,, xs

    stt PF ,,)(( t

    )~, xss

    t PF .

    )( ,,, txsP ))(( ,,, xss

    tt PF -

    , )(~ ,,, txsP - , ,

    )(~ ,,, txsP )( ,,, txsP .

    .: [1] . ., . ., - , . 2, ., 1973; [2] , ., 1985; [3] - . ., , ., 1959.

    , - ; sub- class o f a M a r k o v c h a i n , ; .

    ; subnet , ( ) .

    -; amplitude modulation )(t ,

    )(tZ = ,)())(1( 0 ttmc + < t <

    , )(tM = ,0 )( tD = 1 , c , ,)(0 t < t < , )(0 tM = ,0

    )(0 tD = 1 , m , 0 < m < 1 , , m - .

    )(t )(0 t , )(B )(0 B ,

    )( tZ

    )(ZB = ))(1()( 022 BmBc +

    .

    )(t )(0 t - , )(f , )(0 f

    )(Zf :

    )(Zf = ,))()()(( 022 ffmfc +

    15

  • . )(t )(0 t -

    1 2

    , 0 < 2

  • , )(t -, ,)(dK = 0 - . - ; amplitude frequency response , . - ; analytic characteristic function X - P - z = 0 . z = ,ist + || z < r f |Im| z < z

    )( zf =

    )(dxe xzi P

    . f , , r > 0

    ||{ XP > }A = )( AreO , A

    . . .-.

    a = t{sup > XteM:0 < } ,

    b = t{sup > XteM:0 < }

    , ,ai ,bi f az :{ < zIm < ,}b f

    . . . .- , - .

    .: [1] . ., . ., , ., 1972; [2] ., - , . ., ., 1979. ; analo-gous method : , . - , - , . .- , - - . , . .- , - , ( - , , - ). - - - - . . . ( - ) X - ( )

    . )1(X )2(X )( )2()1( , XXD - :

    )( )2()1( , XXD = )( )1()2( , XXD , )( )2()1( , XXD )()( )2()3()3()1( ,, XXDXXD + ,

    )( )2()1( , XXD ,0 )( )1()1( , XXD = 0 .

    :

    )( )2()1( , XXD =21

    1

    2)2()1(2 )(

    =

    n

    iiii xx

    . :

    )( )2()1( , XXD = ,1

    )2()1(=

    n

    iiii xx

    , ,)( jix i = n,...,1 )( jX , i - i - . -, ., ( , , ; - ). jX jY - ( j ) -, . .- (

    ) )( 0XY = jY , 0X -

    , Y -, j ,

    )( ,0 jXXD = )(min ,0 jj XXD .

    . . ( , [3] ). . - .

    .: [1] . ., . ., - , ., 1983; [2] . ., - . ., , ., 1982; [3] , ., 1985. -; Andersons inequality -, - . F - , FC ,, ]10[t Fy )( ytC + )( yC + , , )(C )( yC + , - , .

    17

  • nR - . . , ., , f : 1) )( xf = )( xf ,

    ;nx R 2) > 0 )({ ; xfx nR } - . . . . . , - . .: [1] A n d e r s o n T., Proc. Amer. Math. Soc., 1955, v. 6, 2, p. 17076; [2] B o r e l l K., Ark. mat., 1974, v. 12, 2, p. 23952; [3] . ., . ., , ., 1985. ; Anderson Jensen theorem , ( ) . -; Andres reflection principle , .

    ( ) ; s t o p p i n g time , . - ; instantaneous spectral density , ( ) - . ; instanta-neous state x , :

    )(lim ,,0

    xxtpt

    = ,1

    xq = txxtp

    t

    )(1lim ,,0

    = + ,

    )( ,, xxtp t x - x - . . .- 1951- . . - . ( P. Lvy ) , - . . . . . . .- ( ) , - . . . . .: [1] - , , . ., ., 1964. - ; Anosov dynamical system

    )( ;t }210{ ...,;; t

    D - DD :tS , D )(x )()(

    *xS t =

    = )( xSdS tt tS*

    -

    .

    18

    . . . ( , [1], [2] ), t K . D -

    )( xf -. . . . - ( , ).

    .: [1] . ., . . - , 1967, . 90, . 1210; [2] . ., . . . ., 1966, . 30, 1, . 1568. ; Ansari Bradley test - . , , . : ; 1 - ; 2 . . . . . .- . , . . .- ; . . ( ) - , . , - . , ( ) ( , [2], [3] ). - .

    .: [1] A n s a r i A. R., B r a d l e y R. A., nn. th. Statist, 1960, v. 31, 4, p. 117489; [2] ., ., , . ., ., 1983; [3] M o s e s L. E., Ann. th. Statist., 1963, v. 34, 3, p. 97383. - ; antiferromagnetic model . , . .- }{ , dt tx Z

    , dt Z etx + = tx , de Z . . . U :

    )( AA xU =

    ===

    ,,

    ,,,,

    ,,

    01}{

    }{

    lardig AtstsAxx

    tAxh

    ts

    t

    tx = ,1 dt Z , Rh . - || h < d2 , ,1x 2x -:

    1tx = d

    tt ++ ...1)1( , 2tx = 1tx .

    h = 0 . . . t

    ttt xx d

    ++ ...1)1(

  • . h 0 d 2 ( ) .

    ( , [1] ), h - , - h - . , -. .: [1] . ., . ., 1968, . 2, . 4, . 4457. - ; antisimmetric Fock space , .

    - ; antisymmetric variate method , .

    - ; antithetic variables method , f s

    2)]11()([ ..,.,...,, 11 ss ff +

    , ,i ]10[ , .

    .: [1] H a m m e r s l e y J., M o r t o n K., Proc. Cambr. Phil. Soc., 1956, v. 52, p. 44975. ; drift coef- ficients , , .

    / -; drift coefficients . . . . ( - )

    )(txd = )())(())(( ,, tdtxtdttxta w+

    ( , - ), . . ( ) )( , xta - ( ).

    )( , xta : t - tt + -

    ,)()( txttx + 0 t )( tx = x , )( to

    txta )( , ( , - ). , )( , xta x t ( ) .

    ; drift vector , .

    ; leading function , , .

    * , -; leading measure of flow , .

    -; posteriori probability , -, , . - . , .

    , , - .

    . . .

    ; posterior mean .

    -; posteriori distribution - , .

    , )(p -

    , ~ - )|(xp { = } ~ , - ~ - . .-

    )|( xp = +

    )|()(

    )|()(

    dxpp

    xpp

    . )( xK )|( xp , . . x - , )( xK - . ix - -

    )|( 0xp ~

    , )|( ,...,1 nxxp . .- n - .

    . .- .

    .: [1] . ., , 4 ., . ., 1946.

    19

  • ( ) ; a posterior risk o f a d e c i s i o n f u n c t i o n - X ( ) x

    ))(( , XL . )( xG . .-

    . , . * ; approximation theorem A - A A - . )( ,, PF , ,U F - A .

    UA

    )(lim AAAA nnnUP

    = 0 (1)

    AnA ; (1)

    )\(lim nnAAP

    = )\(lim AAnn P = 0

    .

    )(AP = )()( AAAA nn PP + =

    = )()()( AAAAA nnn PPP +

    , )(AP = = )(lim nn AP UA

    A . FA (1) , A - .

    , - ; approximation of complex distributions b y s i m p l i e r o n e s . . . y = )( xf

    dxdy

    y1 = 2

    210

    1

    xCxCCCx++

    +

    , 10 ,CC 2C 2 , 1 2

    20

    . , ,2 1 2 - .

    2 , 1 2 - . , . .: [1] . ., ., -, . ., 1966; [2] E l d e r t o n W. P., Frequency curves and correlation, Camb., 1953; [3] . ., . ., , 3 ., ., 1983.

    )( , K

    )( , K ; )( , K approximating functional ,

    . * - ; approximable event , - .

    ; a priori probability , - , , , - . , -. , , - .

    -; a prior information - ; , - . , -

    )( , A , , A - . ,

    ,}{ dP )( , A - )(Cap , A - P = }{ , P -, . - P - )( , B - }{dQ . - . . , - ( , [3] ).

    .: [1] ., , . ., ., 1960 ( ); [2] ., -, . ., ., 1975; [3] . ., . ., 1981, . 26, 1, . 1531. - ; a prior information usage -

    . )( 2,, W -

  • . . .- .

    pR A = r , A q -

    )( pq , 0 < q < ,p r q . R = r = B+0 ; 0 , )( qp , B

    qp )]([ qpp . -

    )( 20 ,, WB . -

    = B 0 + ,

    . r = +R , r q , R )( pq , q M = 0 , cov = V

    )( qq .

    ; )( 02

    00 ,, W ,

    0 = rY

    , 0 = R

    , 0W = VW

    200

    .

    )()( 1211121 rVRYWRVRW ++ (*)

    . )( dP

    - ( pR ) .

    r =

    ,)( dP

    V =

    ,)()()( drr P R = ,pI

    pI )( pp . V 0 (*) ;

    ~

    L -

    )()~

    ()~

    ( dPM

    .

    ,

    = )()(:{ 1 rUrp R kk ,} > 0

    , R = ,pI V = Uk (*) ;

    -

    aa )~()~(max

    M

    pa R . r = 0 - RVR 1 , (*) . .: [1] . ., . ., - , ., 1987; [2] - , ., 1983. ; priori distribution , , , . )( , ( ) . , . - - ( - . .- ) - P - . - ( - ) . . . , , . . .- .

    ( ) ; a prior risk o f a d e s i g n f u n c t i o n .

    ; sequential analysis , ( ) , . . ( A. Wald ) . , ( ) , , ( , ). . .- . ,..., 21 ,

    )( xF = 1{ P }x - . , . ( ) d D

    21

  • ( - ) . , ; ( , ) . , nA = = ,,...,; )( 1 n n ,...,1 - , = )( +...,, 10 - ; n 0 { nn A} , ( 0A = = }{ , ). A n 0 {IA nn A} A . nA n ( n ) - , A ( ) . ( ) d = )(d ( ) D A . = )( , d ( ) . )( ,, dW

    )( ,, dW M . * = )( ** , d

    . ; , = )(d .

    )(R =

    )()( ,, ddW M

    )(*R )(R

    ( ) , * = = )( ** , d ( ) . )( ,, dW - )( ,1 dWc + , c 0 , )( ,1 dW ( ) .

    *d , - , * - . . .- . .

    X = )( ,, xnnx PA , n 0 Ex , )( , BE , nx , n -; nA n ( n ) , xP ( ) Ex . , n , )( nxg . )( xgxM - , x . )( xs = )(sup xgxM

    22

    , sup . Ex x -

    )( xs +)( xgxM

    ; . : )( xs , , , ? .

    )( xg : )( xg c < . )( xs )( xg -, )( xg )( xf , )( xfT )( xf - )( xf , )( xfT = = )( 1xgxM .

    = n{inf )(:0 nxs })( +nxg

    > 0 . )( xs )( xs = )}()({max , xsTxg -

    , )( xs = )(lim xgQnn

    ,

    )( xgQ = )}()({max , xgTxg . E

    0 = n{inf )(:0 nxs = )}( nxg

    . 0{xP < } = ,1 Ex , 0 . = )(:{ xsx > ,)}( xg = )(:{ xsx = )}( xg .

    0 = n{inf }:0 nx .

    , . , - , - . . . - . 1 1 0 . ( ) D - : d = 1 ( :1H = 1 ) d = 0 ( :0H = 0 ). )( ,1 dW

    )( ,1 dW =

    ====

    ,

    ,,,

    ,,,

    01001

    dbda

    )( ,, dW = )( ,1 dWc + , )(R )(R = )()( dac ++M , )( = d{P = |0 = ,}1 )( = d{P = |1 = }0

    , , P

  • . n = {P = }|1 nA :1H = 1 nA = ):( ,...,1 n - ,

    )(R = )]([ gc +M

    , )(g = ))1((min , ba . nx = = )( , nn - , )( = )(inf

    R

    )( = )}()({min , Tcg +

    . ,)( ,)(g )(T - , , A B , 0 A < B 1 , = = A:{ < < }B , = )(\]10[ ,, BA . 0 = n{inf }:0 n 0( = ) . )(0 xp )(1 xp )(0 xF )(1 xF - d = = 2)( 10 dFdF + -,

    n = )()()()( 010111 ...... nn pppp

    , - ( 1 )

    1.

    =

    1

    1:

    AA

    n < n <

    1

    1 BB

    0 = n{inf }:0 Cn .

    0

    11 B

    B , d = 1 ,

    :1H = 1 ; 0

    1

    1 AA

    , d = 0 , :0H = 0 .

    . = )( , d )( = d{1P = }0 , )( = d{0P = }1 > 0 , > 0 ; , ,, )( )( , )( 0M < ,

    1M < . . . + < 1

    = n{inf )}(:0 , ban ,

    d =

    ,

    ,

    01

    ab,

    , n d --

    = )( , d a = a b = b , - , * = )( ** , d a = a b = b )( , , ,

    )( , 0M 0M , 1M 1M - .

    * = )( ** , d :0H = 0 :1H = 1 - t . , * = )( ** , d :

    = t{inf })()(:0 , bat ,

    *d =

    ,,

    ,,

    01

    ab

    t = tln ( = 1 - = 0 - )

    t = 2/tte , b a

    b = /)1(ln , a = )1(/ln

    ( 2 ). = )( , d :

    t~ = )( , t , d~ =

    )(f ( c < )(f )

    c

    c

    TT

    MM

    )()1(ln

    )()1(ln

    1

    1

    cB

    cB

    (1)

    ,

    )( cB = )( ,inf cD, )( cB = )( ,inf cD

    ,

    )( , = )](ln)(ln[ ,, nn xpxp M ,

    cD = )(:{ f > }c , cD = )(:{ f < }c .

    nf = ,,...,1min rnr f= n = ...,, 21 (2)

    )(f ,

    nf = )(:{inf cc n })1(ln1 nA ,

    )(cn = =

    n

    rr

    DXp

    c 1

    )(lnsup ,

    ,

    nA = =

    n

    rrr Xp

    11 )(ln ,

    n = )( ,...,1 nn XX , n = ...,, 21 n .

    *n

    f =rnr

    f...,,1

    max=

    )(f ,

    nf = nc :{sup })1(ln

    1 nA ,

    )(cn = =

    n

    rr

    DXp

    c 1

    )(lnsup ,

    .

    ,, )( xp ,)(f n - (2), (3) (1)- cTM ,

    25

    ?

    yox

    ( = 0)

    2

  • cT M 1 - . )(f a - )( 21,, zzN , ,N nA , n = ...,, 21 ,

    N{P < } = 1 , 1z 2z NA ,

    12{ zz P }a = 1 , 1{zP )(f }2z .

    , 1 ,

    NM )]1(1[)()1(ln

    1o

    aW+

    ,

    )( aW =

    = }])([])([{maxinf 0 , tfBtafBat + . (4)

    (2), (3) )( *2*1

    * ,, zzN )(f 1 , , (4)- a - )12( ,

    *N = **

    :{minnn

    ffn ,}a

    *1z =

    *N

    f , *2z =*Nf .

    )( , xp = )]([exp bx , R

    [6]- . nI = In

    rrI

    1

    ~

    =

    -

    ,

    nI~ = )(:{ nM })1(

    1 , n = ...,, 21 ,

    )(nM = ==

    n

    rr

    n

    rr xpdFxp

    11

    )()()( ,,

    , ,F - . I )( IF > 0

    ,nI n = ...,, 21 ( , [6] ). ,...,,...,1 nXX a

    2 )( 2, aN , - . ( , [1] ) a . 2 - , a

    26

    N = nn :{min }4 222 Kc (5)

    , K

    2)1( + ( , [2] ). 2 ,

    N = nn :{min )()}(max 2221, kSKcn nn +

    1z = ,)2( caN 2z = )2(caN +

    a (5)- 0 , 1n 2 , KKn , na ,

    2nS n -

    , )(K

    . 4nxM < ( , [3] [5] , [7] ). .: [1] S t e i n C., Ann. Math. Statis., 1945, v. 16, p. 24358; [2] S t e i n C., W a l d A., Ann. Math. Statis., 1947, v. 18, p. 42733; [3] S t a r r N., Ann. Math. Statist., 1966, v. 37, p. 3650; [4] C h o w Y., R o b b i n s H., Ann. Math. Statist., 1965, v. 36, p. 45762; [5] S i m o n s G., Ann. Math. Statist. 1968, v. 39, p. 194652; [6] L a i T., Ann. Statist., 1976, v. 4, p. 26580; [7] ., , . ., ., 1975. , -; sequential probability ratio test

    )(:0 xpH = )(0 xp )(:1 xpH = )(1 xp

    )( , d , )( xp ,..., 21 XX . . . . .-

    nL = =

    n

    kkk xpxp

    101 )()(

    )( , BA , 0 < A < 1 < B ,

    = n{inf nL:1 )}( , BA ;

    d = 0 ( ) ( 0H )

    L A , d = 1 L B . [1]- ( , [2]- ). , . . . .- ( - ) - , A B : A ,)1( B )1( . [3] [4]- ,

    dq {[ 0P = dqc {[)1(]}1 100 PM ++ = ]}0 11 Mc+

    . . . . ( A B - ) ,

    iP iM i iH

  • , i = 10, , ,q 0H - , 0c ,

    1c . . . . . ,

    d{0P = }1 d{0P = }1 ,

    d{1P = }0 d{1P = }0

    )( , d 0M 1M . . . . .- [5]- ( , [2] ), [6]- . . . . .- ( A B ) [7] [8]- . .: [1] ., , . ., ., 1960; [2] . ., -, ., 1976; [3] W a l d A., W o l f o w i t z J., Ann. Math. Statist., 1948, v. 19, 3, p. 32639; [4] W a l d A., W o l f o - w i t z J., Ann. Math. Statist., 1950, v. 21, 1, p. 5299; [5] - . ., ii i , 1958, . 1, 1, . 10104; [6] I r l e A., S c h m i t z N., Math. Oper. und Statist., 1984, Bd 15, 1, S. 91104; [7] . ., . ., 1987, . 32, . 1, . 6272; [7] . ., . ., 1988, . 33, . 2, . 295304. ; sequential estimation . t ,}{ AtA t 0 )( ,, PA .

    }{ tA ( ), ~

    tA , )~

    ( , - . < -, )

    ~( , ,

    ~M =

    , )~

    ( , ; M . - - - ,

    )~

    ( ,

    2 )

    ~( M 1 ))((

    MI (*)

    ( , [1] ), )(I ( ). - )( xp - , [ ., )( xp ] , ( , [3] ); )( xp ,

    )( M n n ( ). , ( , [2] ) (*) .

    .: [1] W o l f w i t z J., Ann. Math. Statist., 1946, v. 17, 4, p. 48993; [2] . ., . ., - , ., 1974; [3] . ., - . ., . ., 1974, . 19, . 4, . 70013. - ; sequential design of estimation , . , ; sequential design of experiment )( ,...,1 Nyy = Ny1 , ny - - ( N , n - ) 1+ny -

    Xyx nn + )( 11 . - . . . - . . . . , . . . .- . . . .- )( ,YY

    xP - . )( ,XX -

    x . XYx nn 1: ,

    n > 1 U = )( ,...,...,1 nxx

    )( ,XX - 1x )(q ny1

    nA N - . = )( , NU . YB , n = ...,, 21

    }|{ 11 nn

    U yByP = )( BnxP ( UP ) (1)

    , YX - UP . (1)- , ny nx

    11ny - . :

    n - , - , . )(

    P UP - NY = }{ 1Ny -

    . N(inf P < ) = 1 , P ,

    )( , = )()(

    PP dd = )(1

    , i

    N

    i

    x yi=

    , )(, x = )()(

    xx dd PP .

    27

  • , Nx1 Ny1

    . d ( ) NY - ; )( ,w . , )( ,, NU s .

    ))(( ,1nyw M . ,

    ,ln , )( fS =

    =

    N

    ii

    x yf i1

    )( .

    N = NM < x

    f = )()( yfdyxx P .

    )( x

    fSD = 0 , :

    )( fSM = )( dxfN

    x

    =

    fN ,

    )( fSD = )|)(( 11

    1

    = nnx

    N

    n

    yyf n DM ,

    XB -

    )( , )( B

    = nNn

    {1

    1

    =

    P }, BxN n

    .

    , - - - :

    1) ,K = , lnM ;

    2) pR -

    I = T)ln(ln ,, M = )( ,, T SM ( ,)( )( - );

    3) )( 1

    TfvfS M .

    IK , : Ny ; -

    )( 1Ny )(

    , )( , K ,, K )( I I [ )( II - ].

    .

    1) ,iH i = 10, i - iiH : , i = 10, , 10 U = ,

    10 I = :

    0N ,, ,11*

    infsup)( K

    Xii

    i

    28

    10 + 1 , )( 1, ii = ]1[ln 1 iii )(min ,

    1

    Ki

    ,

    *X , )( , XX - .

    2) {P = }j = )( j MPP ...,,1 - M )( ,

    - , 1 M : 0N ,,

    /supinf

    *

    R

    X ,R = ,, )( KK -

    .

    3) max N

    ,

    supinf

    *R

    X .

    4) , pR

    ,

    T)()( M )()()( 1 bJNbbb +++ II

    T ,

    b = M , I , b = )( ...,,1 pbb . 5) . . . ., nN

    )|( 11n

    ny yM = )( ,nx , )|( 11 nny yD = )( ,nx , (2)

    . )( ,x = )( xfT , )( ,x ,)( x N = const )(mS const , - :

    = )()(1 yfSmS T (3)

    - , xm = )( xf )()(1 xfx T . (2) n -

    nN

    = na , n

    - 0 - . ,

    0

    ny~ = )( 0,nn xy (3) , )(0 xf = )( 0,x , y y~ . - , )( 0 xf

    T , -

    ))()((diag ...,,1 Nxx - - ( , - ).

    1) 3) ; M , 1)( q ( , - ); - - ( , [2] ). 4) 5)

  • )()()( 1 dxxBBSan - n , 4)- B = I , 5)- B = m . , . ., 4) : n , }{ mA

    nT1y nL ,

    0 nLnI ,

    =

    n

    n

    xn

    na

    1

    11 0I n

    P

    . ph R -:

    + )()(ln 2/1

    nn

    ndd

    ah PP =

    = , )21( nn hhh n + ITT (4)

    0)( , hn nP ,

    )( , nn I )( , I , I ,

    ( ~ )0( 1, IN ). (4)- - , xP - Xx - , . .: [1] , ., 1983; [2] . ., . . . ., 1979, . 43, 6, . 120326. - ; sequential simplex me-thod , . - ; sequential estimator , - . . [1]- , ( ) - . . ., , , . . - [2]- , . . . . . . . , , . .: [1] ., , . ., ., 1960; [2] . ., . ., . ., 1974, . 19, . 2, . 24556.

    ; sequential estimators P , - . . . . P - D - ( . )

    , ( . ) D - . , . . . , . - 1950- . . ( , [1] ) . . N P n c - . - ,d d c , P , d > c , P . D . . .- . d c , D = ,dD d > c , D = 0 . = NnD dn DNh ,, )(dp = ,!ded , . , = )(d > 0

    =

    0

    )()(d

    dpd = =

    c

    d

    dpdnN0

    )()(

    . . . .

    )(d =

    ++

    >=

    101

    )(

    ,

    ,

    ,,

    cdcdndNcddnN

    . .: [1] . ., - , ., 1986, . 34063; [2] . ., , ., 1975; [3] - . ., , ., 1979. -; sequential structure - . . .

    )(x = i

    ix = )(min ...,,1 nxx

    , n - n , x = ,,..., )( 1 nxx )(x - , - . i -

    ix :

    ix =

    ,,

    ,,

    01

    -

    -

    i

    i

    i = ,,...,1 n n . :

    29

  • =

    .

    ,

    ,,

    01

    . ., , ( , ).

    .: [1] ., ., , ., 1984.

    , - ; sequential hy- potheses testing - , -. , }{ ,, PA - }{ tA - tA( )A ( ), ,d A , k...,,0 ( ) ( ) , )( , d ,iH i = k...,,0 . . .- ( - ) .

    , , . ( ) }{ P - , ( , [1] [3] ). }{ P

    :0H 0 :1H 1 - M - - ( ) ; )( 10 ,n

    , )( 10 ,n , :0H = 0 :1H = 1 - - [ )( 10 , ].

    30

    )( 21, )( 10 ,n -

    ( , [4] ): )( , d ,

    sup M ( -

    ). ,

    sup M

    )( 21, M ( - ); - ( , [5], [6] ). - ( ) , ( , [7], [6] ). :1H 0 :0H = 0 - , 0H - , , 1H , ( , [8] ). ., iX

    )1( ,N ,

    =

    +++> =

    21

    1

    ]))1(ln()1([:inf annXmnh

    ii

    < 1H . m a - {

    1P < } , , 10

  • [13] . ., . ., 1987, . 32, . 1, . 14953. ( ) ; arithmetic simulation o f r a n d o m p r o c e s s e s ; , .

    k , m . )(mf )( mkf + = = )()( mfkf + , , )( mkf = = )()( mfkf k m , . p ,

    )(mp = }:{max mp , ,,, ]1[]10[: nyn 1 -

    , )0(ny = 1 , )1(ny = n . nf

    )( , mtHn =

    )(

    )( )()(typ

    nm

    nn

    p tapf , 10 t

    . )( , mtH n - }{ ,, nnn PA ,

    n = }1{ ...,, n , ,nA - , )}{( mnP = n1 . )(tan - . )( , tH ]10[ ,D . ]10[ ,C - - . )( , mtH n . . ( [1], , [2], [3] ) , n )( , tH - nP -

    )(tw . )( , mtH n

    . )( , mtH n )( tw - ( , [9], [10] ); ( , [11] ); ( , [6] ) ; ( , [5], [6] )

    )(tw - ( , [6] ). ( , [7] ).

    ng ,

    )( , mtUn =

    +nhtk

    nn kmgd )(1 , 10 t ;

    n nh , nd - . ,, )( mtU n }{ ,, nnn PA - . ng . . . . - ( , [4] ) , )( , mtU n )(tw - . . . ( 1967 ) :

    )(mgn = )(m , n )()( , twmtU n ? )(m . [8]- .

    .: [1] . ., , 2 ., , 1962; [2] . ., . , 1955, . 103, . 36163; [3] . ., Lect. Notes Math., 1976, v. 550, p. 33550; [4] . ., - . ., . . ., 1959, 6 (13), . 8895; [5] . ., . ., . . , 1982, . 25, . 20711; [6] ., . . ., 1984, . 24, 3, . 14861; [7] ., ., . . ., 1984, . 24, 2, . 7281; [8] . ., . , 1986, . 290, . 786 88; [9] P h i l i p p W., Proc. Symp. Pure Math., 1973, v. 24, p. 23346; [10] B a b u G. J., Probabilistic methods in the theory of arithme-ticcal functions, Calcutta, 1973 ( Diss. ); [11] B i l l i n g s l e y P., Ann. Probab., 1974, v. 2, p. 74991. -; arithmetic distribution ,hnx =

    ,...,,, 210 =n 0>h - . h - . .- . . . - ( , ). - . .-. . .- 1=h , . . . . .- h2 . ,

    )( z 00 z 1)( 0 =z , . .-. 1=h . .-.

    .: [1] ., , . ., . 2, ., 1984. , ; arithmetics of probability distributions , .

    ; ARIMA process , .

    ; arcsine law - , - . . 1939-

    tt ,{ ;0 }00 = . t ]0[ , t , , ,t uu :{ > }00, tu . tt . . :

    {P tt < }x = )(21 xF = xarcsin21 ,

    10 x , .0>t - ( , [2] ):

    31

  • ...,,...,1 n ,

    kS = ,...1 k ++ 01 0, = Snk ;

    nv = kSk :{min = }max0 mnmS

    ,

    nK n,...,, 10 0>kS k - ( , ).

    nKnn {lim P < }x = nvnn {lim P < }x = )( xF ,

    n

    SS nn

    }0{}0{lim ...1

  • 1) , ts s t ; 2) tA A = 0)( ttA ; 3) 0>t P t <

    tt

    lim = .

    M < , . . . ,

    nM < 1n nn ,( )1 nn

    lim = P

    , . . . . - -

    ~ = tt ,

    ~( )0

    , ~

    .

    M = ~

    M

    0

    )( sdsH M =

    0

    ~)( sdsH M

    )( , sHH = - . . . .- . t

    ~ t . .: [1] ., , . ., ., 1975; [2] . ., . ., , ., 1986; [3] ., . ., , . ., ., 1994. ; increasing point , . ( ) ; de-pendent events )( ,, PF AA , AB

    )( BAIP )()( BA PP

    . , . ; indepen-dence , . . . , , , - , , - .- . )( ,, PF , F F - P . , . .- . A B . . . A B ,, )( FBA

    )( AP )( BP . 0)( >BP - A B

    )|( BAP =)(

    )(B

    BAP

    P I

    , ,)( BAIP A B - .

    )( BAIP = )()( BA PP (1)

    , A B . 0)( >BP (1)

    )|( BAP = )(AP (2)

    . : 1) FA , A -; 2) ,0)( =SP FA , S A ; 3) A iB , 21,=i 21 BB , A 21 \ BB ;

    4) A B , A B , A B . n )2( >n nAA ,...,1 . .- . ., nm 2 - m - nkkk m ...,,, 21

    mkk AA ...,,1 ,

    )( ...1 mkk AA IIP = )()( ...1 mkk AA PP (3)

    , - ( - ). nAAA ,...,, 21 . .- ( . .- ) - . .- , ,ji

    iA ,jA ni ,1= -. - , , , . - . . . . . , - ; - , , , ( , [1], . 24 ). . . - . )( ,, PA , ,A , ,P A - . . .- ( A B ).

    nnAA BB ,...,11 (3)

    33

  • ( ) ,

    nBBB ,...,, 21 .

    T , 2n - Ttt n ,...,1

    mtt BB ,...,1 , tB ( Tt )

    . nk 1 kA . .-

    kB = }{ ,,, kk AA

    . .- . . .- ( , [1] ). ,tX Tt . . )( tXB - . .- , )( tXB tX .

    nAA ,...,1 . .- -

    kAI - . . ,

    )(kAI =

    k

    k

    AA

    ,

    ,,

    01

    . . -. nXX ,...,1 . .- . 1) naa ,...,1

    )( ,...,1,...,1 nXX aaF n = )(:{ 1 XP < )(,...,1 nXa < }na

    .

    )( ...,,1,...,1 nXX aaF n = )()( ...11 nXX aFaF n .

    2) )()( ...,,11 nXX apap n nR -

    )( ...,,1 naa )( ...,,1,...,1 nXX aap n )()( ...,,11 nXX apap n -

    .

    3) )( ...,,1...,,1 nXX uuf n =nn XuiXuie ++ ...11M -

    nuuu ...,,, 21 - :

    )( ...,,1...,,1 nXX uuf n = ,... )()( 11 nXX ufuf n

    )( kX uf k =kk XuieM .

    - . .- : ( , ., , , ), ( , ., , ) . , .

    . 1) . nXX ...,,1 . .- 34

    ( . . ) - ; ., kXX ...,,1 ,...,,1 nk XX + nk

  • 3) .

    ...,...,,,, 210 nYYYY - )( , yxh ( ) .

    1X = ,, )( 10 YYh 2X = ...,,, )( 21 YXh nX = ...,, )( 1 nn YXh - . , ., - . - . 4) . - , , ,

    ...,...,,, 21 nXXX - - ( m - , kX ,lX lk > m ). . . . 5) - . 2p 2q , . N 1 - N - - ( - N1 ). pA ( qA ) p - ( q - ) .

    )( pAP = ,1

    pN

    N )( qAP = ,

    1

    qN

    N

    )( qp AA IP =

    qp

    NN1

    .

    N pA qA

    . , N S = NS ,

    spAAA ,...,, 32 ( ,jp j - ) , - . - , . . . 6) . . - .- . .: [1] . ., , 4 ., ., 1924; [2] . ., , 2 ., ., 1974; [3] - . ., , .: , - , ., 1956; [4] ., - , , . ., ., 1963; [5] ., - , ., . 12, ., 1984; [6] . ., , 2 ., , 1962. , -; property independence of class events , .

    - ; test of independence - - . p - n - q - ; qpp ...,,1 .

    2q -,

    qqqq

    q

    q

    ...

    ............

    ...

    ...

    21

    22221

    11211

    , , kj jk = 0 .

    Hl = =

    q

    j

    njj

    n

    1

    22

    , jk

    2nHl =

    =

    q

    jjj

    1

    .

    , l - , jj kk - ,

    )( rlM =

    = ==

    = ==

    +

    +

    q

    k

    p

    j

    np

    j

    q

    k

    p

    j

    np

    j

    k

    k

    rjnjn

    jnrjn

    1 11

    1 11

    222

    222.

    , lln2 2 -

    f =

    ++

    =

    q

    ijj pppp

    1

    )1()1(21

    .

    =

    jj

    jj

    jj

    ppn

    pppp

    22

    2233

    6

    92

    1

    . j - jp = 1 -, p

    35

  • , f = 2/)1( pp . = 1 np 6/)112( + .

    - , -

    2n - , , 2n - . ]

    .: [1] ., ., - , . ., ., 1976. ( ) ( - ) ; independent ( statistically inde-pendent ) events )( ,, PF ,

    ,FA FB

    )( BAIP = )()( BA PP (*)

    ; P , P ( , [2] ). 0)( >AP )()|( BAB PP = , , A B

    )|( ABP =)(

    )(A

    BAP

    P I ,

    )( BAIP = )()( AB PP . , 0)( >BP )()|( ABA PP = , )( BAIP = )()( BA PP

    . 1 . A B , A B , A B , A B ( , [1] ). 2 . 1B 2B A , A 21 BB U . . .- ( , [1] ). nAAA ,...,, 21 ( FiA , =i n,1 ) . . .-, iA - . . . .

    3 . iA ( =i n,1 ) -

    )( ji AA IP = ,)()( ji AA PP i ;j nji ,, 1=

    ( 2nC ) . nBBB ,...,, 21 ( FiB )

    =I

    k

    rirB

    1

    P = =

    k

    rirB

    1

    )(P

    nk 2 k -

    niii k

  • / - - ; effective number of indepen- dent trials , ( ) , ( - ) ( ) . . . . . .- ( Tt 0 Tt ,...,, 21= ) )(t T m = )( tM . m , *Tm - , t

    2)( mmM * T =2

    Tm = T

    dbTT0

    2 )()()2(

    t

    2)( mmM * T = 2 Tm =

    =

    1

    0

    2 )0()()()2(T

    TbbTT

    . )(b = = ,])([])([ mmM + tt )(t - [ , ,)0(b )(t ]. N - N ...,,1 m = M -

    *Nm = =

    N

    iiN

    1

    1

    N2 - (

    ,2 - ), . . . . .,

    efN =2)0(

    Tb m . ., t

    ( t ) )(t

    1T =

    0

    )())0(1( dbb

    , 1TT >> efN

    12TT . 2m = )(2 tM 2 = )([ tM

    2])( tM km = )( tkM , . . . . .

    T )(t . )(t

    )(b = eC cos ,

    m , 2m 2 , )()1( ,..., t ,

    . . . . . T - [1]- .

    .: [1] B a y l e y G. V., H a m m e r s l e y J. M., J. Roy. Sta-tist. Soc. Suppl., 1946, v. 8, 2, p. 18497.

    , ; indepen-dent spectral types of measures , , .

    ; independent random events , . - - ; pairwise independent random events , . ( ) ; independent shift o f a p o i n t p r o c e s s , . ; de- pendent trials ( ) - ( - ) . F . f F - - , .

    )( = )()( ; dxxf P ...; )([ 11 + fN )]( ;Nf+ )(

    *

    = k ,...,1 )( dxP i .

    )(* )( - C - , )(nC - . P = )( ;dxP - .

    .: [1] . ., , 2 ., ., 1975; [2] . ., .: , ., 1964, . 563; [3] . ., . ., . VI . . . . , , 1962, . 42537. * ; dependence - , - , . - , - - ; - - . .

    37

  • . ( , , ):

    )(cov ; = ,))()(( MMM (1)

    )( ; = DD )(cov ; . (2)

    , = ba + ( a b , 0a ) , )( , 1

    )( ; =+

    0101

    ,

    ,,

    aa

    ( , [2], ., 249 ). . - - ( ) -. )( , > 0 , - , )( , < 0 , ( , ). ( 1906- ) . - ( , [1] ). )( ,, PF , }{ nF , nFFF ...10 . n m kk FB , nF ,

    ,...,,...,, 111111{:{ ++ nnnn BBBPP

    =++ }| nmnmn FB }/{ 1111 ...,, nnn FBBP

    }|{ ,...,11 nmnmnnn F++++ BBP (3)

    , nF P , . (3) . . .: [1] ., , . ., ., 1962; [2] . ., , ., , 1980; [3] - . ., , ., 1969. ; inte-raction radius , . ; asymmetric channel , . -; coefficient of skewness ,

    As = 33

    38

    , 3 -

    , 2 = D , , . . .,

    0=As . , - : As > 0 ; -, , As < 0 . 0M . : , . . , , . . .

    a) b)

    . . -. ,10=n 51=p ( ) ,10=n 54=p ( )

    As =)1(

    21ppn

    p

    ;

    As =

    3312

    ;

    = ;2

    )( ;; prk

    As =)1(

    2pr

    p

    . . . .

    . . , . . . , - . . , - . . . , , -.

    As =

    =

    n

    ii xxns 1

    33 )(

    1

    3

    , nxx ,...,1 , x s -.

  • =n 0 ),;( pnkP -

    : ) =p ,5/1 , ) =p 5/4 .

    , - ; skewness of a distribution -. - . . . ( , [1] ). ( ) , . . ( ). . . ( ) , ( ). .: [1] ., , . ., 2 ., ., 1975. * - ; asymptotic independence - . nk

    n = =

    n

    knk

    1

    -

    )( nL - . - , ; - n )( nL - )( nL - . , - . n )( nL )( nL ( ) ,

    )( nL )( nL ,

    ; , LL .)( zn ,

    LL .)( zn ; )()(

    .n

    zn LL

    . LL .)( zn ,

    FF Ln . .

    .

    , , .

    ~)(tam

    nL )( nL .

    n = =

    n

    knk

    1

    n =*n =

    =

    n

    knk

    1

    *

    , *nk -

    *nk nk

    )( *nkL = )( nkL . , , )( *nL )( nL

    . .

    ~)(tam

    nL )(*nL ,

    nk - . , [1], . VIII, 28.1, 28.2.

    .: [1] ., , ., 1962. * ; asymptotically independent random variables , . * - ; asymptotic expansion - . )( xF ( -, ) - , 1c > 0 ,

    )}()(1{lim xFxFxx

    +

    = 1c

    . - - p (

  • )( ,; xf =

    =

    +

    0 !

    )/)1(()1(1

    k

    kk xk

    k

    ++

    2111

    2cos

    kk

    . (2)

    1x , N

    )1ln2( ,, xxf + = )(

    !1 2

    0

    =

    + NN

    k

    kk xOxkb

    x,

    kb = tdtiitek

    kt

    +

    0

    ln2Im .

    - .

    kk ,{ }1 , . k - ,an =M

    nD =2 3r -

    )(lim zgz

    < 1

    , ,)( zg }{ xn ,0 kX1M < 3k k

    1suplim||

    Xti

    teM

    < 1

    , n

  • .: [1] . ., . . ., . 2, . ., 1947; [2] E d g e w o r t h F. V., Trans. Comb. Philos. Soc., 1905, v. 20, p. 3665; [3] C r a m e r H., Scand. Aktuarietidscrift, 1928, v. 11, p. 1374, 14180; [4] E s s e e n C.-G., Acta math., 1945, t. 77, p. 125; [5] . ., ., - -, . ., . 1972; [6] . ., , ., 1972; [7] H l l P., Rates of convergence in the central limit theorem, Boston, 1982.

    ( ) ; asymptotic expansion o f t h e r i s k o f a n e s t i m a t o r ( , ) . ., . . - n - )( ,xf

    2 || M = )(

    2)1(1

    22

    231

    1 ... + ++++ kk

    k nOgngngn , ig . . -.

    .: [1] . ., ., 1976, . 21, . 1, . 1633; [2] . ., . . . . 1981, . 45, 3, . 50939. ( ) - ; asymptotic expansion o f e s t i m a t o r s , - , - ( , ) . ., n

    )( ,xf . .

    i = nkk hnhn +++ 21

    21 ...

    , ih - , n n . . .-, , .

    .: [1] . ., . ., . , 1963, . 149, 3, . 51820; [2] . ., . ., 1973, . 18, 2, . 30311; [3] . ., . ., 1977, . 104, 2, . 179206.

    - ; asymptotically Bayes test , . : ,nP , n nX

    11 : H 00 : H , 0 ,1 - . n - 0H 1H , , .

    }{ n , )|( nnn X nX

    n )}({ nn X ,

    )|()(suplim ,,

    nnnnnnnnXX MM

    = 0 (*)

    , )}({ nn X - , . . . .- . ., (*) ,

    ))|(()(lim nnnn nnrr

    = 0

    , ,)( nnr n n . , ., [1]- . . . .- , - }{ n . . . - . . . ( . . .- ). . . .- , - - . .: [1] . ., , ., 1984; [2] L i n d l e y D., Proc. 4-th Berkeley symp. math. statist. probab., v. 1, Berk., 1961, p. 45368. * ; asymptotically mutually effective sequence of estimators -. ,)( n

    ( n

    , )()(nI

    , ,)()(nD )( n(

    . n

    1)()( )(1)( nn DI

    , )( n(

    - . .

    )( ,,axf =2

    2

    2)(

    21

    ax

    e

    41

  • a . - n , )( ,, axf

    n ,...,1 .

    2

    1

    )(

    =

    n

    kk aM =

    =

    n

    kk a

    1

    )(D = )( an k D = ,n

    ==

    n

    kk

    n

    kk naa

    1

    2

    1

    )()( M =

    =

    =

    n

    jkjk aa

    1,

    2)()( M = ,0

    2

    1

    2 )(

    =

    n

    kk naM =

    =

    n

    kk a

    1

    )(D =

    = 2][ an k D = ,22n

    , - :

    2ln

    aM =

    n

    ,

    lnln

    aM = 0 ,

    2

    ln

    M = 22

    n

    ( , [1] ). ,

    )(I = 0

    20

    0

    2

    n

    n

    .

    a

    = ,1

    1 =

    n

    kkn

    2s = 21

    )(1

    1 =

    n

    kkn

    . 2s - . ,

    )()( 2 sM =

    = )()()(1

    1

    1

    22 aanan

    n

    kk

    =M =

    =

    =n

    kk anaan 1

    32 )()()(1

    1 MM = 0 ,

    42

    ak .

    )(D = 0

    120

    0

    2

    n

    n

    )()( DI =

    20

    01

    nn

    . , a - 2s . . . . .-. .: [1] . ., . ., - . ., , ., 1979. , - ; asymptotic mergence of states o f a M a r k o v c h a i n , ; . - ; asymptotic stability i n p r o b a b i l i t y , ( ), - . -; asymptotic deficiency , ( ) - .

    ; asympto-tically efficient estimator . , , - , . . . . . , - , . - . . . .-. .: [1] . ., -, . ., ., 1968; [2] . ., . ., , ., 1979; [2] . ., , ., 1984. ( ) ; asymptotic efficiency o f a t e s t - . 30 40- , - , . . .- . , P

  • :1H 0 :0H = 0 . ,

    , - 1N , 2N . 12e = 12 NN . 12e , , , , - , . . - , )(lim ,,12 0

    e

    (

    ) - ; - , )(lim ,,120

    e

    ( )

    ; 1 , )(lim ,,121

    e

    (

    ) .

    . ., , .

    ., , 1 ; :1H > 0

    :0H = 0 . X t - . t -

    X - . , . , X - t - > 0 1 - . - 1 0 . , , 0 , - .

    12e .

    .: [1] ., ., , . ., ., 1973; [2] B a h a d u r R., Ann. Math. Statist., 1967, v. 38, 2, p. 30324; [3] H o d g e s J., L e h m a n n E., Ann. Math. Statist., 1956, v. 27, 2, p. 32435; [4] . ., - , ., 1995; [5] L a i L., Ann. Statist., 1978, v. 6, 5, p. 102747; [6] B e r k R., B r o w n L., Ann. Statist., 1978, v. 6, 3, p. 56781; [7] K a l l e n b e r g W., Ann. Statist., 1982, v. 10, 2, p. 58394; [8] W i e a n d H., Ann. Statist., 1976, v. 4, 5, p. 110311; [9] K a l l e n b e r g W., Ann. Statist., 1983, v. 11, 1, p. 17082; [10] G r o e n e - b o o m P., O o s t e r h o f f J., Int. Statist. Rev., 1981, v. 49, 2, p. 12741.

    , - - ; B a h a - d u r asymptotic efficiency of estimators - , . [1]- . - , . - . -. .: [1] B a h a d u r R., Sankhya, 1960, v. 22, 34, p. 22952; [2] ., , . ., ., 1976; [3] . ., - . ., , ., 1979. , - ; R a o asymptotic efficiency of estimators , - . . , 20- 60- . . . - , . . .: [1] R a o C. R., J. Roy. Statist. Soc., 1962, v. B 24, 1, p. 4672; [2] . ., , . ., ., 1968; [3] . ., . ., , ., 1979. , - - ; W o l f o w i t z asymptotic efficiency of estimators - , . [1] . , - . }{ n b > 0 b -

    )}({lim 2121 ,

    + bnbnnn P

    - , }{ n . - -.

    43

  • .: [1] W o l f w i t z J., . ., 1965, . 10, 2, . 26781; [2] W e i s s L., W o l f o w i t z J., Maximum probability estimators and related topics, [ B. N. Y. ], 1974; [3] . ., . ., - , ., 1979. - - - ; sequence of asymptotic neglectabi- lity random variables nkX , nk ,1( = ; )21 ...,,=n ,

    nkX , k - )21( ...,,, nk = - , 0>

    nk ,...,, 21=

    ||{ ,nkXP > } <

    . ( -

    ) )1( ,, nkX nk =

    nS , ( , , ).

    - ; asymptotic neglecta-bility , .

    - ; asympto-tically most powerful test - ( - ) - . ,nX n . 11 : H = 0\ 00 : H . - K }{ n ( Kn }{ )

    )(suplim1, nnn

    n

    M 0

    , Kn }{ K

    11 . K -

    nnn

    , 0suplim M

    - . . . . . . , n - 44

    n - . Kn }{ 11 . . . . , . - ; asymptotically most powerful unbiased test .

    ; asymptotic estimation theory - , , . . 1. . . .- n

    )(nX = )( ,...,1 nXX (1)

    -. . . .- ( n ) . , , . . . ( , ), .

    (1) P T = )(PT - (1) )( ...,,1 nn XXT ; , . . ., , )( ...,,1 nn XXT

    n . , TTn .

    1. (1) = )(P =1XM

    .

    a = =

    n

    jjXn 1

    1 -

    ( , |)(|{ aPPP > 0} ), 2( an )() 2/12

    a .

    2. )( xf (1) - p - p . p - -

    pz . )( pfn

    )())1(( 2/1 ppzpp

    .

    3. )( xF = 1{XP < }x , )( xFn (1) . )(nF )( ,C - )(F

    , ))()(( xFxFn n )( , C -

  • )(xw 2)( xwM = = ))(1()( xFxF . 2. . . . . )(nX X - . X }{ , AX -

    X - ,P

    }{ , P ,

    . - )( X . )( XT . T - . , 0>

    0 T ; , ,

    }{ . ( ), . . . - uP

    P u

    , 0 , . 4. 1 3 X =

    nX , = 1n . 5. ,X k

    X = + (2)

    , kR , k . ( ) 0 . , , : X = )(tX

    )(tXd = )()( tdtdtS w+ , 10 t (3)

    , S , )10( ,2LS , w . , , . - . . ., , . . . . . - - . . .- - . 3. ( - ) )( -

    }{ , P X -

    . . . .- )( T - , 0 , , )( (

    ). T -

    T - )( - P -

    . 6. (1) . 1 3 ,d ,p F . 3- - . ,F jX )( Fg - , )( nFg . 7. 5- ,X

    , )(tX t

    uduS0

    )( .

    8. TX m )(tX , Tt 0

    . TX = ,0

    1 )(T

    tdtXT m

    , T ;

    +

    T

    T tXXtXT0

    1 )(())((

    tdXT ) )(R , 0> . . . .- , , .

    ; P - - , ,

    )( uP = ,)(

    X

    dd uP u

    . kR , ,

    .

    9. TX = )( ,...,1 TXX jX - 1- jX = jjX +1

    , ,i )0(2,

    , )11( , .

    T , T ,

    1

    2

    21

    == T

    T

    jj

    T

    jjj XXX

    .

    45

  • 10. , (2) X

    X . (3) S = )( ;tS

    , kR .

    1

    0

    1

    0

    2 )(21)()(

    ;; tdtStXdtS

    dd

    = 0

    , ., )( ;tS = )( tS , R ,

    = )()()(1

    0

    11

    0

    2 tdXtSdttS

    = )1( o+ .

    , T - T T - T . , . . .- 0 ||{

    TT P > } -

    . aTT || M ,

    }||{expaTTb

    M - - . 11. (1) jX 1

    0 1 .

    n = =

    n

    jjXn

    1

    1

    -

    nM = nD = )1(1 n ;1)4( n -

    , ||{ nP > } }2{exp2 2n . 1 10 . 4. T T - ,

    TT - T . )()( TTa - .

    )()( TTa T - . X }{ ,,,

    PAX ( , , - . ). , (1) - . 46

    ( 1 ), ( 2 ), ( 3 ) , TT . 1 3 , ,...,, )( aa

    ,...,, )( qp zz )( nF -

    ,..., a ppz , .

    , )( XT TT . . (1) , jX -

    }{ , AX )( ;xf . kR . , )}({ ;xf

    )}({ ;f

    )(I =

    Xf

    dffji

    -

    . )( nn - , )(1I

    pp

    nnn MM )( ,

    ))(( 1, IN , 0>p .

    .

    )(uln = =

    n

    jj uXf

    1

    )(ln ;

    , - . ,

    )( nn = =

    +n

    jj oXfd

    dnI1

    2/11 )1()(ln

    )( ;

    .

    12. R , )( ;xf = )( xf .

    )(I = I =

    xdxfxf )()( 12

    , )( nn ,

    )0( 1, I -

    . I , n -, , ,

  • n - . ., )( xf = 1))(( xex 1 , 0>x . 2>

  • ; F , X

    . 2/1z )( 2/1 zn - . F -

    2

    )( XnM = 1 , 2

    2/1 )( znM = 2))1(1( o+

    ( 2 ).

    14- , , ( ), - , M - . , ., nT - , .

    7. . . .- , n - - . -

    . , ., 2

    )( nnM .

    , . k , . , n k . k = )(nk ,

    ., 0)( nnk nnk /)( 1 , . . .- .

    , . -. , , . - . , ,

    :l , )(diam1

    l 0)(

    , . -

    . , : - .

    15. (1) R - jX )(xf - ; f , - .

    dyyfyxbHa )())(( ;

    ,)(naa = ,)(nbb = H .

    n -

    )())(( ydFyxbHa n (

    ) .

    .: [1] . ., , ., 1984; [2] . ., . ., - , ., 1979; [3] ., ., , . ., ., 1973; [4] ., ., 48

    , . ., ., 1976; [5] ., , . ., 2 ., ., 1975; [6] . ., , ., 1972; [7] G r e n a n d e r U., Abstract inference, N. Y. [a. o.], 1981; [8] L e C a m L., Asymptotic Methods in Statistical Decision Theory, N. Y. [a. o.], 1986; [9] L e h - m a n n E., Theory of Point Estimation, N. Y. [a. o.], 1983. - ; asymptotically unbiased test . ,nX

    n . nX 11 : H = 0\ 01 : H n .

    ]infsup[suplim ,, 10nnnn

    n MM

    0

    , }{ n - . . . . .

    .: [1] ., . , . ., ., 1975; [2] - . ., , ., 1984.

    ; asymp- totically unbiased estimator ; , - . ,}{ nT - )(nb = , nTM ,...,, 21=n nT - . n 0)( nb ,

    ,}{ nT - . - . . X = )( ,...,1 nXX a = iXM ,

    2 = iXD - .

    2ns =

    =

    n

    ini Xxn 1

    2)(1 , nX = =

    n

    iiXn 1

    1

    }{ 2ns 2 . .

    . . , , 2 X n -

    )( 2nb =22 nsM = 0

    2 n

    . .: [1] ., - , . ., 2 ., ., 1975; [2] . ., - . ., , ., 1989.

  • ( ) - - ; asymptotic admissibi-lity o f s t a t i s t i c a l t e s t , ( ) .

    - ; asymptotically minimax tst , . ,nX n . n - : nX 11 : H 00 : H ( , , n - ). ,)( nn X nX n - . n n

    )()(suplim ,, 1

    nnnnnnnXX MM

    = 0 (*)

    , )}({ nn X - , . (*)

    )(infsup)(inflim ,}{, 11 nnnKnnnnXX

    n

    MM

    = 0

    . . . -,

    K = )(supinflim:}{{ , 0

    nnnn

    n X M

    } .

    . . . .

    .: [1] . ., , ., 1984; [2] . ., . ., .: - , -., 1982, . 7990. ; asymp- totically minimax estimator - , - . ,n n

    , 1R , .

    2

    ])([supsuplim

    n

    nnM

    2

    )]([supinflim *

    nn

    nM

    *n ,

    n - . - . - , ., -.

    .: [1] . ., , ., 1984; [2] . ., . ., , ., 1979; [3] W a l d A., .: Proc. 2-th Berkeley symp. math. statist. probab., Berk., 1951, p. 111. - ; asymptotically uniformly most powerful test - . . . . . .

    )(suplim1, nnn

    n

    M 0

    )(supsuplim1

    11,

    nnn

    n

    M 0

    .

    ; asymptotically uniform distribution . U = )( ...,, 21 kS = k ++ ...1 . - h

    nnS{lim P

    = }mod hj = ,1 h

    j = 110 ,...,, h

    , U - .

    ,A U , , . . . . AU -

    ahL = mm :{ = }kha +

    0:)({min ahkk

    L P a }1h =

    ( , [1] ). nS - . . .-

    n 0)2( hrfn -, h , r = 110 ,...,, h ( , [4] ). nS . . .- ( , [2], [3] ).

    .: [1] . ., . ., , 3 ., ., 1987; [2] . ., . , 1954, . 98, 4, . 53538; [3] . ., - , ., 1987; [4] D v o r e t z k y A., W o l f o w i t z J., Duke Math. J., 1951, v. 18, p. 50107.

    49

  • - ; B a h a d u r asymptotic relative efficiency , ( ) . - ; H o d g e s L e h m a n n asymptotic relative efficiency , ( ) . - ; P i t m n asymptotic rela-tive efficiency , ( ) - .

    - ; asym-ptotically normal sequence a - , 2 ( 0 < 2 < ) , n nS

    *nS

    *{ nSP < }x - n x - ( < x < ) )( x -

    }{ *nS ,

    nS = n ++ ...1 .

    *nS =

    nnaSn

    ,

    ,)( x )10( , -

    . *nS . }{ n , (

    ) . { }~

    nS - -: > 0 n

    )(nL = =

    n

    kkkkk

    naa

    B 12

    2 ;)((1 M > 0) nB ,

    kM = ka , kD =2k ,

    2nB =

    =

    n

    kk

    1

    2 , nS~ =

    =n

    n

    kkn

    B

    aS =

    1 .

    .: [1] . ., , ., 1972. - ; asymptoti-cally normal transformation

    50

    -. n

    nX{P < }x = )()( xxFn

    , )( x . )( nn Xu - nX -

    , - )( xun )( xFn -

    )( xFn = =

    + ++r

    k

    rk nOnxPxx

    1

    2)1(21 )()()()(

    ,

    )( x = )( x ,

    ,)( xPk x - ,

    )( xy = ])([1 xFn =

    =

    + ++r

    k

    rkk nOnxQx

    1

    2)1(2 )()(

    ( [1] [2]- ).

    )( xun = =

    + ++r

    k

    rkk nOnxQx

    1

    2)1(2 )()(

    , n

    )({ nn XuP < }x = )()(2)1( ++ rnOx

    . . . .- .

    .: [1] . ., . ., 1959, . 4, 2, . 13649; [2] W a z o w W., Proceeding of sympo-sia in applied mathematics, 1956, v. 6, p. 25159. ; asymptoti-cally normal estimator - , .

    ., nXX ...,,1 iXM = , iXD = ,2

    4iXM < .

    X = =

    n

    iiXn 1

    1 2s =

    =

    n

    ii XXn 1

    2)(1

    2 . . . .-.

    , })()({ 22, snXn ,

    2243

    32

    , k = .)(k

    iX M .: [1] . ., , ., 1984; [2] . ., . ., - , ., 1979.

  • * - - ; asymptotically normal random variables , . * ; asymptotic normality , - . - ; asymptotically op-timal test - . . . . . . . . : . . . .- : , , . - ; asymptotic Pearson transformation - , - . . . . . t -

    X{P < }x = )()( , xtxF

    ; )( x - . X )( ,txF - :

    )( , txF = =

    +++r

    k

    rkk tOtxPxx

    1

    1)()()()( ,

    )( x = ,)( x )( xPk . , :

    )( xy = ])([ ,1 txF = ,)()( 1++ rr tOxy

    )( xyr = =

    +r

    k

    kk txSx

    1

    )( .

    , )( xur = )()(1++ rr tOxy , 0t

    )({ XurP < }x = )()(1++ rtOx .

    ., X )( , qp - , t = ,01 q p = const -,

    )( , txF = )()( , tOpxI +

    , ,, )( pxI p -.

    )(1 xu = )]1(1[ + pxsx , s = )]1(2[ + ptt

    , 0s

    )({ 1 XuP < }x = )()(2, sOpxI + .

    .: [1] . ., . - ., 1963, . 8, 2, . 12955; [2] . ., . ., , 3 ., ., 1983. ; asymptotic design , .

    ( ) - ; asymptotic density o f a s e t , . - ; asynchro- nous channel of multiple access , . ; asyn-chronous channel , . , ; assosiated spectrum of a process , .

    - ; slowly changing function , . ( ), ; lower value of a game , , .

    - ; lower confidence bound , . * ; lower

    quartiler p =41

    . ,

    . ( ) - - ; lower limit o f s e q u e n c e o