Respuesta en Frecuencia Bjt- Fet

65
Respuesta en frecuencia de los transistores BJT y JFET

Transcript of Respuesta en Frecuencia Bjt- Fet

Page 1: Respuesta en Frecuencia Bjt- Fet

Respuesta enfrecuencia de los transistores

BJT y JFET

Page 2: Respuesta en Frecuencia Bjt- Fet

El análisis hasta el momento se ha limitado a una frecuencia particular. Para el caso del amplificador, se trata de una frecuencia que, por lo regular, permite ignorar los efectos de los elementos capacitivos, con lo que se reduce el análisis a uno que solamente incluye elementos resistivos y fuentes independientes o controladas. Ahora, se revisarán los efectos de la frecuencia presentados por los elementos capacitivos mayores de la red en bajas frecuencias y por los elementos capacitivos menores del dispositivo activo en las altas frecuencias. Debido a que el análisis se extenderá a lo largo de un intervalo amplio de frecuencias, se define y se emplea la escala logarítmica a lo largo del análisis. Asimismo, debido a que en la industria se emplea por lo regular una escala de decibeles en las gráficas de frecuencia, se presentará el concepto de decibel con cierto detalle. Las similitudes entre los análisis de respuesta a la frecuencia tanto para los BJTs como para los FETs, permiten una cobertura de cada uno en el mismo capítulo.

INTRODUCCION

Page 3: Respuesta en Frecuencia Bjt- Fet

Diagrama de Bode

El diagrama de Bode indica la respuesta en frecuencia del amplificador

La escala horizontal indica la frecuencia en Hz y la y la escala vertiacalindica la ganancia en decibelios (dB)

3

Page 4: Respuesta en Frecuencia Bjt- Fet

Diagrama de Bode para acoplamiento RC

Las magnitudes de las curvas de respuesta de ganancia de un sistema amplificador con acoplamiento RC, acoplado directamente y acoplado por transformador, se proporcionan en la figura.

4

Para el amplificador con acoplamiento RC, la caída a bajas frecuencias se debe a la creciente reactancia de CC, Cs o CE, mientras que su frecuencia superior limitante está determinada por los elementos capacitivos parásitos de la red o por la dependencia de la ganancia a la frecuencia del dispositivo activo.

Page 5: Respuesta en Frecuencia Bjt- Fet

Diagrama de Bode para acoplamiento con tranformador

5

Para un amplificador acoplado por transformador la respuesta a bajas frecuencias se debe al “efecto de corto” en los terminales de entrada del transformador) de la reactancia inductiva de magnetización a bajas frecuencias (XL = 2πfL). La ganancia obviamente debe ser cero cuando f =0, la respuesta de alta frecuencia la controla principalmente la capacitancia parásita entre las vueltas del devanado primarioy del secundario

Page 6: Respuesta en Frecuencia Bjt- Fet

Diagrama de Bode para acoplamiento directo

6

Para el amplificador con acoplamiento directo, no existe un capacitor de acoplamiento o de desvío que ocasione una caída de la ganancia para bajas frecuencias. Como la figura lo indica, se trata de una respuesta plana hasta la frecuencia superior de corte, la cual está determinada ya sea por las capacitancias parásitas del circuito o por la dependencia de la ganancia a la frecuencia del dispositivo activo.

Page 7: Respuesta en Frecuencia Bjt- Fet

Diagrama de Bode para acoplamiento directo

7

Las frecuencias correspondientes f1 y f2 son, por lo general, denominadas como frecuencias de corte que determinaran el ancho de banda

Page 8: Respuesta en Frecuencia Bjt- Fet

Para aplicaciones de comunicaciones (audio, vídeo), es más útil una gráfica en decibeles de la ganancia de voltaje en función de la frecuencia que la que aparece en la figura

Page 9: Respuesta en Frecuencia Bjt- Fet

Debe entenderse que la mayoría de los amplificadores introducen un desplazamiento de fase de 180° entre la señal de entrada y la de salida. Este hecho se amplía para indicar que este caso sólo ocurre para la región de banda media. Para bajas frecuencias, existe un desplazamiento de fase tal que Vo desfasa a Vi por un ángulo mayor. Para altas frecuencias, el desplazamiento de fase cae por debajo de 180°.

Diagrama de Bode

Page 10: Respuesta en Frecuencia Bjt- Fet

DECIBELES

El concepto de decibel (dB) y sus cálculos asociados, cada vez tendrán más importancia en el tema de amplificadores. Los niveles de potencia y de audio se relacionan sobre una base logarítmica. Es decir, un incremento en el nivel de potencia, digamos de 4 a 16 W, no da como resultado un incremento en el nivel de audio de un factor de 16/4 = 4, sino que se incrementará por un factor de 2, (4)2 = 16.

Page 11: Respuesta en Frecuencia Bjt- Fet

DECIBELES

Una de las ventajas de la relación logarítmica es la forma en la que se puede aplicar a etapas en cascadas. Por ejemplo, la magnitud de la ganancia total de voltaje de un sistema en cascada está dada por:

Page 12: Respuesta en Frecuencia Bjt- Fet

DECIBELES

Una de las ventajas de la relación logarítmica es la forma en la que se puede aplicar a etapas en cascadas. Por ejemplo, la magnitud de la ganancia total de voltaje de un sistema en cascada está dada por:

Al aplicar la relación logarítmica adecuada se obtiene

Page 13: Respuesta en Frecuencia Bjt- Fet

DECIBELES

Page 14: Respuesta en Frecuencia Bjt- Fet

ANÁLISIS DE BAJA FRECUENCIA:GRÁFICA DE BODE

En la región de baja frecuencia del amplificador de una sola etapa BJT o FET, las combinaciones R-C formadas por los capacitores de la red CC, CE y Cs y por los parámetros resistivos de la red determinan las frecuencias de corte.

Page 15: Respuesta en Frecuencia Bjt- Fet

ANÁLISIS DE BAJA FRECUENCIA:GRÁFICA DE BODE

Page 16: Respuesta en Frecuencia Bjt- Fet
Page 17: Respuesta en Frecuencia Bjt- Fet
Page 18: Respuesta en Frecuencia Bjt- Fet

RESPUESTA A BAJA FRECUENCIA:AMPLIFICADOR BJT

los capacitores Cs, CC y CE determinarán la respuesta a baja frecuencia.

Page 19: Respuesta en Frecuencia Bjt- Fet

Capacitor de acoplamiento (CS)

La frecuencia de corte CS puede ser calculado por:

sisLs )CR(R2

1f

++++ππππ====

e21i βr||R||RR ====

Donde:

19

Page 20: Respuesta en Frecuencia Bjt- Fet

cLoLC )CRR(π2

1f

++++====

oCo r||RR ====

Capacitor de acoplamiento(CC)

La frecuencia de corte Cc puede ser calculado por:

Donde:

20

Page 21: Respuesta en Frecuencia Bjt- Fet

Capacitor de Bypass (CE)

EeLE CRπ2

1f ====

)rβ

R(||RR e

sEe ++++

′′′′====

21ss R||R||RR ====′′′′

Donde:

y

21

La frecuencia de corte CE puede ser calculado por:

Page 22: Respuesta en Frecuencia Bjt- Fet

El diagrama de Bode indica que cada condensador puede tener una frecuencia de corte diferente.

El dispositivo que tiene la mayor frecuencia de corte inferior (FL), es el que domina la respuesta de frecuencia general del amplificador.

22

RESPUESTA A BAJA FRECUENCIA:AMPLIFICADOR BJT

Page 23: Respuesta en Frecuencia Bjt- Fet

RESPUESTA A BAJA FRECUENCIA:AMPLIFICADOR FET

Nuevamente existen tres capacitores principales CG, CC y CS. se utilizarápara establecer las ecuaciones fundamentales, el procedimiento y lasconclusiones pueden aplicarse a la mayoría de las configuraciones a FET.

23

Page 24: Respuesta en Frecuencia Bjt- Fet

Capacitor de acoplamiento (CG)

GisigLC )CR(Rπ2

1f

++++====

Gi RR ====

La frecuencia de corte por efectode CG puede ser calculado por

Donde:

24

Page 25: Respuesta en Frecuencia Bjt- Fet

Capacitor de acoplamiento(CC)

CLoLC )CR(Rπ2

1f

++++====

dDo r||RR ====

La frecuencia de corte por efectode CC puede ser calculado por

where

25

Page 26: Respuesta en Frecuencia Bjt- Fet

Capacitor de Bypass (CS)

SeqLS CRπ2

1f ====

Ωrm

Seq dg1

||RR ∞∞∞∞≅≅≅≅====

La frecuencia de corte por efecto de CSpuede ser calculado por:

donde

26

Page 27: Respuesta en Frecuencia Bjt- Fet

FET Amplifier Low -Frequency Response

El diagrama de Bode indica que cada condensador puede tener una frecuencia de corte diferente.

El condensador que tiene la mayor frecuencia de corte inferior (F L) es más cercana a la frecuencia de corte real del amplificador.

27

Page 28: Respuesta en Frecuencia Bjt- Fet

CAPACITANCIA DE EFECTO MILLER

En la región de alta frecuencia, los elementos capacitivos de relevancia son las capacitancias entre electrodos (internas al dispositivo activo) y la capacitancia de cableado entre las terminales de la red. Todos los capacitores grandes de la red que controlaron la respuesta a baja frecuencia se han reemplazado por su corto circuito equivalente debido a sus muy bajos niveles de reactancia.

Page 29: Respuesta en Frecuencia Bjt- Fet

CAPACITANCIA DE EFECTO MILLER C Mi

En la región de alta frecuencia, los elementos capacitivos de relevancia son las capacitancias entre electrodos (internas al dispositivo activo) y la capacitancia de cableado entre las terminales de la red. Todos los capacitores grandes de la red que controlaron la respuesta a baja frecuencia se han reemplazado por su corto circuito equivalente debido a sus muy bajos niveles de reactancia.

Page 30: Respuesta en Frecuencia Bjt- Fet
Page 31: Respuesta en Frecuencia Bjt- Fet

CAPACITANCIA DE EFECTO MILLER C MO

Page 32: Respuesta en Frecuencia Bjt- Fet

RESPUESTA A ALTA FRECUENCIA:AMPLIFICADOR BJT

Las capacitancias que afectan a la respuesta de alta frecuencia son

Condensadores de uniónCBE, CBC, CCE

Condensadores de cableadoCWi, CWo

Condensadores de acoplamientoCS, CC

Condensadores Bypass CE

Page 33: Respuesta en Frecuencia Bjt- Fet

RESPUESTA A ALTA FRECUENCIA:AMPLIFICADOR BJT

Page 34: Respuesta en Frecuencia Bjt- Fet

RESPUESTA A ALTA FRECUENCIA:AMPLIFICADOR BJT

Page 35: Respuesta en Frecuencia Bjt- Fet

RESPUESTA A ALTA FRECUENCIA:AMPLIFICADOR BJT

Page 36: Respuesta en Frecuencia Bjt- Fet

Si los capacitores parásitos fuesen los únicos elementos que determinan la frecuencia de corte alta, la menor de las frecuencias sería el factor determinante. Sin embargo, la disminución de hfe (o β) con la frecuencia también se debe considerar para ver si su frecuenciade corte es menor que fHi o fHo.

Variación de hfe ( β )

Page 37: Respuesta en Frecuencia Bjt- Fet

Variación de hfe ( β )

Page 38: Respuesta en Frecuencia Bjt- Fet

RESPUESTA A ALTA FRECUENCIA:AMPLIFICADOR BJT

Page 39: Respuesta en Frecuencia Bjt- Fet

RESPUESTA A ALTA FRECUENCIA:AMPLIFICADOR FET

Las capacitancias que afectan a la respuesta de alta frecuencia son

Condensadores de uniónCgs, Cgd, Cds

Condensadores de cableadoCwi, Cwo

Condensadores de acoplamientoCG, CC

Condensadores Bypass CS

Page 40: Respuesta en Frecuencia Bjt- Fet

RESPUESTA A ALTA FRECUENCIA:AMPLIFICADOR FET

Page 41: Respuesta en Frecuencia Bjt- Fet

EFECTOS DE FRECUENCIA EN MULTIETAPAS

Cuando una segunda etapa de transistor se conecta directamente a la salida de la primera etapa, se ocasionará un cambio significativo en la respuesta total a la frecuencia. En la región de alta frecuencia, la capacitancia de salida Co deberá ahora incluir la capacitancia de cableado (CW1), la capacitancia parásita (Cbe), y la capacitancia Miller (CMi) de la siguiente etapa. Es más, ahora existirán niveles adicionales de corte de baja frecuencia como consecuencia de la segunda etapa que reducirán la ganancia global del sistema en esta región.

Page 42: Respuesta en Frecuencia Bjt- Fet

EFECTOS DE FRECUENCIA EN MULTIETAPAS

Page 43: Respuesta en Frecuencia Bjt- Fet

PRUEBA DE ONDA CUADRADA

Es posible darse una idea experimental de la respuesta a la frecuencia de un amplificador si se aplica una señal de onda cuadrada al amplificador y se observa la respuesta de salida. La figura de la forma de onda de salida mostrará si las frecuencias bajas y altas están siendo amplificadas de forma correcta. La aplicación de una prueba mediante onda cuadrada consume significativamente menos tiempo que la aplicación de una serie de señales senoidales a frecuencias y magnitudes diferentes para probar la respuesta a la frecuencia del amplificador.

Page 44: Respuesta en Frecuencia Bjt- Fet

PRUEBA DE ONDA CUADRADALa expansión de la serie de Fourier para la onda cuadrada de la figura es:

Page 45: Respuesta en Frecuencia Bjt- Fet

PRUEBA DE ONDA CUADRADA

Page 46: Respuesta en Frecuencia Bjt- Fet

PRUEBA DE ONDA CUADRADA

Page 47: Respuesta en Frecuencia Bjt- Fet

Ejemplo 1

β = 120

Page 48: Respuesta en Frecuencia Bjt- Fet

Sol:

Page 49: Respuesta en Frecuencia Bjt- Fet
Page 50: Respuesta en Frecuencia Bjt- Fet
Page 51: Respuesta en Frecuencia Bjt- Fet

Ejemplo 2

CWi = 5pFCWo = 8pFCbc = 12pFCbe = 40pFCce = 8pF

Page 52: Respuesta en Frecuencia Bjt- Fet

Sol:

Page 53: Respuesta en Frecuencia Bjt- Fet
Page 54: Respuesta en Frecuencia Bjt- Fet
Page 55: Respuesta en Frecuencia Bjt- Fet
Page 56: Respuesta en Frecuencia Bjt- Fet

Ejemplo 3

IDSS = 10mAVp = -6V

Page 57: Respuesta en Frecuencia Bjt- Fet

Sol:

Page 58: Respuesta en Frecuencia Bjt- Fet

Sol:

Page 59: Respuesta en Frecuencia Bjt- Fet

Sol:

Page 60: Respuesta en Frecuencia Bjt- Fet
Page 61: Respuesta en Frecuencia Bjt- Fet

Ejemplo 4

CWi = 4pFCWo = 6pFCgd = 8pFCgs = 12pFCds = 3pF

IDSS = 10mAVp = -6V

Page 62: Respuesta en Frecuencia Bjt- Fet

Sol:

Page 63: Respuesta en Frecuencia Bjt- Fet

Sol:

Page 64: Respuesta en Frecuencia Bjt- Fet
Page 65: Respuesta en Frecuencia Bjt- Fet

Fin