Rezumat Teza Emilian Oancea

download Rezumat Teza Emilian Oancea

of 42

description

Teza

Transcript of Rezumat Teza Emilian Oancea

  • Titlul lucrrii de doctorat:

    MANAGEMENTUL UTILIZRII

    CULTURILOR ENERGETICE N SCOPUL

    OBINERII DE ENERGIE PE BAZ DE BIOMAS

    SOLID

    Drd. Ing. Emilian OANCEA

    BUCURETI - 2010 -

  • Doctoral Thesis Title:

    THE MANAGEMENT OF USING ENERGY

    CROPS IN ORDER TO OBTAIN ENERGY BASED

    ON SOLID BIOMASS

    Doctoral student Eng. Emilian OANCEA

    BUCHAREST - 2010

  • REZUMAT

    Titlul lucrrii de doctorat MANAGEMENTUL UTILIZRII CULTURILOR ENERGETICE N SCOPUL OBINERII DE ENERGIE PE BAZ DE BIOMAS SOLID. Conductor tiinific Prof. univ. dr. BERCA MIHAI

    (USAMV Bucureti 2010) Lucrarea cuprinde 6 capitole, concluzii generale i propuneri, bibliografie, nsumnd 364 pagini, care includ i 82 tabele i 46 de figuri i grafice. Au fost citate n text 88 titluri bibliografice. Una din cele mai actuale probleme ale economiei mondiale contemporane este problema energetic, dominat nc de petrol. Aa cum arat Paul Roberts n lucrarea Sfritul petrolului n pragul unui dezastru: Energia a devenit mijlocul de plat al puterii politice i economice, valoarea care domin ierarhia naiunilor, chiar i un indicator al succesului i al progresului material. Accesul la energie a ajuns s fie imperativul suprem al secolului XXI. Epuizarea ns treptat a resurselor de combustibili fosili, mpreun cu procesul de nclzire global corelat cu creterea emisiilor de gaze cu efect de ser au determinat declanarea i impulsionarea cercetrilor pentru gsirea altor resurse de energie de tip regenerabil, din care face parte i biomasa obinut de la culturile energetice. n acest context, cercetrile efectuate n cadrul lucrrii de doctorat n domeniul managementului utilizrii culturilor energetice n scopul obinerii de energie din biomas solid n general, i a biocombustibililor n particular, se poate aprecia c reprezint o problematic de actualitate i pentru Romnia. Capitolul 1: Starea actual a cercetrilor i a rezultatelor privind resursele neregenerabile i utilizarea biomasei 1.1. Situaia actual i evoluia resurselor neregenerabile Cererea primar mondial de energie n 2005 era de 11.429 Mtoe i se consider c pn n 2050 necesarul de energie se va dubla. n structura consumului de energie primar pe glob (2005), energiile regenerabile contribuiau cu 13 % (AEI), din care biomasa solid i reziduuri cu 10 %. Se estimeaz c la nivelul anului 2030 energiile regenerabile vor deine cca 14 %.

  • n ceea ce privete domeniile consumului de energie n 2030 se prognozeaz c industria va deine 39 %, agricultura, populaia i construciile 35 %, iar transportul 26 %. Rezervele neregenerabile de energie erau estimate la sfritul anului 2005 la 1300 Gt SKE (echivalent de huil), din care 55 % crbune, 26 % petrol, 15 % gaze naturale, 4 % combustibil nuclear, iar resursele la 6500 Gt SKE, din care 60 % crbune, 29 % gaze naturale, peste 7 % combustibil nuclear. Dac producia anual ar fi s se menin la nivelul anului 2005, rezervele cunoscute ar ajunge luate n ansamblu pentru o sut de ani, iar resursele pentru o jumtate de mileniu.

    Previziunile privind cererea de energie pe ri n perioada 2006-2030 arat c ea va fi de 11 % n China i India, 11 % n SUA, iar n UE de 5 %.

    Pe plan mondial, la problema epuizrii resurselor neregenerabile se adaug i nclzirea global determinat de creterea emisiilor gazelor cu efect de ser i subierea stratului de ozon. Aceste emisii de GES provin n proporie de 20 % din industrie, 15 % din agricultur, 15 % din despduriri, 35 % din transporturi. Protocolul de la Kyoto i propunea s scad emisiile de gaze cu efect de ser al rilor industrializate cu 5 % pn n 2012, fa de emisiile generate n 1990. Pe ri, cele mai mari emisii sunt realizate n SUA, urmat de China, India, Indonezia.

    Creterea cererii mondiale de energie ca urmare a dezvoltrii economice, epuizarea treptat a resurselor de combustibili folili, sporirea emisiilor de gaze, fluctuaia neprevizional a preului petrolului au determinat efectuarea de cercetri pentru gsirea unor noi resurse de energie regenerabile existente pe glob, printre care i biomasa.

    1.2. Biomasa ca surs de energie regenerabil, compoziia i puterea ei caloric

    Biomasa conform legislaiei europene este alctuit din partea degradabil a produselor, deeurilor i reziduurilor din agricultur, din domeniul forestier i industriile conexe, din deeurile municipale i cele industriale.

    Pe glob situaia cantitii de biomas, a energiei acumulate i a utilizrii ei se prezint astfel: masa total, (inclusiv umid) peste 2000 mld tone, din care masa plantelor terestre 1800 mld tone; cantitatea de energie acumulat n biomasa terestr 25.000x1018 Jouli; 20,7 % din biomasa pmntului este utilizat pentru hran i peste 90 % constituie o rezerv pentru folosirea ei n

  • scopuri energetice, industriale i pentru funcionarea celorlalte sisteme bioenergetice.

    Aproape jumtate din producia mondial de biomas primar, estimat la 100-140 mil tone este concentrat n zona ecuatorial ntre 00-150 latitudine, iar un sfert ntre 150-300 nord i sud. Biomasa mediului continental la rndul ei este alctuit din biomasa diverselor ecosisteme: pduri, savane, stepe, tundr, deerturi, agroecosisteme, deeurile i reziduurile din agricultur, cele industriale i urbane. Principala surs de biomas o constituie pdurile.

    Culturile cele mai utilizate n scopuri energetice sunt cele de gru, porumb, orez, orz, secar, sfecl de zahr, trestie de zahr, cartoful, plantele oleaginoase, plantele erbacee (Miscanthus, Cynara, Panicum v).

    Compoziia chimic a biomasei difer mult n funcie de cultur, ns se poate spune c plantele conin n stare uscat: celuloz 65 %, hemiceluloz 17 %, lignin 17 %, alte substane 1 %.

    Puterea caloric a biomasei este strns legat de coninutul ei de lignin. Sub aspect energetic, dintre culturile utilizate pentru biomas se remarc: plopul i salcia repede cresctoare, Miscanthus, urmate de ierburile perene i cerealele. Dintre reziduuri, paiele de gru i cele de rapi dau o producie de energie la ha mai ridicat.

    1.3. Principiile, filierele de valorificare i tehnologiile de conversie a biomasei

    Biomasa se poate valorifica n multiple direcii sau filiere: biomateriale nealimentare, cldur, produse farmaceutice, electricitate, n alimentaia uman i animal, ca ngrmnt, la producerea de biocarbudani. ntre aceste filiere manifestndu-se relaii de concuren i/sau de complementaritate, ceea ce arat necesitatea studierii i aprecierii acestora n elaborarea strategiilor pentru fiecare domeniu, avndu-se n vedere ca principii: alocarea cu prioritate a resurselor de biomas, celor care sunt mai performante, care nu afecteaz solul, biodiversitatea, alimentaia i mediul, i al cror cost este mai redus dect al energiilor neregenerabile.

    n etapa actual, tehnologiile utilizate n conversia biomasei sunt: 1 Arderea biomasei 2 Extracia mecanic prin presare la rece n vederea obinerii de ulei

    vegetal pur din plante oleaginoase

  • 3 Extracia prin presare la rece, a uleiului, purificarea i transterificarea acestuia din culturile oleaginoase i din grsimile animale, n vederea obinerii de biodiesel

    4 Hidroliza i fermentaia din sfecl de zahr, trestie de zahr, cereale pentru obinerea de bioetanol

    5 Digestia anaerob din biomasa umed (blegar, deeuri de la fermele de gini, resturi menajere, rumegu, paie, deeurile de la abatoare etc) pentru obinerea de biogaz i biohidrogen

    6 Piroliza i gazificarea pentru producerea de gaz (MHU gas) i a hidrogenului

    Aceste procese de conversie a biomasei se pot realiza n instalaii independente n funcie de natura produsului obinut sau n cadrul unor instalaii complexe denumite biorafinrii integrate, n care se poate obine o gam larg de produse: biocombustibili, electricitate, biohidrogen, biogaz, produse chimice, coproduse (turte, glicerin, gudron, carbon etc.)

    Eficiena obinut n urma diverselor procese de conversie a biomasei difer n funcie de tehnologiile de conversie i de natura produsului obinut.

    Cercetri efectuate n Germania evideniaz de exemplu faptul c cele mai ridicate costuri marginale (euro/kWh) se obin la producerea biogazului urmat de producerea biocombustibililor i a cldurii din cereale.

    Cantitile de CO2 economisite sunt mai mari la nclzirea cu achii de lemn, urmat de producerea biogazului i cea mai sczut la obinerea biocombustibililor

    Capitolul 2 Aspecte teoretico-metodologice n cercetrile privind managementul utilizrii culturilor energetice n scopul obinerii de energie pe baz de biomas solid reprezint capitolul metodologic n care s-a definit conceptul de Managementul utilizrii culturilor energetice n scopul obinerii de energie sub form de biocombustibili, ca un Management integrat care s cuprind toate fazele, respectiv suprafeele, produciile i tehnologiile culturilor energetice, procesele de transformare n biocombustibili, influena asupra biodiversitii, asupra mediului i asupra solului. Toate aceste domenii vor fi analizate sub aspect energetic, utilizndu-se urmtorii indicatori: producia de energie la ha pe culturi, bilanul energetic al procesului de transformare al biomasei n biodisel i bioetanol, eficiena energetic final a culturilor energetice, economia de bioxid de carbon care se poate realiza i costul economiei de bioxid de carbon.

  • Metodele principale de cercetare utilizate sunt: analiza cantitativ i calitativ, comparaia, analiza SWOT, metoda scenariului.

    Baza informaional a cercetrilor este format din datele statistice publicate de ctre organismele internaionale, cercetrile i lucrrile n domeniu publicate n ar i n strintate, informaii oferite de Institutul Naional de Statistic, de Ministerele de resort, de ANRE, de unele ntreprinderi.

    Capitolul 3 Situaia actual a utilizrii biomasei pentru producia de biocombustibili pe glob i n UE

    3.1. Tipurile de biocombustibili n cadrul cercetrilor proprii s-a ales domeniul conversiei biomasei n

    biocombustibilii din prima generaie, respectiv biodiselul i bioetanolul. Evoluia cercetrilor privind resursele regenerabile i volumul alocat

    investiiilor n acest domeniu se poate aprecia c au fost proporional cu preul petrolului i cu evoluia crizelor energetice din 1970 pn n zilele noastre.

    n ultimul timp la aceasta s-au adugat angajamentele politice ale unor state, n principale ale UE, de a reduce emisiile de gaze cu efect de ser.

    Printre primele ri care au nceput prelucrarea biomasei n biocombustibili nc din 1980, dar mai ales dup 2000 se numr SUA, Brazilia, India, Germania, Frana.

    Biocombustibilii sunt carburani solizi, lichizi i gazoi utilizai n transport, de diverse tipuri: bioetanol, biodisel, biogaz, biometanol bio ETBE, bio-MTBE, biohidrogen, etc.

    Biocombustibilii pot fi utilizai n combinaie cu combustibilii tradiionali, n proporie de 5-20 % fr adaptarea motoarelor i n proporie de pn la 100 % cu adaptarea special a motoarelor.

    n funcie de resursele de biomas i de tehnologiile de prelucrare a acesteia, biocombustibilii sunt grupai deocamdat n 4 generaii:

    - generaia I-a biodiselul obinut din culturi oleaginoase i grsimi animale, bioetanolul din culturile de cereale bogate n carbohidrai, biogazul i bio-ETB;

    - generaia a II-a bioetanolul, biodiselul, biogazul, biohidrogenul, Bio-DME-biocombustibili obinui din biomas lignocelulozic (plante lemnoase i erbacee, reziduuri din agricultur, silvicultur i industria lemnului;

  • - generaia a III-a biocombustibili obinui din plante modificate genetic n vederea creterii coninutului de ulei sau n carbohidrai i din culturile de alge;

    - generaia a IV-a biocombustibili obinui din culturi ncruciate sau modificate genetic, alte culturi (ciuperca Gliocladium roseum) care au i proprietatea de a absorbi cantiti mari de CO2, sau de a utiliza rezerve de metan acumulate pe fundul mrilor i oceanelor (gazhidrai).

    Cei mai importani n etapa actual, ca producie i utilizare n transport sunt bioetanolul i biodiselul.

    Bioetanolul Bioetanolul este definit ca alcool etilic de provenine natural. Materiile

    prime utilizate n fabricarea bioetanolului sunt: materii prime glucidice (trestie de zahr, sfecla de zahr, sorgul zaharat, unele fructe etc); materii prime amidonoase (porumbul, grul, cartoful, maniocul); materii prime lignocelulozice (lemnul i alte materiale din plante fibroase).

    Coninutul n energie al bioetanolului este apreciat a fi n jur de 65 % din cel al benzinei.

    Bioetanolul reprezint n etapa actual o surs important pentru carburani i combustibili, dar disponibilitatea materiei prime (mai ales cerealele) constituie una din constrngerile majore pentru a dezvolta fabricarea i utilizarea acestui carburant.

    Biodiselul Biodiselul a fost implementat pentru prima dat n Africa de Sud, nainte

    de cel de-al doilea rzboi mondial. n 1979 au nceput cercetrile pentru tranesterificarea uleiului de floarea soarelui i rafinarea esterului pentru obinerea biodiselului standard, iar n 1983, biodiselul a fost testat pe motoarele disel i a fost publicat.

    Ulterior au intrat n funcie fabrici n Europa (Cehia, Frana, Germania, Suedia), n America, Indonezia.

    Sursele de biomas pentru producerea de biodisel sunt: boabele de soia (aproape tot diselul fabricat n SUA este obinut din soia); seminele de floarea soarelui i de rapi (folosite n special n Europa); uleiul de cocos (n Filipine i n America de Sud; seminele de mutar, bumbac, canole (o plant asemntoare rapiei); ulei de msline; alge (n Africa de Sud funcioneaz o rafinrie de producere a biodiselului din alge); uleiul de palmier; uleiul de

  • porumb; materii grase de origine animal (grsimi animale, grsimi reziduale din industria de prelucrare a crnii, reziduuri grase alimentare).

    3.2. Avantajele utilizrii biocombustibililor i semnele de ntrebare care se ridic

    Trecerea de la etapa utilizrii resurselor neregenerabile la economia energetic provenit din resurse regenerabile a declanat la nivel global programe deosebit de ambiioase, fonduri uriae pentru cercetare i pentru dezvoltarea industriei de biocombustibili.

    Aceste tendine i procese au la baz un ansamblu de avantaje economice, sociale, de mediu, politice, evideniate de cei care consider c tranziia ctre utilizarea biocombustibililor poate atenua actualele probleme care ngrijoreaz toate rile, legate n principal de epuizarea resurselor neregenerabile i cele privind clima i mediul.

    Cercetrile i calculele efectuate de diverse institute, organizaii, agenii internaionale ridic ns semne de ntrebare la fiecare avantaj, subliniind de fapt necesitatea studierii limitelor n elaborarea strategiilor de utilizare a biocombustibililor, n mod special din generaia I-a.

    n mod concret, aceste aspecte pro sau contra prezentate n cadrul capitolului, se refer la: reducerea sau nu suficient a emisiilor de gaze; utilizarea unor cantiti foarte mari de ap care pot duce la o penurie a apei pe glob; protejarea sau nu a biodiversitii; dezvoltarea social i economic a mediului rural numai pe termen scurt, datorit creterii preului produselor agricole i scderii numrului de locuri de munc odat cu trecerea la cerinele lignocelulozice; competiie ntre producia alimentar i producia de bicombustibili, mai ales n Asia i Africa, unde, la nivelul anului 2010 exist deja un deficit de suprafa nonalimentar, iar din 2015 i n America Central.

    La acestea se adaug influena culturilor energetice asupra solului prin creterea cantitilor de ngrminte i pesticide pentru creterea produciilor la ha sau prin monocultur.

    Dezvoltarea cercetrilor pentru noi resurse regenerabile i perfecionarea tehnologiilor de obinere a biocombustibililor pot determina ns, ca surs de venituri, exportul acestora.

    La nivel global, dezvoltarea produciilor de bicombustibili din resurse regenerabile, dac se va realiza ntr-un ritm superior capacitii lor de regenerare, poate duce la alte fenomene nefaste ca: reducerea suprafeelor de

  • puni, deertificarea, reducerea pescuitului, reducerea resurselor pentru alte produse ca: hrtie, produse chimice i farmaceutice valoroase.

    3.3. Analiza SWOT a produciei de biocombustibili Sintetiznd aspectele sesizate din lucrile studiate, i avnd n vedere

    cele prezentate anterior, s-a efectuat o analiz SWOT general a produciei de biocombustibili.

    Ca principale puncte forte pot fi evideniate cele legate de: reducerea importurilor de surse neregenerabile, reducerea emisiilor de gaze, creterea veniturilor productorilor agricoli, utilizarea biocombustibililor nu necesit schimbri majore la autovehicule sau n sistemul de distribuie.

    n ceea ce privete punctele slabe mai importante se refer la: creterea suprafeelor pentru culturile energetice n dauna celor pentru alimente i furaje, utilizarea unor cantiti mari de ngrminte, biodiversitatea poate fi afectat, costul nc ridicat al biocombustibililor din generaia I-a.

    n elaborarea strategiilor pentru biocombustibili este necesar a se ine seama, ns i de ameninri i oportuniti. Ca ameninri, mai importante se consider: incertitudini pe termen lung privind cererea i preul ofertei, att pentru biomas, ct i pentru biocombustibili; dezvoltarea unor opiuni potenial concurente pentru transport (vehicule electrice, cele propulsate cu hidrogen etc); politicile energetice n domeniu nc analizate; existena unei piee a biocombustibililor nc neorganizat i nestabilizat.

    Exist, ns i unele oportuniti pentru dezvoltarea produciei de biocombustibili, dintre care mai sigure ar fi: investiiile mari alocate cercetrilor, pentru gsirea de noi resurse regenerabile i a tehnologiilor de producere a biocombustibililor din celelalte generaii; liberalizarea integral a pieelor de energie i gaze naturale din anul 2007; posibilitatea accesrii accesarea fondurilor europene; oferta de diferite faciliti pentru producia de biocombustibili.

    Capitolul 4 Producia de biocombustibili n Uniunea European i pe glob

    4.1. Politica UE privind schimbrile climatice i energiile regenerabile repere istorice

    Procesul de creare a UE a impus asumarea n timp a unor responsabiliti noi n domeniul politicii energetice, att la nivelul instituiilor Uniunii, ct i la nivelul statelor componente. Printre principalele documente

  • istorice, legate de schimbrile climatice i energiile regenerabile trebuie amintite: Tratatul de constituire a EURATON; Carta European a Energiei (1991); Tratatul de la Maastrich pentru crearea unei piee energetice europene (1992); Cartea Verde Energii pentru viitor, Cartea Alb surse regenerabile de energie; Directiva 2003/30/CE care precizeaz valorile de 2 % pentru biocarburani n 2005 i 5,75 % n 2010, reforma PAC cu introducerea unui ajutor special de 45 euro/ha pentru culturile energetice; Strategia n favoarea biocarburanilor cu cele 7 axe; Directiva 2009/28/CE i mecanismele flexibile pentru promovarea surselor regenerabile de energie i msurile: reducerea emisiilor de GME cu 20 % i o pondere medie de 20 % de energie regenerabil n mixul energetic n 2020 cu diferenieri pe statele componente ale UE fa de nivelul din 2005.

    Aceste msuri au avut la baz situaia energetic n UE n perioada 1990-2006, care arat urmtoarele: producia total de energie a sczut de la 996,05 Mtoe la 880,43 Mtoe, iar importul a crescut de la 756,07 Mtoe la 1010,18 Mtoe; consumul a crescut att pe total, ct i pentru transport, dar s-a redus pentru agricultur; la energie regenerabil consumul a crescut de la 37,22 Mtoe la 59,68 Mtoe, pe baza creterii produciei acesteia de la 72,7 Mtoe la 127,97 Mtoe; la emisiile de CO2 o scdere ns mic, de la 2,75 % la 2,50 %.

    n ceea ce privete dependena de import, aceasta a crescut de la 44,6 % la 53,8 %, aceasta datorit faptului c numai 3 state din cele 27, sunt net productoare de energie (Olanda, Danemarca, Marea Britanie), celelalte fiind importatoare.

    4.2. Producia de biocombustibili n Uniunea European n politica abordat de UE pentru perioada de dup 2007 s-a avut n

    vedere situaia energetic din perioada 1990-2007, care arta urmtoarele aspecte: creterea consumului la petrol i la energiile regenerabile, creterea gradului de dependen de import i o scdere redus la emisiile de CO2.

    Analiza produciei de biodisel din UE n perioada 2002-2008 evideniaz urmtoarele aspecte (sursa Eurostat): pe ansamblu UE, producia realizat n 2008 de 7,755 mii metric tone a fost de 7,3 ori mai mare dect n 2002 i a avut ca surs de biomas uleiul de rapi (84 %), uleiul de floarea soarelui (13 %0, uleiul de soia, de palmier i altele (3 %); pe primul loc se situeaz Germania, cu o producie de 2,819 mil.metric tone, o cretere de 6,3 ori fa de 2002, iar ca pondere din total UE 36,3 % n 2008; Frana ocup locul doi, cu 1,715 mil.metric tone, cu o cretere de 4,9 ori fa de 2002 i o

  • pondere de 23,4 %; locurile urmtoare sunt ocupate de Italia, Belgia, Polonia, Portugalia, Danemarca, Austria, Spania; un grup mare de ri i-au nceput activitatea abia n 2006 i 2007, dar i-au crescut rapid produciile (Ungaria, Olanda, Finlanda, Lituania, Letonia); Romnia, cu un nceput de 10 mii tone n 2006 , a produs 65 mii tone n 2008.

    Producia de bioetanol n UE analizat pentru perioada 2004-2008 evideniaz aspectele urmtoare: pe total UE, producia n 2008 a fost de 2855 mil.litri, realiznd o cretere de 5,4 ori fa de cea realizat n 2004, dar anul 2008 a fost i cel n care volumul importurilor de bioetanol a fost cel mai ridicat, cu o cretere de aproape 400 mil.l fa de 2007, din care 75 % provenea din Brazilia; dintre ri, Frana ocup primul loc, cu o producie de 950 mil.l/an, o cretere de 9,4 ori fa de 2004 i o pondere n totalul UE de 33,3 %; Germania locul doi, cu o producie mai mic n 2004, are o cretere spectaculoas de 23,2 ori n 2008, producnd 581 mil.l pe an i contribuind cu 20,3 % din producia UE; Spania utiliznd orezul a avut cea mai mare producie n 2004 (254 mil.l), dar i crete producia de numai 1,36 ori n 2008, ocupnd locul trei n UE cu 12,1 %; Suedia are o evoluie oscilant de la 71 mil.l n 2004, crete la 153 mil.l n 2005, dar scade n continuare producia, realiznd 78,0 mil.l n 2008; Slovacia, Austria, Cehia, Anglia i raporteaz efectiv produciile realizate de abia din 2007, realiznd o cretere n 2008 de la 3,13 ori la 5,93 ori.

    4.4. Producia de biocarburani pe glob Producia de biocombustibili pe glob a cunoscut o permanent cretere

    de la 15,20 mil litri n 2001, la 37,70 mil litri n 2006, ajungnd n 2008 la 81.485 mil.litri, din care 65.401 mil. litri bioetanol i 16.084 mil. litri biodisel. Bioetanolul ca producie pe glob este dominat de SUA, care utilizeaz biomasa din porumb, realiznd 52 % din producia mondial n 2008.

    Brazilia, cu un nceput din anul 1920 n producia de bioetanol, dar oficial n 1931, utiliznd trestia de zahr, ocup locul doi, ajungnd n prezent la 38 % din producia mondial, asigurndu-i independena energetic la bioetanol. Locul trei este ocupat de Uniunea European cu o pondere de 4,36 % din producia mondial. Ali productori n curs de dezvoltare pentru bioetanol sunt China i Canada, din porumb, i India, din trestie de zahr.

    Biodiselul pe glob este realizat n principal de Uniunea European, cu o producie care deinea 54 % n 2008, utiliznd rapia i soia, din care trebuie nominalizat Germania, cu o pondere mondial de 20 %.

  • SUA, dei a intrat mai trziu n rndul productorilor de biodisel, utiliznd soia, i-a crescut producia oferind subvenii generoase i reduceri de taxe companiilor respective, devenind al treilea productor pe glob, cu o pondere n 2008 de 16 %. Legea Agriculturii din 2008 (Farm Bill Renovable Energy Previsions) prezint o serie de amendamente pentru dezvoltarea produciei de energie regenerabil legate de pia, asistena pentru generaiile urmtoare, de instruire pentru biodisel, de autonomie energetic rural, de asisten pentru cultura de biomas etc.

    Pentru biodisel, Brazilia este la nceput, cu o pondere de 7 % n producia mondial n 2008, ca i Argentina. n prezent n Brazilia, factorii dezvoltrii biocombustibililor sunt considerai urmtorii: suprafeele mari de trestie de zahr i soia, eficien ridicat n conversie, cota larg de amestec cu carburani fosili, modernizarea tehnologiilor de obinere, investiii n industria de automobile care folosesc amestec.

    Producia de biocombustibili este influenat direct de tipul de cultur, suprafeele cultivate, produciile de biomas la ha i de eficiena conversiei acesteia n biocombustibili.

    Analiza acestora n 2008 arat diferene mari ntre ri la aceti factori. n ceea ce prive]te producia la hectar de biocombustibili, se remarc biodiselul obinut din uleiul de palmier cu 4092 l/ha n Indonezia i 4726 l/ha n Malaiezia, iar la etanol, Brazilia, din trestia de zahr, cu 5476 l/ha, sfecla de zahr n Europa cu 5060 l/ha i porumbul n SUA cu 3751 l/ha.

    4.5. Factorii dezvoltrii produciei de biocombustibil i piaa biocombustibililor

    Factorii dezvoltrii n viitor a produciilor de biocombustibili pot fi considerai urmtorii (ei fiind tratai pe larg n cadrul capitolului): preul petrolului, efectul biocombustibililor asupra reducerii emisiilor poluante, disponibilul de materie prim i costul acesteia, costul biocombustibililor, politicile guvernamentale, efciena conversiei biomasei, perfecionarea tehnologiilor de cultivare a plantelor, impulsionarea cercetrii pentru tehnologiile generaiilor urmtoare de biocombustibili, opiunile pentru export, modul de funcionare a pieei carburanilor cu toi juctorii acesteia.

    Piaa combustibililor cuprinde ca orice pia oferta i cererea, fiecare dintre ele fiind determinate de factori interni i factori externi. Oferta ca factori interni este influenat de disponibilul de biomas, nivelul investiiilor n ntreprinderi, existena economiilor de scal, iar ca factori externi: nivelul

  • cotelor de biocombustibili, politica fiscal, posibilitile de export. Pe piaa biocombustibililor acioneaz ns mai muli juctori: cultivatorii de culturi energetice, fabricanii de biocombustibili, furnizorii de servicii, (semine, ngrminte, tehnologii etc), comercianii de biocombustibili i utilizatorii acestora, (fiecare din ei fiind analizai n tez). Fiecare dintre acetia se confrunt cu incertitudini de care va trebui s in cont n strategiile care se vor elabora.

    Capitolul 5 Producia de biomas de la principalele culturi energetice i producia de biocombustibili n Romnia. Strategia pentru perioada 2008-2020

    5.1. Resursele, producia i consumul de energie primar n Romnia

    Analiza s-a efectuat pe perioada 1998-2008, evideniind urmtoarele aspecte importante:

    Producia de energie primar n Romnia s-a meninut relativ constant n perioada 1998-2008, oscilnd ntre 27.065 mii tep (2006) i 28.861 mii tep (2008), iar consumul final energetic ntre 23.590 mii tep (2002) i 25.313 mii tep n 2006. Importul a crescut de la 13.949 mii tep/an la 16.386 mii tep n 2008. n aceste condiii, gradul de independen pe total energie a crescut de la 70,3 % n 1998 la 72,5 % n 2008, dar pentru iei a sczut de la 57 % n 2000 la 35,5 % n 2008.

    Ponderea cea mai ridicat din consumul final energetic o deine sectorul industrie, cu 39,4 % n 1998 i 37,2 % n 2008 i sectorul transporturi i comunicaii cu 15,8 % n 1998 i 21,3 % n 2008.

    Intensitatea energetic exprimar prin Consumul Intern Brut de Energie i Produsul Intern Brut are valori ridicate, comparativ cu media n U.E. (1,05 Ktoe/Euro fa de 0,98 Ktoe/euro), dar i cu cel realizat n alte ri europene (Ungaria 0,5 Ktoe/euro, 0,7 Ktoe/euro n Cehia), exprimnd o eficien sczut a utilizrii produciei de energie.

    5.2. Resursele de biomas de la principalele culturi energetice Integrarea Romniei n Uniunea European a necesitat luarea unor

    msuri i n domeniul utilizrii resurselor regenerabile de energie i a reducerii emisiilor de gaze nocive. Cercetrile efectuate de diverse organisme internaionale evideniaz potenialul agricol al Romniei, care poate fi comparat cu cel al Ungariei i Poloniei.

  • Cu o suprafa arabil de 9.379.331 ha (62 % din suprafaa total a rii) i de pduri i alte terenuri cu vegetaie forestier de 6.728.600 ha, se apreciaz c Romnia are un potenial evaluat la circa 7594 mii tone echivalent petrol (toe) sau 318x109MJ/an. Utilizarea potenialului agricol pentru producerea biocombustibililor din prima generaie a nceput n Romnia n anul 2006, cnd s-au proiectat primele instalaii pentru producerea de biodisel din rapi.

    Culturile energetice denumite culturi utilizate pentru obinerea biocombustibililor, a energiei electrice i termice care gsesc condiii favorabile pedoclimatice sunt considerate urmtoarele: cerealele, culturile de sfecl de zahr i sorg, culturile oleaginoase, leguminoase (lucern, etc) i culturi speciale (Cynara, Miscanthus, Panicum virgatum). n etapa actual se utilizeaz culturile de rapi, floarea soarelui i soia pentru producerea biodiselului i culturile de gru i porumb pentru bioetanol.

    Cultura de gru n Romnia, cu o suprafa n medie de 2159 mii ha pe perioada 2000-2009, realizeaz o producie de biomas din boabe n medie de aproximativ 5511 mii tone/an, respectiv 110 milioane Gogajouli..

    Cultura de porumb, cu o medie de 2768 mii ha, a produs 7800 mii tone boabe, cultura de floarea soarelui de pe 914 mii ha a realizat circa 1100 mii tone/an; la cultura de rapi, de pe o suprafa de 165,5 mii ha s-au produs circa 225 mii tone semine, cultura de soia, cu aproximativ de 102,2 mii ha a produs 182 mii tone semine ( 4 mil. GJ).

    n Romnia, pentru perioada urmtoare se consider c, o alt cultur pentru producerea de biocombustibili, care are condiii favorabile, este sfecla de zahr. Se fac de asemenea ncercri de a se cultiva Anghinar sp. i Miscanthus sp.

    Analiza produciilor medii la ha obinute n Romnia la culturile energetice, comparativ cu cele realizate n alte ri din U.E. evideniaz un nivel sczut i necesitatea de a le crete prin aplicarea unor tehnologii moderne.

    5.3. Politica Romniei privind valorificarea resurselor regenerabile de energie cu privire special pentru producia de biocombustibil

    Romnia a semnat n 1997 Protocolul de la Kyoto i l-a ratificat n ianuarie 2001, prin care valoarea int pentru reducerea emisiilor de gaze cu efect de ser este de 8 % n perioada 2008-2012, fa de nivelul din 1989.

    Din 27 octombrie 2008, Romnia a devenit membru al Parteneriatului pentru Energie Regenerabil i Eficiena Energiei.

  • ncepnd din anul 2000, Romnia a adoptat o serie de Hotrri, Legi i Acte normative pentru ndeplinirea sarcinilor care i revin n politica privind dezvoltarea produciei de energie regenerabil i a eficienei energetice.

    Printre acestea, Legea 571/2003, completat i de Legea 344/2006 prevede pentru uleiurile minerale i pentru biocombustibili produi n totalitate din biomas, scutiri totale de la plata accizelor. Hotrrea de Guvern 1535/2003 prevede aprobarea Strategiei de valorificare a Resurselor Regenerabile de Energie; Hotrrea de Guvern 1844/2005 i H.G. 456/2007 transpun prevederile Directivei C.E. 2003/30/CE privind promovarea utilizrii biocombustibililor i a altor carburani pentru transport minim 2 % de la 1 iulie 2007, de la 1 iulie 2008 motorina cu minim 4 % biodisel, de la 1 iulie 2009 benzina cu 4 % amestec cu bioetanol, iar din2010 trebuie asigurat un minim de 5,75 % amestec; legea 139/2007 prin care se acord sprijin financiar pentru culturile energetice.

    Acest sprijin cuprinde pe lng plata unic pe suprafa (SAPS) i pli naionale directe (PNDC), plat pentru cultura energetic, subvenionarea motorinei i a creditului agricol.

    n 2010 s-a adoptat Legea 139 pentru modificarea Legii 220/2008 privind stimularea producerii de energie din surse regenerabile. Aceste modificri legate de biomas i biocombustibili se refer la conceptul de biomas i sursele regenerabile de energie i la sprijinul naional al culturilor.

    5.4. Producia de biocobustibili n Romnia Producerea de biodisel a nceput n 2006, primele fabrici fiind Ultex

    ndrei, Argus-Rmnicu Vlcea, Autoelite Baia Mare, realizndu-se 10.000 tone i a crescut, ajungndu-se n 2009 la 70.000 tone, date publicate de Eurobservator (n Romnia nu sunt publicate cifre oficiale). Pentru realizarea obligaiilor privind procentele de amestec cu carburani clasici, Romnia a importat ncepnd din 2007 biodisel, n 2009 aceste cantiti fiind de 172.600 tone.

    Filiera producerii de biomas i de fabricare a biodiselului cuprinde 27 productori de biodisel cu autorizaie de antrepozit fiscal cu o capacitate anual de 285 mii tone, fabricile de ulei i fabricile de alcool, colectorii de materii prime necesare producerii de biocombustibili i fermierii care au culturile energetice.

    Romnia, conform estimrilor MADR, are un potenial de a elimina importul de biodisel prin introducerea n cultur a unei pri din suprafeele necultivate i prin creterea produciilor de biomas la hectar.

  • Producia de bioetanol se bazeaz pe investiiile efectuate n 5 fabrici, cu o capacitate estimat de 450 mii tone/an, oficial ns nu s-a publicat care este producia n prezent.

    Prognozele fcute de ANRE, privind consumul de benzin i de motorin pentru perioada 2010-2020 i procentele de biocombustibili angajate de Romnia de 5,75 % n 2010 i 10 % n 2020, arat un necesr de consum de biocombustibili de minim 252 mii tep n 2010 i 514 mii tep n 2020.

    5.5. Strategia Romniei privind biomasa i producia de biocombustibili

    n 2007, Romnia i-a elaborat Strategia privind biomasa i producia de biocombustibili pentru perioada 2008-2020 cu trei scenarii.

    n cadrul acestei strategii sunt prezentate Obiectivul principal Securitate energetic i Obiectivele specifice pentru creterea ponderii biocarburanilor n cadrul carburanilor pentru transport: durabilitate, competitivitate, eficien economic i dezvoltarea socio-economic a zonelor rurale. Cele trei scenarii elaborate au n vedere asigurarea procentului de participare a biocombustibililor n amestecuri de combustibili de 5,75 % n 2010, 8 % n 2015 i 10 % n 2020 pe baza creterii suprafeelor utilizate pentru biocarburani.

    n toate cazurile, suprafaa arabil necesar pentru obinerea biomasei este sub 7,5 %, mult mai sczut dect suprafaa arabil rmas n afara prevederilor acordului de aderare a Romniei la U.E. (25,4 %) sau care nu este utilizat n prezent. De asemenea, s-a considerat c producia de biocombustibili de generaia a 2-a va putea fi operaional la nivel industrial, numai dup 2017.

    Aceast strategie ns este necesar s fie revizuit, avnd n vedere noile prevederi ale U.E. printre care i neplata celor 45 euro/ha la culturi energetice din partea U.E. din 2010, ntruct se consider c suprafeele stabilite la nivel european pentru biocombustibili s-au realizat.

    n 2010, Romnia trebuie s prezinte la U.E. un raport privind rezultate legate de utilizarea resurselor regenerabile i obiectivele pentru perioada urmtoare.

    5.6. Analiza SWOT privind producerea de biocombustibili n Romnia

    Pe baza cercetrilor privind producerea de biocombustibili n Romnia, efectuat n acest capitol, s-a alctuit o analiz SWOT.

  • Principalele puncte slabe sunt legate de lipsa informaiilor oficiale privind suprafeele cultivate cu culturi energetice, produciile realizate de biodisel i bioetanol, lipsa unor programe privind structura culturilor pentru biomasa destinat biocombustibililor, inconsecvena guvernanilor n susinerea financiar a productorilor i utilizatorilor de biocombustibili, lipsa unei piee interne a biocombustibililor.

    Romnia are ns un potenial ridicat de suprafa i de condiii pedoclimatice pentru asigurarea biomasei necesar producerii de biocombustibil dintr-o gam larg de culturi energetice. Legislaia i reglementrile interne i internaionale, precum i criza economic actual reprezint unele incertitudini i riscuri.

    Existena unei piee nesaturate intern, dar mai ales externe prezint cea mai sigur oportunitate pentru dezvoltarea produciei de biocombustibili.

    Capitolul 6 Cercetri privind potenialul de biomas solid de la principalele culturi energetice i managementul utilizrii acesteia pentru producerea de biocombustibili n judeul Clrai

    6.1. Scurt prezentare a judeului Clrai Judeul Clrai ales ca studiu de caz pentru managementul produciei

    de biocombustibili realizat de la unele culturi energetice se afl n Cmpia Brganului, agricultura fiind activitatea economic principal, desfurat pe o suprafa de 426,2 mii ha.

    Producia agricol vegetal este orientat cu precdere spre culturile de cereale boabe, cu o pondere de 66,2 % n 2008, urmat de plantele oleaginoase cu 27 %, totalul fiind de 380.706 ha.

    6.2. Potenialul de biomas solid de la principalele culturi energetice Pentru evaluarea potenialului de biomas solid s-au avut n vedere

    culturile de gru, porumb, floarea soarelui, rapi i soia, analizndu-se suprafeele cultivate n perioada 2004-2009, produciile medii i produciile totale principale i secundare.

    Sintetiznd calculele efectuate se poate aprecia c judeul Clrai dispune de cantiti mari de biomas principal de la culturile de cereale i oleaginoase astfel: peste 400 mii tone pe an la gru, peste 310 mii tone porumb; circa 100 mii tone floarea soarelui, n jur de 50 mii tone rapi i peste 40 mii tone de soia. La acestea se pot aduga produciile de biomas secundar.

    6.3. Potenialul produciei de energie de la principalele culturi n managementul producerii de biocombustibili din culturile energetice

    intereseaz potenialul energetic al acestora la hectar, care s-a calculat avnd

  • n vedere produciile la ha fizice principale, secundare i ca plant ntreag i coninutul energetic pe kg al acestora.

    n acest scop s-au avut n vedere produciile de biomas la ha minime realizate n perioada analizat, cele maxime i producia medie a perioadei 2004-2009.

    Lund n eviden producia medie de energie la ha obinut n judeul Clrai, se pot aprecia urmtoarele aspecte:

    - valoarea energetic mai ridicat a produciei secundare la ha fa de producia principal la culturile de gru, porumb i floarea soarelui; - comparnd culturile ntre ele se evideniaz cultura de porumb cu un potenial energetic la hectar mare, att la producia principal, ct i la cea secundar; - la culturile oleaginoase, potenialul energetic/ha nu difer semnificativ, ntre

    ele fiind mai sczut ns dect cel al cerealelor ns. O parte din producia de biomas solid obinut de la culturile de

    cereale i cele de oleaginoase ca produse principale, se poate utiliza i n judeul Clrai pentru producerea de biocombustibili din prima generaie.

    6.4. Evaluarea potenialului produciei de biocombustibili Pentru aprecierea produciei de bioetanol i biodisel care s-ar putea

    obine s-au avut n vedere procentele din biomasa solid obinut posibil de utilizat n acest scop, deci fr a afecta necesarul pentru consumul uman i ca furaje pentru animale.

    Astfel la biomasa din producia de boabe la gru s-a luat n considerare un procent de 40 %, la porumb 45 %, la rapi 90 %, la floarea soarelui 20 % i la soia 6 %.

    n stabilirea acestor procente s-au avut n vedere, utiliznd datele statistice, produciile totale realizate n ar i importul pe de o parte i consumul alimentar i furajer i exportul pe de alt parte. De asemenea s-au avut n vedere i unele precizri din partea Ministerului Agriculturii.

    n privina produciei de biocombustibili pe tona de biomas de semine s-au avut n vedere informaii din literatura de specialitate romn i din Germania i rezultatele de la unele fabrici din ar.

    Sintetiznd calculele, se poate aprecia c n judeul Clrai se pot realiza cantiti importante de bioetanol din gru i porumb ( ntre aprox. 58.000 litri i 209.000 litri cu o medie de 113.000 litri/an) i de biodisel din culturile oleaginoase pe an (ntre 13.000 tone i 38.500 tone cu o medie de

  • 24.273 tone/an. Pe lng acestea, ca produse secundare din fabricarea biodiselului din rapi, floarea soarelui i soia se pot realiza producii bune de turte i de glicerin.

    6.5. Bilanul energetic pe culturi Aprecierea unei culturi sub aspect energetic se poate face, fie avnd n

    vedere producia de energie net la ha obinut, fie bilanul energetice pe ha, ca un raport ntre input/output energetic.

    Inputurile energetice ale unei culturi cuprind consumurile energetice fixe i consumurile energetice variabile. Consumurile energetice fixe sunt cele legate de utilizarea mijloacelor mecanice, iar consumurile energetice variabile se determin pe baza tehnologiilor de cultivare legate de cantitile de ngrminte, smn, pesticide, ap pentru irigaii etc utilizate.

    Calculndu-se de exemplu bilanul energetic la gru pentru o producie de 7264 kg/ha, din care 3200 kg boabe i 4064 kg paie (media din perioada 2004-2009 n judeul Clrai) a rezultat un consum energetic total de circa 27.000 Mj/ha pentru o producie de energie la hectar de 130.000 Mj, deci un bilan energetic de 0,207, sau altfel spus 1 Mj consumat a produs 4,83 Mj producie energetic.

    6.6. Eficiena producerii i conversiei biomasei n biocombustibili Eficiena conversiei biomasei n biocombustibili este apreciat ca un

    raport ntre consumul total de energie, att pentru obinerea biomasei, ct i pentru conversia acesteia i energia cuprins n biocombustibili.

    Calculele efectuate pentru bioetanolul obinut din boabele de gru, arat c energia net la ha este de 3860 KWh, iar raportul input/output de 1:1,29. Din consumul total de energie 29 % l reprezint energia pentru obinerea biomasei i 71 % pentru conversia acesteia n bioteanol.

    La bioetanolul obinut din boabele de porumb, raportul input/output a fost de 1:1,67, energia consumat pentru producerea boabelor i transportul acestora a reprezentat 30 %, iar conversia n bioetanol i transportul acestora 70 %.

    n ceea ce privete obinerea biodiselului din rapi, raportul input/output a fost de 1:2,27, din energia total consumat, 41,5 % aparine producerii de semine i 58,5 % conversiei n biodisel.

    6.7. Bilanul bioxidului de carbon n producerea biocombustibililor

  • n managementul integrat al utilizrii culturilor energetice n scopul producerii de biocombustibili, un domeniu important de cercetat l reprezint economia de gaze nocive realizate i costul acestei economii.

    Bilanul bioxidului de carbon n cazul obinerii i utilizrii biocombustibililor reprezint unul din avantaje n raport cu costul mai ridicat al acestora fa de carburanii clasici.

    Calculele efectuate la gru la obinerea bioetanolului evideniaz o economie de CO2 de 0,108 kg/ha sau un procent de reducere de 50,4 %, comparativ cu utilizarea benzinei..

    La obinerea i utilizarea biodiselului din rapi, economia de CO2 a fost de 0,162 kg/ha fa de utilizarea motorinei, deci un procent de reducere de 33,2 %.

    Aceste valori ale economiei de CO2 realizat la producerea biocombustibililor se ncadreaz n limitele obinute de instituii i organisme din alte ri.

    6.8. Scenariu pentru cultivarea n judeul Clrai a culturii de Miscanthus sp

    Judeul Clrai dispune de o suprafa ndiguit i desecat de 88.900 ha, din care n anul 2009 au rmas necultivate 14.300 ha, din care s-a propus ca cca 10.000 ha s fie cultivate cu Miscanthus giganteus, o cultur ligno-celulozic peren, elaborndu-se un scenariu de cultivare. Durata de exploatare este de 17 ani, putndu-se obine producii de la 4000 kg n al doilea an pn la cca 18.000 kg/ha anual n ceilali ani.

    Avnd un bilan energetic superior lemnului, cultura poate nlocui o cantitate apreciabil de combustibil clasic. Calculele arat c se pot obine de la 24 mil litri n anul al doilea, 60 mil litri n anul al treilea i cte 1080 mil litri pe an n ceilali 15 ani. n lucrare s-a precizat i tehnologia de cultivare pe baza recomandrilor Institutului Naional de Cercetare-Dezvoltare Fundulea.

    Concluzii generale i propuneri Romnia cu o suprafa de 9,38 mil ha i 6,73 mil pduri i alte terenuri

    n vegetaie forestier are un potenial de biomas evaluat la circa 7594 mil tone echivalent petrol sau 318x109Mj/an.

    Condiiile pedoclimatice dau posibilitatea cultivrii unei game largi de culturi energetice pentru producerea de biocombustibilifr a afecta necesarul de hran sau alte domenii.

    Pentru dezvoltarea produciei de biocombustibil n Romnia este necesar fundamentarea politicii statului n acest domeni sub aspect

  • organizatoric, economic, legislativ i normativ pe toat filiera de la cultivatorii la utilizatorii de biocombustibili.

    Managementul utilizrii culturilor energetice pentru producerea de energie trebuie tratat i realizat ca un management integrat care s cuprind i problemele legate de protecia mediului, a solului i a biodiversitii. n acest scop este necesar i o mai eficient colaborare ntre Asociaia Productorilor de Biocombustibili i toate ministerele de resort pentru elaborarea de programe i strategii i includerea n prezentrile oficiale a produciilor de biocombustibil realizat n Romnia.

    Romnia trebuie s-i elaboreze strategii pentru biocombustibilii din generaia a 2-a i chiar a 3-a cu programe i investiii de introducere a unor culturi energetice plurianuale care vor putea fi folosite pentru biocombustibili prin utilizarea tehnologiilor de conversie care exist deja n unele ri.

  • SUMMARY

    Title of the Doctoral Thesis THE MANAGEMENT OF USING ENERGY CROPS IN ORDER TO OBTAIN ENERGY BASED ON SOLID BIOMASS. Scientific coordinator Professor BERCA MIHAI, PhD

    (UASVM Bucharest 2010) The thesis comprises 6 chapters, general conclusions and proposals, references, amounting to 364 pages, which include 82 tables and 46 figures and graphs. In the text we cited 88 reference titles. One of the most current issues in the contemporary world economy is the energy issue, still dominated by oil. As Paul Roberts shows in his paper The End of Oil: on the Edge of a Perilous New World: Energy has become the means of payment for the economic and political power, the value dominating the hierarchy of nations, even an indicator of material success and progress. Access to energy has become the utmost imperative of the 21st century. But the gradual depletion of fossil fuel resources, together with the global warming process correlated with the increase in greenhouse gas emissions triggered and boosted the research aimed at finding other energy sources of the renewable type, which biomass obtained from energy crops is part of. In this context, the research performed within this doctoral thesis in the field of the management of using energy crops in order to obtain energy from solid biomass in general, and biofuels in particular, may be considered a current issue for Romania as well. Chapter 1: The current status of the research and results regarding non-renewable resources and the use of biomass 1.1. The current situation and the evolution of non-renewable resources The primary world demand for energy in 2005 was of 11,429 Mtoe and it is considered that by 2050 the need for energy will have doubled. In the structure of the primary energy consumption on the globe (2005), renewable energies accounted for 13% (AEI), of which 10% solid biomass and residues. It

  • is estimated that in 2030 renewable energies will account for about 14%. Regarding the fields of energy consumption in 2030 it is forecast that industry will account for 39%, agriculture, the population and constructions for 35%, and transport for 26%. Non-renewable energy reserves were estimated at the end of 2005 to be 1,300 Gt SKE (coal equivalent), of which 55% coal, 26% oil, 15% natural gas, 4% nuclear fuel, and the resources at 6,500 Gt SKE, of which 60% coal, 29% natural gas, over 7% nuclear fuel. If the annual production were maintained at the level of 2005, the known reserves as a whole would be enough for one hundred years, and the resources for half a millennium.

    Forecasts regarding the demand for energy according to countries in the interval 2006-2030 show that it will amount to 11% in China and India, 11% in the USA, and to 5% in the UE.

    At global level, to the problem of depleting non-renewable resources we add global warming caused by the increase in greenhouse gas emissions and ozone layer thinning. These GHG emissions result from industry up to 20%, agriculture 15%, deforestation 15%, transport 35%. The Kyoto Protocol aimed at decreasing the greenhouse gas emissions of industrialised countries by 5% before 2012, compared to the emissions generated in 1990. According to countries, the largest greenhouse gas emitters are the USA, followed by China, India, Indonesia.

    The increase in the world demand for energy as a result of economic growth, the gradual depletion of fossil fuel resources, the increase in gas emissions, the oil price unforecastable fluctuation led to research into finding new renewable energy resources on the globe, including biomass.

    1.2. Biomass as a renewable energy source, its caloric structure and power

    According to the European legislation, biomass is made up of the biodegradable fraction of products, waste and residues from agriculture, forestry and related industries, of industrial and municipal waste.

    On the globe, the status of the amount of biomass, of the stored energy and of its use is as follows: overall amount, (including humid) over 2,000 bn tons, of which 1,800 bn tons the amount of terrestrial plants; the amount of energy stored in the terrestrial biomass 25,000x1018 Joules; 20.7% of the earths biomass is used as food and over 90% represent a reserve for energy, industrial use and for the operation of the other bioenergy systems.

  • Almost half of the world production of primary biomass, estimated at 100-140 m tons is obtained in the equatorial area between 00-150 latitude, and a quarter between 150-300 north and south. The continental environment biomass, in its turn, is made up of the various ecosystems biomass: forests, savannahs, steppes, tundra, deserts, agro-ecosystems, agricultural, industrial and urban waste and residues. The main biomass source is represented by forests.

    The crops most widely used for energy purposes are wheat, maize, rice, barley, rye, sugar beets, sugar cane, potato, oil plants, herbaceous plants (Miscanthus, Cynara, Panicum v).

    The biomass chemical structure varies considerably according to crop, but we can say that dry plants contain: cellulose 65%, hemicellulose 17%, lignin 17%, other substances 1%.

    The caloric power of biomass is closely related to its lignin content. In terms of energy, among the crops used for biomass we distinguish: poplar and fast growing willow, Miscanthus, followed by perennial plants and cereals. Among residues, wheat and rapeseed straw have higher energy yield per hectare.

    1.3. The biomass principles, marketing chains and conversion technologies

    Biomass can be marketed in several directions or chains: non-food biomaterials, heat, pharmaceuticals, electricity, human and animal nutrition, as fertiliser, in obtaining biofuels. Among these chains there are competition and/or complementarity relations, which indicates the need to study and assess them in elaborating strategies for each field, taking into account as principles: priority in allocating the biomass resources which are more effective, which do not damage the soil, biodiversity, nutrition and the environment, and whose cost is lower than the cost of non-renewable energies.

    At the current stage, the technologies used in biomass conversion are: 1 Biomass burning 2 Mechanical extraction through cold pressing in order to obtain pure

    vegetal oil from oil plants 3 Extracting oil through cold pressing, purifying and trans-esterifying

    it from oil crops and animal fats, in order to obtain biodiesel 4 Hydrolysis and fermentation from sugar beets, sugar cane, cereals to

    obtain bioethanol

  • 5 Anaerobic digestion of wet biomass (manure, chicken farms slurry, household waste, sawdust, straw, slaughterhouse waste etc) to obtain biogas and biohydrogen

    6 Pyrolysis and gasification to produce gas (MHU gas) and hydrogen These biomass conversion processes can be completed in independent

    installations according to the type of product obtained or in complex installations called integrated biorefineries, where a wide range of products can be obtained: biofuels, electricity, biohydrogen, biogas, chemicals, by-products (cake, glycerine, tar, carbon etc.)

    The efficiency obtained from the various biomass conversion processes varies according to the conversion technologies and the type of product obtained.

    The research performed in Germany emphasises for instance the fact that the highest marginal costs (Euro/kWh) are associated with the production of biogas followed by the production of biofuels and heat from cereals.

    The amounts of CO2 that are saved are larger in wood pane heating, followed by the production of biogas and the lowest in obtaining biofuels.

    Chapter 2 Theoretical-methodological aspects in the research into the use of energy crops in order to obtain energy based on solid biomass is the methodological chapter in which we defined the concept of The Management of using energy crops in order to obtain energy under the form of biofuels as an integrated management which comprises all the energy crops stages, areas, yields and technologies, the biofuel transformation processes, the influence on biodiversity, on the environment and on the soil. All these domains will be analysed in terms of energy, using the following indicators: the energy production per hectare according to crops, the energy balance of the transformation process of biomass into biodiesel and bioethanol, the final energy efficiency of energy crops, the amount of carbon dioxide that can be saved and the cost of saving carbon dioxide.

    The main research methods are: the quantitative and qualitative method, the comparison, the SWOT analysis, the scenario method.

    The information basis of the research is represented by the statistical data published by international bodies, the research and the papers in the field published in the country and abroad, information provided by the National Institute of Statistics, the relevant Ministries, ANRE and certain companies.

  • Chapter 3 The current status of using biomass in the biofuel production on the globe and in the EU

    3.1. Biofuel types In our own research we chose the domain of biomass conversion into

    first generation biofuels, namely biodiesel and bioethanol. The evolution of the research into renewable resources and the amount

    of investment in this domain may be estimated as proportional to the oil price and to the evolution of the energy crises since 1970 to the present.

    Lately, political commitments of certain states, mainly EU states, have been introduced to lower greenhouse gas emissions.

    Among the first countries that started processing the biomass into biofuels as early as 1980, but especially after 2000, there are the USA, Brazil, India, Germany and France.

    Biofuels are solid, liquid and gaseous fuels used in transport, of various types: bioethanol, biodiesel, biogas, biomethanol bio ETBE, bio-MTBE, biohydrogen, etc.

    Biofuels can be used in combination with traditional fuels, up to 5-20% without adapting the engines and up to 100% with a special engine adjustment.

    According to the biomass resources and to the processing technologies thereof, biofuels are grouped into 4 generations so far:

    - 1st generation biodiesel obtained from oil crops and animal fat, bioethanol from cereal crops rich in carbohydrates, biogas and bio-ETB;

    - 2nd generation bioethanol, biodiesel, biogas, biohydrogen, Bio-DME-biofuels obtained from lygnocellulosic biomass (woody and herbaceous plants, farming, forestry and wood industry residues);

    - 3rd generation biofuels obtained from genetically modified organisms, in order to increase the oil or carbohydrates content, and from algae crops;

    - 4th generation biofuels obtained from crossed or genetically modified crops, other crops (fungus Gliocladium roseum) that have the property of absorbing large amounts of CO2, or of using methane reserves build on the seabeds and ocean floors (gas hydrates).

    The most important at the current stage, in terms of production and use in transports, are bioethanol and biodiesel.

    Bioethanol

  • Bioethanol is defined as ethylic alcohol of natural origin. The raw materials used in producing bioethanol are: glucide raw materials (sugar cane, sugar beet, sugar sorghum, certain fruits, etc.); starch raw materials (maize, wheat, potato, manioc); lygnocellulosic raw materials (wood and other fibre plant materials).

    The energy content of bioethanol is estimated to be around 65% of gasoline.

    At the current stage, bioethanol is an important source of fuels, but the availability of the raw material (especially cereals) is one of the major constraints to developing the production of this fuel.

    Biodisel Biodiesel was first implemented in South Africa, before World War II.

    In 1979, research began in order to trans-esterify sunflower oil and refine ester so as to obtain standard biodiesel, and in 1983 biodiesel was tested on diesel engines and it was published.

    Subsequently, factories began operating in Europe (The Czech Rep., France, Germany, Sweden), in America and Indonesia.

    The sources of biomass for the production of biodiesel are: soybeans (almost all the diesel produced in the USA is obtained from soybeans); sunflower seeds and rapeseed (used especially in Europe); coconut oil (in the Philippines and South America); mustard, cotton and canola seeds (canola is similar to rapeseed); olive oil; algae (in South Africa there is a refinery that produces biodiesel from algae); palm tree oil; maize oil; fat materials of animal origin (animal fats, residual fats from the meat processing industry, fat food residues).

    3.2. The advantages of using biofuels and the questions that are raised

    The progress from using non-renewable resources to saving energy as a result of renewable resources led to highly ambitious programmes, huge research and development funds for the biofuel industry at global level.

    These trends and processes are based on a set of economic, social, environmental, political advantages emphasised by those who consider that the transition to using biofuels can diminish the current problems that all countries find disquieting, mainly related to the depletion of non-renewable resources and to climate and the environment.

  • The research and calculations performed by various international institutions, organisations and agencies raise questions related to each advantage, emphasising in fact the need to study the limits in elaborating the strategies of using biofuels, especially 1st generation ones.

    Actually, these pros and cons presented in this chapter refer to: the sufficient or insufficient decrease in gas emissions; the use of very large amounts of water which may lead to a water shortage on the globe; protecting biodiversity or not; the social and economic development of the rural environment not only on the short term, due to the increase in agricultural products prices and the decrease in the number of jobs associated with the switch to lygnocellulosic requirements; competition between the food production and the biofuel production, especially in Asia and Africa, where, in 2010, there is already a non-food area deficit, and in Central America starting with 2015.

    To these we add the influence of energy crops on the soil by increasing the amounts of fertilisers and pesticides in order to boost yields per hectare or by means of monoculture.

    Yet, the development of the research into new renewable resources and the improvement in technologies to obtain biofuels may lead to their export as a source of income.

    At global level, the development in biofuel productions from renewable resources, if it is achieved at a higher level than their renewing capacity, may lead to other harmful phenomena such as: the decrease in pasture areas, desertification, decrease in fishing, decrease in resources for other products such as: paper, valuable chemicals and pharmaceuticals.

    3.3. The SWOT analysis of the biofuel production Synthesising the aspects identified in the researched papers and

    considering the points presented above, a general SWOT analysis of the biofuel production was performed.

    As main strengths we can emphasise those related to: decreasing the imports of non-renewable sources, decreasing gas emissions, increasing the agricultural producers revenues, the use of biofuels does not require major changes in cars or in distribution systems.

    In terms of weaknesses the most important ones refer to: the increase in energy crops areas to the detriment of those for food and feed, the use of

  • large amounts of fertilisers, biodiversity may be affected, the high cost of 1st generation biofuels.

    In elaborating the strategies for biofuels it is also necessary to take into account the threats and opportunities. As threats, the most important are: long-term uncertainties regarding the demand and the supply price, both for biomass and for biofuels; the development of options, potentially competing ones for transport (electrical vehicles, hydrogen powered ones, etc.); the energy policies in the field are still analysed; the existence of a biofuel market still unorganised and unstabilised.

    But there are also opportunities for the development in the biofuel production, among which the safest would be: large investments into research in order to find new renewable resources and the technologies to produce biofuels of the other generations, the full liberalisation of energy and natural gas markets starting with 2007; the possibility to access European funds, the supply of various facilities for the biofuel production.

    Chapter 4 The Biofuel Production in the European Union and on the Globe

    4.1. The EU policy regarding climate changes and renewable energies historical references

    The process of creating the EU required taking new responsibilities in time in the field of energy policy, both at the level of the Unions institutions and at the level of the member states. Among the main historical documents related to climate changes and renewable energies we must mention: The Treaty establishing the EURATOM; The European Energy Charter (1991); The Maastricht Treaty on the creation of a European energy market (1992); The green Charter Energies for the future, The White Charter renewable energy sources; Directive 2003/30/CE which specifies the values of 2% for biofuels in 2005 and 5.75% in 2010, the CAP Reform with the introduction of a special support of 45 euro/ha for energy crops; The Strategy in favour of biofuels with the 7 axes; Directive 2009/28/CE and the flexible mechanisms for promoting renewable energy sources and the measures: to decrease GME emissions by 20% and an average ratio of 20% of renewable energy in the energy mix in 2020 with differences according to EU member states in 2005.

    These measures were based on the energy status in the EU in the interval 1990-2006, which indicates the following: the overall energy production decreased from 996.05 Mtoe to 880.43 Mtoe, and imports increased from

  • 756.07 Mtoe to 1010.18 Mtoe; consumption increased both at overall level and in transport, but it decreased in agriculture; in terms of renewable energy consumption increased from 37.22 Mtoe to 59.68 Mtoe, based on the increase in its production from 72.7 Mtoe to 127.97 Mtoe; yet, in terms of CO2 emissions, there is a small decrease from 2.75% to 2.50%.

    Regarding the dependence on imports, it increased from 44.6% to 53.8%, due to the fact that only 3 of the 27 states are net energy producers (Holland, Denmark, Great Britain), the other ones being importers.

    4.2. The biofuel production in the European Union In the EU policy for the interval after 2007 the energy status in the

    interval 1990-2007 was considered, which presented the following aspects: the increase in oil and renewable energies consumption, the increase in the dependence on imports and a small decrease in CO2 emissions.

    The analysis of the biodiesel production in the EU in the interval 2002-2008 points to the following aspects (source: Eurostat): at EU level, the production obtained in 2008 of 7.755 thousand tons was 7.3 times larger than in 2002 and it had as biomass source rapeseed oil (84%), sunflower oil (13%), soybean oil, palm tree oil and others (3%); the first position is filled by Germany, with a production of 2.819 million metric tons, an increase of 6.3 times compared to 2002, and as a ratio to the EU total 36.3% in 2008; France fills the second position, with 1.715 million metric tons, with an increase of 4.9 times compared to 2002 and a ratio of 23.4%; the next positions are filled by Italy, Belgium, Poland, Portugal, Denmark, Austria, Spain; a large group of countries started this activity only in 2006 and 2007, but increased their productions rapidly (Hungary, Holland, Finland, Lithuania, Latvia); Romania, with a starting point of 10 thousand tons in 2006, produced 65 thousand tons in 2008.

    The bioethanol production in the EU analysed in the interval 2004-2008 points to the following aspects: at EU level, the production in 2008 amounted to 2,855 m litres, increasing by 5.4 times compared to the one in 2004, but 2008 was the year in which the amount of bioethanol imports was the largest, with an increase of almost 400 m litres compared to 2007, 75% of which was from Brazil; among the countries, France fills the top position, with a production of 950 m litres/year, and increase of 9.4 times compared to 2004 and a ratio to the EU total of 33.3%; Germany second position, with a smaller production in 2004, records a spectacular increase of 23.2 times in 2008,

  • producing 581 m litres per year and accounting for 20.3% of the EU production; Spain, using rice, had the highest production in 2004 (254 m litres), but it increased its production only by 1.36 times in 2008, filling the third position in the EU with 12.1%; Sweden had an oscillatory evolution from 71 m litres in 2004, increasing to 153 m litres in 2005, but continuing to decrease its production, thus obtaining 78.0 m litres in 2008; Slovakia, Austria, The Czech Rep., The UK actually report their productions obtained only since 2007, increasing in 2008 from 3.13 times to 5.93 times.

    4.4. The biofuel production on the globe The biofuel production on the globe increased permanently from 15.20

    m tons in 2001, to 37.70 m tons in 2006, reaching 81,485 m litres in 2008, 65,401 m litres of which being bioethanol and 16,084 m litres biodiesel. Bioethanol as production on the globe is dominated by the USA, which uses maize biomass, obtaining 52% of the world production in 2008.

    Brazil, which began producing bioethanol in 1920, but officially in 1931, using sugar cane, fills the second position, currently accounting for 38% of the world production and ensuring its bioethanol energy independence. The third position is filled by the European Union with a ratio of 4.36% of the world production. Other emerging bioethanol producers are China and Canada, using maize, and India, using sugar cane.

    Biodiesel on the globe is mainly obtained in the European Union, with a production which accounted for 54% in 2008, using rapeseed and soybeans, of which Germany must be mentioned with a world ratio of 20%.

    The USA, although it became a biodiesel producer later, using soybeans, increased its production by providing generous subsidies and tax deductions to those companies, and became the third producer on the globe with a ratio of 16% in 2008. The Farm Bill from 2008 (Farm Bill Renewable Energy Provisions) presents a series of amendments for the development of the renewable energy production related to the market, support for the next generations, training for biodiesel, rural energy autonomy, support for cultivating biomass etc.

    In terms of biodiesel, Brazil is only beginning, with a ratio of 7% to the world production in 2008, as well as Argentina. At present, the factors of biofuel development in Brazil are considered the following: large sugar cane

  • and soybeans areas, high conversion efficiency, high ratio in mixing with fossil fuels, refurbishment of production technologies, investment in the industry manufacturing cars that use the mixture.

    The biofuel production is directly influenced by the type of crop, cultivated areas, biomass yields per hectare and the efficiency of its conversion into biofuels.

    The analysis thereof in 2008 points to big differences between countries in terms of these factors. Regarding the biofuel production per hectare, we point out the biodiesel obtained from palm tree oil with 4,092 litres/ha in Indonesia and 4,726 litres/ha in Malaysia, and for ethanol, Brazil, from sugar cane, with 5,476 litres/ha, sugar beet in Europe with 5,060 litres/ha and maize in the USA with 3751 litres/ha.

    4.5. The factors of the biofuel production development and the biofuel market

    The factors of the future development of biomass productions may be the following (they will be dealt with extensively within the chapter): the oil price, the effect of biofuels on lowering polluting emissions, the availability of the raw materials and their cost, the biofuel cost, government policies, the biomass conversion efficiency, the improvement in plant cultivation technologies, boosting the research into technologies for next generations of biofuel, the export options, the way in which the fuel market operates and all its players.

    The fuel market includes, like any other market, the supply and demand, each of them being caused by internal and external factors. The supply as internal factor is influenced by the biomass availability, the investment level in companies, the existence of economies of scale, and as external factors: the level of biofuel quotas, the fiscal policy, the export possibilities. But several players operate on the biofuel market: the energy crops cultivators, the biofuel producers, the services, seeds, fertilisers, technology suppliers, etc.), the biofuel traders an users. Each of them is faced with uncertainties they will have to consider in the strategies they will elaborate.

    Chapter 5 The biomass production from the main energy crops and the biofuel production in Romania. The strategy for the interval 2008-2020

    5.1.The primary energy resources, production and consumption in Romania

  • The analysis was performed for the interval 1998-2008, emphasising the following important aspects:

    The primary energy production in Romania was relatively constant in the interval 1998-2008, oscillating between 27,065 thousand toe (2006) and 28,861 thousand toe (2008), and the final energy consumption between 23,590 thousand toe (2002) and 25,313 thousand toe in 2006. Imports increased from 13,949 thousand toe/year to 16,386 thousand toe in 2008. Under these circumstances, the level of independence to the total energy increased from 70.3% in 1998 to 72.5% in 2008, but for crude oil it decreased from 57% in 2000 to 35.5 % in 2008.

    The highest ratio of the final energy consumption is held by the industry sector, with 39.4% in 1998 and 37.2% in 2008 and the transport and communications sector with 15.8% in 1998 and 21.3% in 2008.

    The energy intensity expressed in the Energy Gross Domestic Consumption and the Gross Domestic Product has high values, compared to the EU average (1.05 Ktoe/Euro compared to 0.98 Ktoe/Euro), and also to the one in other European countries (Hungary 0.5 Ktoe/Euro, 0.7 Ktoe/Euro in The Czech Rep.), expressing a low efficiency in using the energy production.

    5.2. The biomass resources from the main energy crops Romanias integration into the European Union also required taking

    measures in the field of using renewable energy resources and of reducing harmful gas emissions. The research performed by various international bodies point to Romanias agricultural potential which can be compared to that of Hungary and Poland.

    With an arable area of 9,379,331 ha (62% of the total country area) and with forests and other areas with forest vegetation of 6,728,600 ha, Romania is considered to have a potential estimated at 7,594 thousand tons oil equivalent (toe) or 318x109MJ/year. The agricultural potential was first used in for the production of first generation biofuels in Romania in 2006, when the first installations for the production of biodiesel from rapeseed were designed.

    Energy crops called crops used in obtaining biofuels, electric and thermal power that find favourable pedoclimatic conditions are the following: cereals, sugar beet and sorghum, oil crops, leguminous crops (lucerne, etc) and special crops (Cynara, Miscanthus, Panicum virgatum). At the current stage, rapeseed, sunflower and soybean crops are used in producing biodiesel and wheat and maize crops for bioethanol.

  • The wheat crop in Romania, with an average area of 2,159 thousand ha in the interval 2000-2009, yields a biomass production from grain averaging to 5,511 thousand tone/year, respectively 110 million Gigajoules..

    The maize crop, with an average of 2,768 thousand ha, yielded 7,800 thousand tons of grain, the sunflower crop from 914 thousand ha yielded about 1,100 thousand tons/year; the rapeseed crop, from an area of 165.5 thousand ha yielded about 225 thousand tons of grain, the soybean crop, with about 102.2 thousand ha yielded 182 thousand tons of grain (4 m GJ).

    In Romania, for the next interval, it is considered that another crop for the biofuel production, which has favourable conditions, is that o sugar beet. Attempts are also made at cultivating Artichoke and Miscanthus.

    The analysis of the average yields per hectare obtained in Romania in energy crops, compared to he ones obtained in other EU countries, indicates a low level and the need to increase them by implementing modern technologies.

    5.3. Romanias policy related to using renewable energy resources with special view to the biofuel production

    In 1997 Romania signed the Kyoto Protocol and ratified it in January 2001, whereby the target value for the decrease in greenhouse gas emissions is of 8% in the interval 2008-2012, compared to the level in 1989.

    On 27 October 2008, Romania became a member of the Renewable Energy and Energy Efficiency Partnership.

    Beginning with 2000, Romania has passed a series of Decisions, Laws and Regulatory Acts for the performance of tasks assigned in the policy regarding the development of renewable energy production and energy efficiency.

    Among these, Law 571/2003, also completed by Law 344/2006 stipulates full excise tax waivers for mineral oils and for biofuels produced entirely from biomass. Government Decision 1535/2003 stipulates the approval of the Strategy to use the Renewable Energy Resources; Government Decision 1844/2005 and GD 456/2007 transpose the provisions of EC Directive 2003/30/CE on promoting the use of biofuels and other transport fuels of at least 2% starting with 1 July 2007, starting with 1 July 2008 diesel with at least 4% biodiesel, from 1 July 2009 gasoline with 4% bioethanol mix, and from 2010 a minimum of 5.75% mix must be provided; law 139/2007 granting financial support for energy crops.

  • This support includes among others the single payment per area (SAPS) and direct national payments (PNDC), payment for the energy crop, subsidising diesel and the agricultural credit.

    In 2020 Law 139 was passed modifying Law 220/2008 on stimulating the energy production from renewable sources. These changes related to biomass and biofuels refer to the concept of biomass and renewable energy sources.

    5.4. The biofuel production in Romania The production of biodiesel began in 2006, the first factories being

    Ultex ndrei, Argus-Rmnicu Vlcea, Autoelite Baia Mare, obtaining 10,000 tons and it increased, amounting to 70.000 tons in 2009, data published by the Eurobserver (official figures are not published in Romania). In order to perform its duties regarding the ratios of mixture with classic fuels, Romania imported biodiesel beginning with 2007, in 2009 these amounts were of 172,600 tons.

    The supply chain of the biomass and biodiesel production includes 27 biodiesel producers with fiscal warehouse certification with an annual capacity of 285 thousand tons, oil and alcohol plants, collectors of raw materials necessary in producing biofuels and the farmers that have energy crops.

    According to the MADR estimates, Romania has a potential to eliminate the import of biodiesel by cultivating a part of its set aside area and by increasing the biomass yields per hectare.

    The bioethanol production is based on the investment made in 5 plants, with an estimated capacity of 450 thousand tons/year, but the current production has not been published officially.

    Forecasts made by ANRE, regarding the gasoline and diesel consumption in the interval 2010-2020 and the biofuel ratios accepted by Romania, of 5.75% in 2010 and 10% in 2020, indicate a biofuel consumption requirement of at least 252 thousand toe in 2010 and 514 thousand toe in 2020.

    5.5. Romanias strategy for biomass and the biofuel production In 2007, Romania elaborated its Strategy regarding biomass and the

    biofuel production for the interval 2008-2020 with three scenarios. This strategy presents the Main Objective Energy security and the

    Specific Objectives for increasing the biofuel ratio within transport fuels under these rural areas sustainability, competitiveness, economic efficiency and socio-economic development conditions. The three scenarios aim at ensuring the

  • biofuel participation ratio to fuel mixes of 5.75% in 2010, 8% in 2015 and 10% in 2020 based in the increase in the areas used for biofuels.

    In all cases, the arable area necessary in obtaining biomass is under 7.5%, much lower than the arable area outside the provisions of Romanias EU Accession Treaty (25.4%) or which is not used at present. It was also considered that the 2nd generation biofuel production will be operational at industrial level only after 2017.

    But this strategy needs to be revised, considering the new EU provisions, among which the non-payment of 45Euro/ha for energy crops from the EU starting with 2010, because it is considered that the arable areas for energy crops established at EU level have been achieved.

    In June 2010, Romania must submit to the EU a report on the results related to the use of renewable resources and the objectives for the next interval.

    5.6. The SWOT analysis of the biofuel production in Romania Based on the research into the biofuel production in Romania,

    performed in this chapter, a SWOT analysis was made. The main weaknesses are related to the lack of official information on

    the areas cultivated with energy crops, the productions of biodiesel and bioethanol, the lack of programmes regarding the structure of the biomass crops for biofuels, the governments inconsistency in financially supporting biofuel producers and consumers, the lack of a domestic biofuel market.

    But Romania has a high area and pedoclimatic potential for the provision of the biomass necessary in producing biofuels from a wide range of energy crops. The domestic and international legislation and regulations, as well as the current economic crisis are uncertainties and risks.

    The existence of an unsaturated domestic, but especially external market is the safest opportunity for the development in the biofuel production.

    Chapter 6 Research into the solid biomass potential form the main energy crops and the management of using it in the biofuel production in the Calarasi county

    6.1. The Calarasi county selected as case study for the management of the biofuel production obtained from certain energy crops is located in the Baragan Plain, agriculture being the main economic activity, performed on an area of 426.2 thousand ha.

  • The vegetal agricultural production is mainly directed to grain crops, with a ratio of 66.2% in 2008, followed by oil plants with 27%, the total being of 380,706 ha.

    6.2. The solid biomass potential from the main energy crops In order to assess the solid biomass potential, we considered the wheat,

    maize, sunflower, rapeseed and soybeans crops, analysing the cultivated areas in the interval 2004-2009, the average productions and the overall main and secondary productions.

    Synthesising the calculations, we can estimate that the Calarasi county has large amounts of main biomass from cereal and oil plant crops as follows: over 400 thousand tons per year for wheat, over 310 thousand tons maize; about 100 thousand tons sunflower, about 50 thousand tons rapeseed and over 40 thousand tons soybeans. Secondary biomass productions can be added to this.

    6.3. The energy production potential from the main crops In the management of producing biofuels form energy crops we are

    interested in their energy potential per hectare, which was calculated considering the main, secondary and entire plant physical productions per hectare and the their energy content per kg.

    Thus, we considered the minimum biomass productions per hectare obtained in the analysed interval, the maximum ones and the average production in the interval 2004-2009.

    Taking into account the average energy production per hectare obtained in the Caparasi county, we can estimate the following: the higher energy value of the secondary production per hectare compared to the main production for wheat, maize and sunflower crops; - comparing the crops, we notice that the maize crop has a high energy

    potential per hectare, both in the main and in the secondary production; - for oil crops, the energy potential/ha does not vary significantly, but among

    them that of cereals is lower. A part of the solid biomass production obtained from cereal and oil plant

    crops as main products can also be used in the Calarasi county to produce 1st generation biofuels.

    6.4. Assessing the biofuel production potential In order to assess the bioethanol and biodiesel production that can be

    obtained, we considered the solid biomass ratios that can be used for this

  • purpose, therefore without affecting the human consumption and animal feed requirement.

    Thus, for the biomass from the wheat grain production we considered a ratio of 40%, for maize 45%, for rapeseed 90%, for sunflower 20% and for soybeans 6%.

    In establishing these ratios we considered, using the statistical data, the overall productions obtained in the country and the import on the one hand, and the food and feed consumption and the export on the other hand. We also considered certain statements of the Ministry of Agriculture.

    In terms of the biofuel production per ton of seed biomass we considered the information from the specialised literature in Romanian and from Germany and the results from certain plants in the country.

    Synthesising the calculations, we may estimate that in the Calarasi county important amounts of bioethanol can be obtained from wheat and maize (between about 58,000 litres and 209,000 litres with an average of 113,000 litres/year) and biodiesel from oil crops per year (between 13,000 tons and 38,500 tons with an average of 24,273 tons/year. In addition, as secondary products from the production of biodiesel from rapeseed, sunflower and soybeans, good productions of cake and glycerine can be obtained.

    6.5. The energy balance according to crops The energy assessment of a crop can be made either considering the net

    production of energy per hectare, or the energy balance per hectare, as an energy input/output ratio.

    The energy inputs of a crop include fixed energy consumptions and variable energy consumptions. Fixed energy consumptions are those related to using mechanical means, and variable energy consumptions are determined on the basis of cultivation technologies related to the amounts of fertilisers, seeds, pesticides, water for irrigations, etc. that are used.

    For instance, calculating the energy balance for wheat for a production of 7,264 kg/ha, of which 3,200 kg grain and 4,064 kg straw (the average in the interval 2004-2009 in the Calarasi county) the result was a total energy consumption of about 27,000 Mj/ha for an energy production per hectare of 130,000 Mj, therefore an energy balance of 0.207, or in other words 1 Mj consumed yielded 4.83 Mj energy production.

    6.6. The efficiency of producing and converting biomass into biofuels

  • The efficiency of converting biomass into biofuels is estimated as a ratio of the overall energy consumption, both for the production of biomass and for its conversion, to the energy included in biofuels.

    The calculations made for the bioethanol obtained from wheat grains indicate that the net energy per hectare is of 3,860 KWh, and the input/output ratio is of 1:1.29. Of the overall energy consumption, 29% is represented by the energy used in obtaining biomass and 71% for its conversion into bioethanol.

    For the bioethanol obtained from maize grains, the input/output ratio was of 1:1.67, the energy consumed in producing the grains and in transporting them represented 30%, and the conversion into ethanol and its transportation 70%.

    In terms of obtaining biodiesel from rapeseed, the input/output ratio was of 1:2.27, of the overall energy consumed, 41.5% for the production of seeds and 58.5% for the conversion into biodiesel.

    6.7. The carbon dioxide balance in the biofuel production In the integrated management of using energy crops in order to produce

    biofuels, an important domain to research is represented by the savings in terms of noxious gases and the cost of such savings.

    The carbon dioxide balance in the case of obtaining and using biofuels is one of the advantages compared to their cost which is higher than the cost of classical fuels.

    The calculations made for wheat in the bioethanol production indicates CO2 savings of 0.108 kg/ha or a decrease percentage of 50.4%, compared to the use of gasoline.

    In obtaining and using biodiesel from rapeseed, the CO2 saving amounted to 0.162 kg/ha compared to the use of diesel, namely a decrease percentage of 33.2%.

    These values of CO2 savings made in producing biofuels observe the limits obtained by institutions and bodies in other countries.

    6.8. Scenario for cultivating Miscanthus crops in the Calarasi county The Calarasi county has an embanked and drained area of 88,900 ha, of

    which, in 2009, 14,300 ha remained uncultivated, of which it was proposed that about 10,000 ha should be cultivated with Miscanthus giganteus, a perennial lygnocellulosic crop, elaborating a cultivation scenario. Its production lifespan is of 17 years, being able to yield productions of 4,000 kg in the second year up to about 18,000 kg/ha annually in the remaining years.

  • Having an energy balance superior to that of wood, the crop can replace a large amount of classical fuel. Calculations indicate that we can obtain 24 m litres in the second year, 60 m litres in the third year and 1,080 m litres per year in the remaining 15 years. In the thesis we also specified the cultivation technology based on the recommendations of the National Research and Development Institute in Fundulea.

    General conclusions and recommendations With an area a 9.38 m ha and 6.73 m forests and other forest vegetation

    areas, Romania has a biomass potential estimated at about 7,594 m tons oil equivalent or 318x109Mj/year.

    The pedoclimatic conditions make it possible to cultivate a wide range of energy crops for the production of biofuels without affecting the requirement for food or other domains.

    In order to develop the biofuel production in Romania it is necessary to substantiate the state policy in this field from an organisational, economic, legislative and normative point of view along the entire supply chain from biofuel farmers to users.

    The management of using energy crops for the production of energy must be dealt with and performed as an integrated management which also includes the issues related to protecting the environment, the soil and biodiversity. For this purpose, we need an even more efficient collaboration between the Biofuel Producers Association and all the relevant ministries in elaborating programmes and strategies and in including the biofuel productions obtained in Romania in the official presentations.

    Romania must elaborate strategies for 2nd and even 3rd generation bi