Research Article Marcinkiewicz Integral Operators and ...and a function in BMO (R ) on these spaces....

10
Research Article Marcinkiewicz Integral Operators and Commutators on Herz Spaces with Variable Exponents Liwei Wang School of Mathematics and Physics, Anhui Polytechnic University, Wuhu 241000, China Correspondence should be addressed to Liwei Wang; [email protected] Received 26 July 2014; Accepted 21 September 2014; Published 15 October 2014 Academic Editor: Dashan Fan Copyright Β© 2014 Liwei Wang. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Our aim in this paper is to give the boundedness of the Marcinkiewicz integral Ξ© on Herz spaces Μ‡ (β‹…), (β‹…) (R ) and (β‹…), (β‹…) (R ), where the two main indices are variable. Meanwhile, we consider the boundedness of the higher order commutator Ξ©, generated by Ξ© and a function in BMO(R ) on these spaces. 1. Introduction Let S βˆ’1 be the unit sphere in R ( β‰₯ 2) equipped with the normalized Lebesgue measure ( ). Suppose that Ξ© is homogeneous of degree zero on R and has mean zero on S βˆ’1 , that is, ∫ S βˆ’1 Ξ© ( ) ( ) = 0. (1) en the Marcinkiewicz integral Ξ© in higher dimension is defined by Ξ© () () = (∫ ∞ 0 Ξ©, () () 2 3 ) 1/2 , (2) where Ξ©, () () = ∫ |βˆ’|≀ Ξ© ( βˆ’ ) βˆ’ βˆ’1 () . (3) Denote by N the set of all positive integer numbers. Let ∈ N and ∈ BMO(R ); the higher order commutator Ξ©, is defined by Ξ©, () () = (∫ ∞ 0 Ξ©,, () () 2 3 ) 1/2 , (4) where Ξ©,, () () = ∫ |βˆ’|≀ Ξ© ( βˆ’ ) βˆ’ βˆ’1 ( () βˆ’ ()) () . (5) Stein [1] defined the operator Ξ© and proved that if Ω∈ Lip (S βˆ’1 ) (0 < ≀ 1), then Ξ© is of type (,) (1 < ≀ 2) and of weak type (1, 1). Benedek et al. [2] showed that Ξ© is of type (, ) (1 < < ∞) with Ω∈ 1 (S βˆ’1 ). Ding et al. [3] improved the previous results to the case of Ω∈ 1 (S βˆ’1 ), where 1 (S βˆ’1 ) denotes the Hardy space on S βˆ’1 . Obviously, 1 Ξ©, = [, Ξ© ], which was defined by Torchinsky and Wang in [4]; moreover, they proved that if Ω∈ Lip (S βˆ’1 ) (0 < ≀ 1), then [, Ξ© ] is bounded on (R ) (1 < < ∞). Ding et al. [5] weakened the smoothness of the kernel to a rough kernel and showed that if Ω∈ (S βˆ’1 ) (1 < ≀ ∞), then [, Ξ© ] is of type (,) (1 < < ∞). Ding et al. [6] established the weighted weak log type estimates for Ξ©, when Ω∈ Lip (S βˆ’1 ) (0 < ≀ 1). Recently, Zhang [7] improved the previous result and proved that Ξ©, enjoys the same weighted weak log type estimates when the kernel Ξ© satisfies a kind of Dini’s conditions. For further details on recent developments on this field, we refer the readers to [8, 9] and references therein. Function spaces with variable exponents were intensively studied during the past 20 years, due to their applications to PDE with nonstandard growth conditions and so on; we mention [10, 11], for instance. Since the fundamental paper [12] by KovΒ΄ aΛ‡ cik and RΒ΄ akosnΒ΄ Δ±k appeared in 1991, the Lebesgue spaces with variable exponent (β‹…) (R ) have attracted a great attention and many interesting results have been obtained; Hindawi Publishing Corporation Journal of Function Spaces Volume 2014, Article ID 430365, 9 pages http://dx.doi.org/10.1155/2014/430365

Transcript of Research Article Marcinkiewicz Integral Operators and ...and a function in BMO (R ) on these spaces....

  • Research ArticleMarcinkiewicz Integral Operators and Commutators onHerz Spaces with Variable Exponents

    Liwei Wang

    School of Mathematics and Physics, Anhui Polytechnic University, Wuhu 241000, China

    Correspondence should be addressed to Liwei Wang; [email protected]

    Received 26 July 2014; Accepted 21 September 2014; Published 15 October 2014

    Academic Editor: Dashan Fan

    Copyright Β© 2014 Liwei Wang. This is an open access article distributed under the Creative Commons Attribution License, whichpermits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    Our aim in this paper is to give the boundedness of theMarcinkiewicz integral πœ‡Ξ©onHerz spaces �̇�𝛼(β‹…),π‘ž

    𝑝(β‹…)(R𝑛) and𝐾𝛼(β‹…),π‘ž

    𝑝(β‹…)(R𝑛), where

    the two main indices are variable. Meanwhile, we consider the boundedness of the higher order commutator πœ‡π‘šΞ©,𝑏

    generated by πœ‡Ξ©

    and a function 𝑏 in BMO(R𝑛) on these spaces.

    1. Introduction

    Let Sπ‘›βˆ’1 be the unit sphere in R𝑛 (𝑛 β‰₯ 2) equipped withthe normalized Lebesgue measure π‘‘πœŽ(π‘₯). Suppose that Ξ© ishomogeneous of degree zero on R𝑛 and has mean zero onSπ‘›βˆ’1, that is,

    ∫Sπ‘›βˆ’1

    Ξ©(π‘₯) π‘‘πœŽ (π‘₯

    ) = 0. (1)

    Then the Marcinkiewicz integral πœ‡Ξ©in higher dimension is

    defined by

    πœ‡Ξ©(𝑓) (π‘₯) = (∫

    ∞

    0

    𝐹Ω,𝑑 (𝑓) (π‘₯)2 𝑑𝑑

    𝑑3)

    1/2

    , (2)

    where

    𝐹Ω,𝑑

    (𝑓) (π‘₯) = ∫|π‘₯βˆ’π‘¦|≀𝑑

    Ξ©(π‘₯ βˆ’ 𝑦)

    π‘₯ βˆ’ π‘¦π‘›βˆ’1

    𝑓 (𝑦) 𝑑𝑦. (3)

    Denote by N the set of all positive integer numbers. Letπ‘š ∈ N and 𝑏 ∈ BMO(R𝑛); the higher order commutator πœ‡π‘š

    Ξ©,𝑏

    is defined by

    πœ‡π‘š

    Ξ©,𝑏(𝑓) (π‘₯) = (∫

    ∞

    0

    𝐹

    π‘š

    Ξ©,𝑏,𝑑(𝑓) (π‘₯)

    2 𝑑𝑑

    𝑑3)

    1/2

    , (4)

    where

    πΉπ‘š

    Ξ©,𝑏,𝑑(𝑓) (π‘₯) = ∫

    |π‘₯βˆ’π‘¦|≀𝑑

    Ξ©(π‘₯ βˆ’ 𝑦)

    π‘₯ βˆ’ π‘¦π‘›βˆ’1

    (𝑏 (π‘₯) βˆ’ 𝑏 (𝑦))π‘šπ‘“ (𝑦) 𝑑𝑦.

    (5)

    Stein [1] defined the operator πœ‡Ξ©and proved that if Ξ© ∈

    Lip𝛾(Sπ‘›βˆ’1) (0 < 𝛾 ≀ 1), then πœ‡

    Ξ©is of type (𝑝, 𝑝) (1 < 𝑝 ≀ 2)

    and of weak type (1, 1). Benedek et al. [2] showed that πœ‡Ξ©is

    of type (𝑝, 𝑝) (1 < 𝑝 < ∞) withΞ© ∈ 𝐢1(Sπ‘›βˆ’1). Ding et al. [3]improved the previous results to the case of Ξ© ∈ 𝐻1(Sπ‘›βˆ’1),where𝐻1(Sπ‘›βˆ’1) denotes the Hardy space on Sπ‘›βˆ’1. Obviously,πœ‡

    1

    Ξ©,𝑏= [𝑏, πœ‡

    Ξ©], which was defined by Torchinsky and Wang

    in [4]; moreover, they proved that if Ξ© ∈ Lip𝛾(Sπ‘›βˆ’1) (0 <

    𝛾 ≀ 1), then [𝑏, πœ‡Ξ©] is bounded on 𝐿𝑝(R𝑛) (1 < 𝑝 < ∞).

    Ding et al. [5] weakened the smoothness of the kernel to arough kernel and showed that if Ξ© ∈ πΏπ‘ž(Sπ‘›βˆ’1) (1 < π‘ž ≀ ∞),then [𝑏, πœ‡

    Ξ©] is of type (𝑝, 𝑝) (1 < 𝑝 < ∞). Ding et al. [6]

    established the weighted weak 𝐿log𝐿 type estimates for πœ‡π‘šΞ©,𝑏

    when Ξ© ∈ Lip𝛾(Sπ‘›βˆ’1) (0 < 𝛾 ≀ 1). Recently, Zhang [7]

    improved the previous result and proved that πœ‡π‘šΞ©,𝑏

    enjoys thesame weighted weak 𝐿log𝐿 type estimates when the kernelΞ© satisfies a kind of Dini’s conditions. For further details onrecent developments on this field, we refer the readers to [8, 9]and references therein.

    Function spaces with variable exponents were intensivelystudied during the past 20 years, due to their applicationsto PDE with nonstandard growth conditions and so on; wemention [10, 11], for instance. Since the fundamental paper[12] by Kováčik and Rákosnı́k appeared in 1991, the Lebesguespaces with variable exponent 𝐿𝑝(β‹…)(R𝑛) have attracted a greatattention and many interesting results have been obtained;

    Hindawi Publishing CorporationJournal of Function SpacesVolume 2014, Article ID 430365, 9 pageshttp://dx.doi.org/10.1155/2014/430365

  • 2 Journal of Function Spaces

    see [13–15]. Izuki [16, 17] defined the Herz spaces �̇�𝛼,π‘žπ‘(β‹…)

    (R𝑛)

    and 𝐾𝛼,π‘žπ‘(β‹…)

    (R𝑛) with variable exponent 𝑝 but fixed 𝛼 ∈ R andπ‘ž ∈ (0,∞]. Wang et al. [18, 19] obtained the boundednessof πœ‡

    Ξ©and [𝑏, πœ‡

    Ξ©] on �̇�𝛼,π‘ž

    𝑝(β‹…)(R𝑛) and 𝐾𝛼,π‘ž

    𝑝(β‹…)(R𝑛). Almeida and

    Drihem [20] established the boundedness of a wide class ofsublinear operators, which includes maximal, potential, andCalderón-Zygmund operators, on Herz spaces �̇�𝛼(β‹…),π‘ž

    𝑝(β‹…)(R𝑛)

    and 𝐾𝛼(β‹…),π‘žπ‘(β‹…)

    (R𝑛), where the two main exponents 𝛼 and 𝑝 areboth variable. In this paper we will give boundedness resultsfor πœ‡

    Ξ©and πœ‡π‘š

    Ξ©,𝑏on Herz spaces �̇�𝛼(β‹…),π‘ž

    𝑝(β‹…)(R𝑛) and𝐾𝛼(β‹…),π‘ž

    𝑝(β‹…)(R𝑛).

    For brevity, |𝐸| denotes the Lebesgue measure for ameasurable set 𝐸 βŠ‚ R𝑛. 𝑓

    𝐸denotes the integral average of

    𝑓 on 𝐸, that is, 𝑓𝐸= |𝐸|

    βˆ’1∫

    𝐸𝑓(π‘₯)𝑑π‘₯. 𝑝(β‹…) stands for the

    conjugate exponent 1/𝑝(β‹…) + 1/𝑝(β‹…) = 1. 𝐡(π‘₯, π‘Ÿ) = {𝑦 ∈R𝑛 : |π‘₯ βˆ’ 𝑦| < π‘Ÿ}. 𝐢 denotes a positive constant, which mayhave different values even in the same line. 𝑓 ≲ 𝑔means that𝑓 ≀ 𝐢𝑔, and 𝑓 β‰ˆ 𝑔means that 𝑓 ≲ 𝑔 ≲ 𝑓.

    2. Preliminaries and Main Results

    Let 𝐸 βŠ‚ R𝑛 with |𝐸| > 0, and let 𝑝(β‹…) : 𝐸 β†’ [1,∞) be ameasurable function. Let us first recall some definitions andnotations.

    Definition 1. The Lebesgue space with variable exponent𝐿

    𝑝(β‹…)(𝐸) is defined by

    𝐿𝑝(β‹…)

    (𝐸)

    = {𝑓 is measurable : ∫𝐸

    (

    𝑓 (π‘₯)

    πœ†)

    𝑝(π‘₯)

    𝑑π‘₯ < ∞

    for some constant πœ† > 0} .

    (6)

    This is a Banach space with the Luxemburg norm

    𝑓𝐿𝑝(β‹…)(𝐸) = inf {πœ† > 0 : ∫

    𝐸

    (

    𝑓 (π‘₯)

    πœ†)

    𝑝(π‘₯)

    𝑑π‘₯ ≀ 1} . (7)

    Let 𝑓 ∈ 𝐿1loc(𝐸); the Hardy-Littlewood maximal operator𝑀 is defined by

    𝑀𝑓(π‘₯) = supπ‘Ÿ>0

    π‘Ÿβˆ’π‘›βˆ«

    𝐡(π‘₯,π‘Ÿ)∩𝐸

    𝑓 (𝑦) 𝑑𝑦. (8)

    Denote

    π‘βˆ’= ess inf {𝑝 (π‘₯) : π‘₯ ∈ 𝐸} ,

    𝑝+= ess sup {𝑝 (π‘₯) : π‘₯ ∈ 𝐸} ,

    P (𝐸) = {𝑝 (β‹…) : π‘βˆ’ > 1, 𝑝+ < ∞} ,

    B (𝐸) = {𝑝 (β‹…) ∈ P (𝐸) : 𝑀 is bounded on 𝐿𝑝(β‹…) (𝐸)} .(9)

    Let π΅π‘˜= {π‘₯ ∈ R𝑛 : |π‘₯| ≀ 2π‘˜}, 𝑅

    π‘˜= 𝐡

    π‘˜\𝐡

    π‘˜βˆ’1, and πœ’

    π‘˜= πœ’

    π‘…π‘˜

    be the characteristic function of the set π‘…π‘˜for π‘˜ ∈ Z. Forπ‘š ∈

    N, one denotes πœ’π‘š= πœ’

    π‘…π‘š

    if π‘š β‰₯ 1, and πœ’0= πœ’

    𝐡0

    . By β„“π‘ž (0 <π‘ž ≀ ∞), we denote the discrete Lebesgue space equippedby the usual quasinorm.

    Definition 2. Let 0 < π‘ž ≀ ∞, 𝑝(β‹…) ∈ P(R𝑛), and 𝛼(β‹…) : R𝑛 β†’R with 𝛼 ∈ 𝐿∞(R𝑛).

    (1) The homogeneous Herz space �̇�𝛼(β‹…),π‘žπ‘(β‹…)

    (R𝑛) is definedby

    �̇�𝛼(β‹…),π‘ž

    𝑝(β‹…)(R

    𝑛) = {𝑓 ∈ 𝐿

    𝑝(β‹…)

    loc (R𝑛\ {0}) :

    𝑓�̇�𝛼(β‹…),π‘ž

    𝑝(β‹…)(R𝑛)

    < ∞} ,

    (10)

    where𝑓�̇�𝛼(β‹…),π‘ž

    𝑝(β‹…)(R𝑛)

    ={2

    𝛼(β‹…)π‘˜π‘“πœ’

    π‘˜

    𝐿𝑝(β‹…)(R𝑛)}

    ∞

    π‘˜=βˆ’βˆž

    β„“π‘ž(Z). (11)

    (2) The inhomogeneous Herz space𝐾𝛼(β‹…),π‘žπ‘(β‹…)

    (R𝑛) is definedby

    𝐾𝛼(β‹…),π‘ž

    𝑝(β‹…)(R

    𝑛) = {𝑓 ∈ 𝐿

    𝑝(β‹…)

    loc (R𝑛) :

    𝑓𝐾𝛼(β‹…),π‘ž

    𝑝(β‹…)(R𝑛)

    < ∞} , (12)

    where𝑓𝐾𝛼(β‹…),π‘ž

    𝑝(β‹…)(R𝑛)

    ={2

    𝛼(β‹…)π‘šπ‘“πœ’

    π‘š

    𝐿𝑝(β‹…)(R𝑛)}

    ∞

    π‘š=0

    β„“π‘ž(N), (13)

    with the usual modification when π‘ž = ∞.

    Remark 3. It is obvious that if 0 < π‘ž1≀ π‘ž

    2≀ ∞, then

    �̇�𝛼(β‹…),π‘ž1

    𝑝(β‹…)(R𝑛) βŠ‚ οΏ½Μ‡οΏ½

    𝛼(β‹…),π‘ž2

    𝑝(β‹…)(R𝑛) and 𝐾𝛼(β‹…),π‘ž1

    𝑝(β‹…)(R𝑛) βŠ‚ 𝐾

    𝛼(β‹…),π‘ž2

    𝑝(β‹…)(R𝑛). If

    both 𝛼(β‹…) and 𝑝(β‹…) are constants, then �̇�𝛼(β‹…),π‘žπ‘(β‹…)

    (R𝑛) = �̇�𝛼,π‘ž

    𝑝 (R𝑛)

    and 𝐾𝛼(β‹…),π‘žπ‘(β‹…)

    (R𝑛) = 𝐾𝛼,π‘ž

    𝑝 (R𝑛) are classical Herz spaces; see

    [21, 22].

    Definition 4. A function 𝛼(β‹…) : R𝑛 β†’ R is called log-Höldercontinuous at the origin, if there exists a constant 𝐢log > 0such that

    |𝛼 (π‘₯) βˆ’ 𝛼 (0)| ≀𝐢log

    log (𝑒 + 1/ |π‘₯|), (14)

    for all π‘₯ ∈ R𝑛. If, for some π›Όβˆžβˆˆ R and 𝐢log > 0, there holds

    𝛼 (π‘₯) βˆ’ π›Όβˆž ≀

    𝐢log

    log (𝑒 + |π‘₯|)(15)

    for all π‘₯ ∈ R𝑛, then 𝛼(β‹…) is called log-Hölder continuous atinfinity.

    Let one denote

    {β„Žπ‘˜}β„“π‘ž

    >(𝐿𝑝(β‹…)

    )= (βˆ‘

    π‘˜β©Ύ0

    β„Žπ‘˜

    π‘ž

    𝐿𝑝(β‹…))

    1/π‘ž

    ,

    {β„Žπ‘˜}β„“π‘ž

    <(𝐿𝑝(β‹…)

    )= (βˆ‘

    π‘˜

  • Journal of Function Spaces 3

    for sequences {β„Žπ‘˜}π‘˜βˆˆZ ofmeasurable functions (with the usual

    modification when π‘ž = ∞).

    Proposition 5 (see [20]). Let 0 < π‘ž ≀ ∞, 𝑝(β‹…) ∈ P(R𝑛),and 𝛼(β‹…) ∈ 𝐿∞(R𝑛). If 𝛼(β‹…) is log-Hölder continuous both at theorigin and at infinity, then

    𝑓�̇�𝛼(β‹…),π‘ž

    𝑝(β‹…)(R𝑛)

    β‰ˆ{2

    𝛼(0)π‘˜π‘“πœ’

    π‘˜}β„“π‘ž

    <(𝐿𝑝(β‹…)

    )

    +{2

    π›Όβˆž

    π‘˜π‘“πœ’

    π‘˜}β„“π‘ž

    >(𝐿𝑝(β‹…)

    ).

    (17)

    Before stating themain results of this paper, we introducesome key lemmas that will be used later.

    Lemma 6 (generalized Hölder’s inequality [12]). Let 𝑝(β‹…) ∈P(R𝑛); if 𝑓 ∈ 𝐿𝑝(β‹…)(R𝑛) and 𝑔 ∈ 𝐿𝑝

    (β‹…)(R𝑛), then

    ∫R𝑛

    𝑓 (π‘₯) 𝑔 (π‘₯) 𝑑π‘₯ ≀ π‘Ÿπ‘

    𝑓𝐿𝑝(β‹…)(R𝑛)

    𝑔𝐿𝑝(β‹…)

    (R𝑛), (18)

    where π‘Ÿπ‘= 1 + 1/𝑝

    βˆ’βˆ’ 1/𝑝

    +.

    We remark that the following Lemmas 7–9 were shown inIzuki [17, 23], and Lemma 10 was considered by Wang et al.in [18].

    Lemma 7. Let 𝑝(β‹…) ∈ B(R𝑛); then one has, for all balls 𝐡 inR𝑛,

    1

    |𝐡|

    πœ’π΅πΏπ‘(β‹…)(R𝑛)

    πœ’π΅πΏπ‘(β‹…)

    (R𝑛)≲ 1. (19)

    Lemma 8. Let 𝑝(β‹…) ∈ B(R𝑛); then one has, for all balls 𝐡 inR𝑛 and all measurable subsets 𝑆 βŠ‚ 𝐡,πœ’π‘†

    𝐿𝑝(β‹…)(R𝑛)πœ’π΅

    𝐿𝑝(β‹…)(R𝑛)

    ≲ (|𝑆|

    |𝐡|)

    𝛿1

    ,

    πœ’π‘†πΏπ‘(β‹…)

    (R𝑛)πœ’π΅

    𝐿𝑝(β‹…)

    (R𝑛)

    ≲ (|𝑆|

    |𝐡|)

    𝛿2

    , (20)

    where 𝛿1and 𝛿

    2are constants with 0 < 𝛿

    1, 𝛿

    2< 1.

    Lemma 9. Let π‘š ∈ N, 𝑏 ∈ BMO(R𝑛), and π‘˜ > 𝑖 (π‘˜, 𝑖 ∈ N);then one has

    supπ΅βŠ‚R𝑛

    1πœ’π΅

    𝐿𝑝(β‹…)(R𝑛)

    (𝑏 βˆ’ 𝑏

    𝐡)π‘šπœ’

    𝐡

    𝐿𝑝(β‹…)(R𝑛)β‰ˆ ‖𝑏‖

    π‘š

    BMO,

    (𝑏 βˆ’ 𝑏

    𝐡𝑖

    )π‘š

    πœ’π΅π‘˜

    𝐿𝑝(β‹…)(R𝑛)≲ (π‘˜ βˆ’ 𝑖)

    π‘šβ€–π‘β€–

    π‘š

    BMOπœ’

    π΅π‘˜

    𝐿𝑝(β‹…)(R𝑛).

    (21)

    Lemma 10. Let Ξ© ∈ Lip𝛾(Sπ‘›βˆ’1) (0 < 𝛾 ≀ 1), 𝑏 ∈ BMO(R𝑛),

    and 𝑝(β‹…) ∈ B(R𝑛); then one hasπœ‡Ξ©(𝑓)

    𝐿𝑝(β‹…)(R𝑛) ≲𝑓𝐿𝑝(β‹…)(R𝑛),

    πœ‡

    π‘š

    Ξ©,𝑏(𝑓)

    𝐿𝑝(β‹…)(R𝑛)≲ ‖𝑏‖

    π‘š

    BMO𝑓𝐿𝑝(β‹…)(R𝑛).

    (22)

    Our results in this paper can be stated as follows.

    Theorem 11. Let Ξ© ∈ Lip𝛾(Sπ‘›βˆ’1) (0 < 𝛾 ≀ 1), 0 < π‘ž ≀ ∞,

    and 𝑝(β‹…) ∈ B(R𝑛). And let 𝛼(β‹…) ∈ 𝐿∞(R𝑛) be log-Hölder

    continuous both at the origin and at infinity, such that βˆ’π‘›π›Ώ1<

    𝛼(0) ≀ π›Όβˆž

    < 𝑛𝛿2, where 0 < 𝛿

    1, 𝛿

    2< 1 are the constants

    appearing in Lemma 8; then the operator πœ‡Ξ©is bounded on

    �̇�𝛼(β‹…),π‘ž

    𝑝(β‹…)(R𝑛) and 𝐾𝛼(β‹…),π‘ž

    𝑝(β‹…)(R𝑛).

    Theorem 12. Let Ξ© ∈ Lip𝛾(Sπ‘›βˆ’1) (0 < 𝛾 ≀ 1), 𝑏 ∈

    BMO(R𝑛), 0 < π‘ž ≀ ∞, and 𝑝(β‹…) ∈ B(R𝑛). And let 𝛼(β‹…) ∈𝐿

    ∞(R𝑛) be log-Hölder continuous both at the origin and at

    infinity, such that βˆ’π‘›π›Ώ1< 𝛼(0) ≀ 𝛼

    ∞< 𝑛𝛿

    2, where 0 < 𝛿

    1,

    𝛿2< 1 are the constants appearing in Lemma 8; then the

    higher order commutator πœ‡π‘šΞ©,𝑏

    is bounded on �̇�𝛼(β‹…),π‘žπ‘(β‹…)

    (R𝑛) and𝐾

    𝛼(β‹…),π‘ž

    𝑝(β‹…)(R𝑛).

    Remark 13. If 𝛼(β‹…) ≑ 𝛼 is constant, then the statementscorresponding toTheorems 11 and 12 can be found in [19, 24].We consider only 0 < π‘ž < ∞ in Section 3. The arguments aresimilar in the case π‘ž = ∞.

    3. Proofs of the Theorems

    In this section, we prove the boundedness of πœ‡Ξ©and πœ‡π‘š

    Ξ©,𝑏on

    �̇�𝛼(β‹…),π‘ž

    𝑝(β‹…)(R𝑛) (the same arguments can be used in 𝐾𝛼(β‹…),π‘ž

    𝑝(β‹…)(R𝑛));

    some of our decomposition techniques are similar to thoseused by Dong and Xu in [25].

    Proof of Theorem 11. In view of Proposition 5, we have

    πœ‡Ξ© (𝑓)�̇�𝛼(β‹…),π‘ž

    𝑝(β‹…)(R𝑛)

    β‰ˆ{2

    𝛼(0)π‘˜πœ‡

    Ξ©(𝑓) πœ’

    π‘˜}β„“π‘ž

    <(𝐿𝑝(β‹…)

    )

    +{2

    π›Όβˆž

    π‘˜πœ‡

    Ξ©(𝑓) πœ’

    π‘˜}β„“π‘ž

    >(𝐿𝑝(β‹…)

    )

    = 𝐼<+ 𝐼

    >.

    (23)

    Let 𝑓 ∈ �̇�𝛼(β‹…),π‘žπ‘(β‹…)

    (R𝑛); write

    𝑓 (π‘₯) =

    ∞

    βˆ‘

    𝑖=βˆ’βˆž

    𝑓 (π‘₯) πœ’π‘– (π‘₯) =

    ∞

    βˆ‘

    𝑖=βˆ’βˆž

    𝑓𝑖 (π‘₯) . (24)

    Minkowski’s inequality implies that

    𝐼<= {

    βˆ’1

    βˆ‘

    π‘˜=βˆ’βˆž

    2𝛼(0)π‘˜π‘žπœ‡Ξ© (𝑓) πœ’π‘˜

    π‘ž

    𝐿𝑝(β‹…)

    (R𝑛)}

    1/π‘ž

    ≲ {

    βˆ’1

    βˆ‘

    π‘˜=βˆ’βˆž

    2𝛼(0)π‘˜π‘ž

    (

    π‘˜βˆ’2

    βˆ‘

    𝑖=βˆ’βˆž

    πœ‡Ξ© (𝑓𝑖) πœ’π‘˜πΏπ‘(β‹…)(R𝑛))

    π‘ž

    }

    1/π‘ž

    + {

    βˆ’1

    βˆ‘

    π‘˜=βˆ’βˆž

    2𝛼(0)π‘˜π‘ž

    (

    π‘˜+1

    βˆ‘

    𝑖=π‘˜βˆ’1

    πœ‡Ξ© (𝑓𝑖) πœ’π‘˜πΏπ‘(β‹…)(R𝑛))

    π‘ž

    }

    1/π‘ž

    + {

    βˆ’1

    βˆ‘

    π‘˜=βˆ’βˆž

    2𝛼(0)π‘˜π‘ž

    (

    ∞

    βˆ‘

    𝑖=π‘˜+2

    πœ‡Ξ© (𝑓𝑖) πœ’π‘˜πΏπ‘(β‹…)(R𝑛))

    π‘ž

    }

    1/π‘ž

    = 𝐸<+ 𝐹

    <+ 𝐺

    <.

    (25)

  • 4 Journal of Function Spaces

    Similarly we obtain

    𝐼>= {

    ∞

    βˆ‘

    π‘˜=0

    2π›Όβˆž

    π‘˜π‘žπœ‡Ξ© (𝑓) πœ’π‘˜

    π‘ž

    𝐿𝑝(β‹…)

    (R𝑛)}

    1/π‘ž

    ≲ {

    ∞

    βˆ‘

    π‘˜=0

    2π›Όβˆž

    π‘˜π‘ž(

    π‘˜βˆ’2

    βˆ‘

    𝑖=βˆ’βˆž

    πœ‡Ξ© (𝑓𝑖) πœ’π‘˜πΏπ‘(β‹…)(R𝑛))

    π‘ž

    }

    1/π‘ž

    + {

    ∞

    βˆ‘

    π‘˜=0

    2π›Όβˆž

    π‘˜π‘ž(

    π‘˜+1

    βˆ‘

    𝑖=π‘˜βˆ’1

    πœ‡Ξ© (𝑓𝑖) πœ’π‘˜πΏπ‘(β‹…)(R𝑛))

    π‘ž

    }

    1/π‘ž

    + {

    ∞

    βˆ‘

    π‘˜=0

    2π›Όβˆž

    π‘˜π‘ž(

    ∞

    βˆ‘

    𝑖=π‘˜+2

    πœ‡Ξ© (𝑓𝑖) πœ’π‘˜πΏπ‘(β‹…)(R𝑛))

    π‘ž

    }

    1/π‘ž

    = 𝐸>+ 𝐹

    >+ 𝐺

    >.

    (26)

    Thus we get

    πœ‡Ξ©(𝑓)�̇�𝛼(β‹…),π‘ž

    𝑝(β‹…)(R𝑛)

    ≲ 𝐸 + 𝐹 + 𝐺, (27)

    where 𝐸 = 𝐸<+ 𝐸

    >, 𝐹 = 𝐹

    <+ 𝐹

    >, and 𝐺 = 𝐺

    <+ 𝐺

    >.

    For 𝐹, Lemma 10 yields

    𝐹 = 𝐹<+ 𝐹

    >

    ≲ {

    βˆ’1

    βˆ‘

    π‘˜=βˆ’βˆž

    2𝛼(0)π‘˜π‘žπ‘“π‘˜

    π‘ž

    𝐿𝑝(β‹…)

    (R𝑛)}

    1/π‘ž

    + {

    ∞

    βˆ‘

    π‘˜=0

    2π›Όβˆž

    π‘˜π‘žπ‘“π‘˜

    π‘ž

    𝐿𝑝(β‹…)

    (R𝑛)}

    1/π‘ž

    ≲{2

    𝛼(0)π‘˜π‘“πœ’

    π‘˜}β„“π‘ž

    <(𝐿𝑝(β‹…)

    )+{2

    π›Όβˆž

    π‘˜π‘“πœ’

    π‘˜}β„“π‘ž

    >(𝐿𝑝(β‹…)

    )

    β‰ˆπ‘“οΏ½Μ‡οΏ½π›Ό(β‹…),π‘ž

    𝑝(β‹…)(R𝑛)

    .

    (28)

    Nowwe turn to estimate𝐸. Observe that if π‘₯ ∈ π‘…π‘˜, 𝑦 ∈ 𝑅

    𝑖,

    and 𝑖 ≀ π‘˜ βˆ’ 2, then |π‘₯ βˆ’ 𝑦| β‰ˆ |π‘₯| β‰ˆ 2π‘˜ and

    1

    π‘₯ βˆ’ 𝑦2βˆ’

    1

    |π‘₯|2

    ≲

    𝑦

    π‘₯ βˆ’ 𝑦3. (29)

    Since Ξ© ∈ Lip𝛾(Sπ‘›βˆ’1) βŠ‚ 𝐿∞(Sπ‘›βˆ’1), by Minkowski’s

    inequality and Lemma 6, we have

    πœ‡Ξ© (𝑓𝑖) (π‘₯)

    ≲ (∫

    |π‘₯|

    0

    ∫|π‘₯βˆ’π‘¦|≀𝑑

    Ξ©(π‘₯ βˆ’ 𝑦)

    |π‘₯ βˆ’ 𝑦|π‘›βˆ’1𝑓

    𝑖(𝑦)𝑑𝑦

    2

    𝑑𝑑

    𝑑3)

    1/2

    + (∫

    ∞

    |π‘₯|

    ∫|π‘₯βˆ’π‘¦|≀𝑑

    Ξ©(π‘₯ βˆ’ 𝑦)

    |π‘₯ βˆ’ 𝑦|π‘›βˆ’1𝑓

    𝑖(𝑦)𝑑𝑦

    2

    𝑑𝑑

    𝑑3)

    1/2

    ≲ βˆ«π‘…π‘–

    𝑓𝑖 (𝑦)

    π‘₯ βˆ’ π‘¦π‘›βˆ’1

    (∫|π‘₯βˆ’π‘¦|≀𝑑,|π‘₯|β‰₯𝑑

    𝑑𝑑

    𝑑3)

    1/2

    𝑑𝑦

    + βˆ«π‘…π‘–

    𝑓𝑖 (𝑦)

    π‘₯ βˆ’ π‘¦π‘›βˆ’1

    (∫

    ∞

    |π‘₯|

    𝑑𝑑

    𝑑3)

    1/2

    𝑑𝑦

    ≲ βˆ«π‘…π‘–

    𝑓𝑖 (𝑦)

    π‘₯ βˆ’ π‘¦π‘›βˆ’1

    β‹…

    𝑦1/2

    π‘₯ βˆ’ 𝑦3/2

    𝑑𝑦 + βˆ«π‘…π‘–

    𝑓𝑖 (𝑦)

    π‘₯ βˆ’ π‘¦π‘›βˆ’1

    β‹…1

    |π‘₯|𝑑𝑦

    ≲ 2(π‘–βˆ’π‘˜)/2

    2βˆ’π‘˜π‘›π‘“π‘–

    𝐿𝑝(β‹…)(R𝑛)πœ’π‘–

    𝐿𝑝(β‹…)

    (R𝑛)

    + 2βˆ’π‘˜π‘›π‘“π‘–

    𝐿𝑝(β‹…)(R𝑛)πœ’π‘–

    𝐿𝑝(β‹…)

    (R𝑛)

    ≲ 2βˆ’π‘˜π‘›π‘“π‘–

    𝐿𝑝(β‹…)(R𝑛)

    πœ’

    𝐡𝑖

    𝐿𝑝(β‹…)

    (R𝑛).

    (30)

    Lemmas 7 and 8 lead to

    πœ‡Ξ©(𝑓𝑖)(π‘₯)πœ’π‘˜πΏπ‘(β‹…)(R𝑛)

    ≲ 2βˆ’π‘˜π‘›π‘“π‘–

    𝐿𝑝(β‹…)(R𝑛)

    πœ’

    𝐡𝑖

    𝐿𝑝(β‹…)

    (R𝑛)

    πœ’

    π΅π‘˜

    𝐿𝑝(β‹…)(R𝑛)

    ≲𝑓𝑖

    𝐿𝑝(β‹…)(R𝑛)

    πœ’

    𝐡𝑖

    𝐿𝑝(β‹…)

    (R𝑛)πœ’

    π΅π‘˜

    𝐿𝑝(β‹…)

    (R𝑛)

    ≲ 2(π‘–βˆ’π‘˜)𝑛𝛿

    2𝑓𝑖

    𝐿𝑝(β‹…)(R𝑛).

    (31)

    Thus we get

    𝐸<≲ {

    βˆ’1

    βˆ‘

    π‘˜=βˆ’βˆž

    2π‘˜π›Ό(0)π‘ž

    (

    π‘˜βˆ’2

    βˆ‘

    𝑖=βˆ’βˆž

    2(π‘–βˆ’π‘˜)𝑛𝛿

    2𝑓𝑖

    𝐿𝑝(β‹…)(R𝑛))

    π‘ž

    }

    1/π‘ž

    β‰ˆ {

    βˆ’1

    βˆ‘

    π‘˜=βˆ’βˆž

    (

    π‘˜βˆ’2

    βˆ‘

    𝑖=βˆ’βˆž

    2𝛼(0)𝑖𝑓𝑖

    𝐿𝑝(β‹…)(R𝑛)2(π‘–βˆ’π‘˜)(𝑛𝛿

    2βˆ’π›Ό(0))

    )

    π‘ž

    }

    1/π‘ž

    .

    (32)

    If 1 < π‘ž < ∞, since 𝑛𝛿2βˆ’ 𝛼(0) > 0, Hölder’s inequality

    implies that

    𝐸<≲{

    {

    {

    βˆ’1

    βˆ‘

    π‘˜=βˆ’βˆž

    (

    π‘˜βˆ’2

    βˆ‘

    𝑖=βˆ’βˆž

    2𝛼(0)π‘–π‘žπ‘“π‘–

    π‘ž

    𝐿𝑝(β‹…)

    (R𝑛)2

    (π‘–βˆ’π‘˜)(𝑛𝛿2βˆ’π›Ό(0))π‘ž/2

    )

    Γ—(

    π‘˜βˆ’2

    βˆ‘

    𝑖=βˆ’βˆž

    2(π‘–βˆ’π‘˜)(𝑛𝛿

    2βˆ’π›Ό(0))π‘ž

    /2)

    π‘ž/π‘ž

    }

    }

    }

    1/π‘ž

    ≲ {

    βˆ’3

    βˆ‘

    𝑖=βˆ’βˆž

    2𝛼(0)π‘–π‘žπ‘“π‘–

    π‘ž

    𝐿𝑝(β‹…)

    (R𝑛)

    βˆ’1

    βˆ‘

    π‘˜=𝑖+2

    2(π‘–βˆ’π‘˜)(𝑛𝛿

    2βˆ’π›Ό(0))π‘ž/2

    }

    1/π‘ž

    ≲{2

    𝛼(0)π‘˜π‘“πœ’

    π‘˜}β„“π‘ž

    <(𝐿𝑝(β‹…)

    )

    ≲𝑓�̇�𝛼(β‹…),π‘ž

    𝑝(β‹…)(R𝑛)

    .

    (33)

  • Journal of Function Spaces 5

    If 0 < π‘ž ≀ 1, by the well-known inequality

    (

    ∞

    βˆ‘

    𝑖=1

    π‘Žπ‘–)

    π‘ž

    ≀

    ∞

    βˆ‘

    𝑖=1

    π‘Žπ‘ž

    𝑖(π‘Ž

    𝑖> 0, 𝑖 = 1, 2, . . .) , (34)

    we obtain

    𝐸<≲ {

    βˆ’1

    βˆ‘

    π‘˜=βˆ’βˆž

    π‘˜βˆ’2

    βˆ‘

    𝑖=βˆ’βˆž

    2𝛼(0)π‘–π‘žπ‘“π‘–

    π‘ž

    𝐿𝑝(β‹…)

    (R𝑛)2

    (π‘–βˆ’π‘˜)(𝑛𝛿2βˆ’π›Ό(0))π‘ž

    }

    1/π‘ž

    β‰ˆ {

    βˆ’3

    βˆ‘

    𝑖=βˆ’βˆž

    2𝛼(0)π‘–π‘žπ‘“π‘–

    π‘ž

    𝐿𝑝(β‹…)

    (R𝑛)

    βˆ’1

    βˆ‘

    π‘˜=𝑖+2

    2(π‘–βˆ’π‘˜)(𝑛𝛿

    2βˆ’π›Ό(0))π‘ž

    }

    1/π‘ž

    ≲{2

    𝛼(0)π‘˜π‘“πœ’

    π‘˜}β„“π‘ž

    <(𝐿𝑝(β‹…)

    )

    ≲𝑓�̇�𝛼(β‹…),π‘ž

    𝑝(β‹…)(R𝑛)

    .

    (35)

    Similarly we have

    𝐸>≲ {

    ∞

    βˆ‘

    π‘˜=0

    2π‘˜π›Όβˆž

    π‘ž(

    π‘˜βˆ’2

    βˆ‘

    𝑖=βˆ’βˆž

    2(π‘–βˆ’π‘˜)𝑛𝛿

    2𝑓𝑖

    𝐿𝑝(β‹…)(R𝑛))

    π‘ž

    }

    1/π‘ž

    β‰ˆ {

    ∞

    βˆ‘

    π‘˜=0

    (

    π‘˜βˆ’2

    βˆ‘

    𝑖=βˆ’βˆž

    2π›Όβˆž

    𝑖𝑓𝑖𝐿𝑝(β‹…)(R𝑛)2

    (π‘–βˆ’π‘˜)(𝑛𝛿2βˆ’π›Όβˆž

    ))

    π‘ž

    }

    1/π‘ž

    .

    (36)

    If 1 < π‘ž < ∞, since π›Όβˆž+𝑛𝛿

    2> 2𝛼

    ∞> 2𝛼(0), then we get

    𝐸>≲{

    {

    {

    ∞

    βˆ‘

    π‘˜=0

    (

    π‘˜βˆ’2

    βˆ‘

    𝑖=βˆ’βˆž

    2π›Όβˆž

    π‘–π‘žπ‘“π‘–

    π‘ž

    𝐿𝑝(β‹…)

    (R𝑛)2

    (π‘–βˆ’π‘˜)(𝑛𝛿2βˆ’π›Όβˆž

    )π‘ž/2)

    Γ— (

    π‘˜βˆ’2

    βˆ‘

    𝑖=βˆ’βˆž

    2(π‘–βˆ’π‘˜)(𝑛𝛿

    2βˆ’π›Όβˆž

    )π‘ž

    /2)

    π‘ž/π‘ž

    }

    }

    }

    1/π‘ž

    ≲ {

    ∞

    βˆ‘

    π‘˜=0

    (

    π‘˜βˆ’2

    βˆ‘

    𝑖=βˆ’βˆž

    2π›Όβˆž

    π‘–π‘žπ‘“π‘–

    π‘ž

    𝐿𝑝(β‹…)

    (R𝑛)2

    (π‘–βˆ’π‘˜)(𝑛𝛿2βˆ’π›Όβˆž

    )π‘ž/2)}

    1/π‘ž

    β‰ˆ {

    βˆ’2

    βˆ‘

    𝑖=βˆ’βˆž

    2π›Όβˆž

    π‘–π‘žπ‘“π‘–

    π‘ž

    𝐿𝑝(β‹…)

    (R𝑛)

    ∞

    βˆ‘

    π‘˜=0

    2(π‘–βˆ’π‘˜)(𝑛𝛿

    2βˆ’π›Όβˆž

    )π‘ž/2

    +

    ∞

    βˆ‘

    𝑖=βˆ’1

    2π›Όβˆž

    π‘–π‘žπ‘“π‘–

    π‘ž

    𝐿𝑝(β‹…)

    (R𝑛)

    ∞

    βˆ‘

    π‘˜=𝑖+2

    2(π‘–βˆ’π‘˜)(𝑛𝛿

    2βˆ’π›Όβˆž

    )π‘ž/2}

    1/π‘ž

    ≲ {

    βˆ’2

    βˆ‘

    𝑖=βˆ’βˆž

    2𝛼(0)π‘–π‘ž

    2(π›Όβˆž

    +𝑛𝛿2βˆ’2𝛼(0))π‘–π‘ž/2𝑓𝑖

    π‘ž

    𝐿𝑝(β‹…)

    (R𝑛)

    +

    ∞

    βˆ‘

    𝑖=βˆ’1

    2π›Όβˆž

    π‘–π‘žπ‘“π‘–

    π‘ž

    𝐿𝑝(β‹…)

    (R𝑛)}

    1/π‘ž

    ≲ {

    βˆ’2

    βˆ‘

    𝑖=βˆ’βˆž

    2𝛼(0)π‘–π‘žπ‘“π‘–

    π‘ž

    𝐿𝑝(β‹…)

    (R𝑛)+

    ∞

    βˆ‘

    𝑖=βˆ’1

    2π›Όβˆž

    π‘–π‘žπ‘“π‘–

    π‘ž

    𝐿𝑝(β‹…)

    (R𝑛)}

    1/π‘ž

    ≲{2

    𝛼(0)π‘˜π‘“πœ’

    π‘˜}β„“π‘ž

    <(𝐿𝑝(β‹…)

    )+{2

    π›Όβˆž

    π‘˜π‘“πœ’

    π‘˜}β„“π‘ž

    >(𝐿𝑝(β‹…)

    )

    β‰ˆπ‘“οΏ½Μ‡οΏ½π›Ό(β‹…),π‘ž

    𝑝(β‹…)(R𝑛)

    .

    (37)

    If 0 < π‘ž ≀ 1, since 𝛼(0) ≀ π›Όβˆž, we obtain

    𝐸>≲ {

    ∞

    βˆ‘

    π‘˜=0

    π‘˜βˆ’2

    βˆ‘

    𝑖=βˆ’βˆž

    2π›Όβˆž

    π‘–π‘žπ‘“π‘–

    π‘ž

    𝐿𝑝(β‹…)

    (R𝑛)2

    (π‘–βˆ’π‘˜)(𝑛𝛿2βˆ’π›Όβˆž

    )π‘ž}

    1/π‘ž

    β‰ˆ {

    βˆ’2

    βˆ‘

    𝑖=βˆ’βˆž

    2π›Όβˆž

    π‘–π‘žπ‘“π‘–

    π‘ž

    𝐿𝑝(β‹…)

    (R𝑛)

    ∞

    βˆ‘

    π‘˜=0

    2(π‘–βˆ’π‘˜)(𝑛𝛿

    2βˆ’π›Όβˆž

    )π‘ž

    +

    ∞

    βˆ‘

    𝑖=βˆ’1

    2π›Όβˆž

    π‘–π‘žπ‘“π‘–

    π‘ž

    𝐿𝑝(β‹…)

    (R𝑛)

    ∞

    βˆ‘

    π‘˜=𝑖+2

    2(π‘–βˆ’π‘˜)(𝑛𝛿

    2βˆ’π›Όβˆž

    )π‘ž}

    1/π‘ž

    ≲ {

    βˆ’2

    βˆ‘

    𝑖=βˆ’βˆž

    2𝛼(0)π‘–π‘žπ‘“π‘–

    π‘ž

    𝐿𝑝(β‹…)

    (R𝑛)+

    ∞

    βˆ‘

    𝑖=βˆ’1

    2π›Όβˆž

    π‘–π‘žπ‘“π‘–

    π‘ž

    𝐿𝑝(β‹…)

    (R𝑛)}

    1/π‘ž

    ≲{2

    𝛼(0)π‘˜π‘“πœ’

    π‘˜}β„“π‘ž

    <(𝐿𝑝(β‹…)

    )+{2

    π›Όβˆž

    π‘˜π‘“πœ’

    π‘˜}β„“π‘ž

    >(𝐿𝑝(β‹…)

    )

    β‰ˆπ‘“οΏ½Μ‡οΏ½π›Ό(β‹…),π‘ž

    𝑝(β‹…)(R𝑛)

    .

    (38)

    Thus, we arrive at

    𝐸 = 𝐸<+ 𝐸

    >≲𝑓�̇�𝛼(β‹…),π‘ž

    𝑝(β‹…)(R𝑛)

    . (39)

    For 𝐺, observe that if π‘₯ ∈ π‘…π‘˜, 𝑦 ∈ 𝑅

    𝑖, and 𝑖 β‰₯ π‘˜ + 2, then

    |π‘₯ βˆ’ 𝑦| β‰ˆ |𝑦| β‰ˆ 2𝑖 and

    1

    π‘₯ βˆ’ 𝑦2βˆ’

    1

    𝑦2

    ≲|π‘₯|

    π‘₯ βˆ’ 𝑦3. (40)

    From Minkowski’s inequality and Lemma 6, it followsthatπœ‡Ξ© (𝑓𝑖) (π‘₯)

    ≲ (∫

    |𝑦|

    0

    ∫|π‘₯βˆ’π‘¦|≀𝑑

    Ξ©(π‘₯ βˆ’ 𝑦)

    π‘₯ βˆ’ π‘¦π‘›βˆ’1

    𝑓𝑖(𝑦)𝑑𝑦

    2

    𝑑𝑑

    𝑑3)

    1/2

    + (∫

    ∞

    |𝑦|

    ∫|π‘₯βˆ’π‘¦|≀𝑑

    Ξ©(π‘₯ βˆ’ 𝑦)

    π‘₯ βˆ’ π‘¦π‘›βˆ’1

    𝑓𝑖(𝑦)𝑑𝑦

    2

    𝑑𝑑

    𝑑3)

    1/2

    ≲ βˆ«π‘…π‘–

    𝑓𝑖 (𝑦)

    π‘₯ βˆ’ π‘¦π‘›βˆ’1

    (∫|π‘₯βˆ’π‘¦|≀𝑑,|𝑦|β‰₯𝑑

    𝑑𝑑

    𝑑3)

    1/2

    𝑑𝑦

    + βˆ«π‘…π‘–

    𝑓𝑖 (𝑦)

    π‘₯ βˆ’ π‘¦π‘›βˆ’1

    (∫

    ∞

    |𝑦|

    𝑑𝑑

    𝑑3)

    1/2

    𝑑𝑦

    ≲ βˆ«π‘…π‘–

    𝑓𝑖 (𝑦)

    π‘₯ βˆ’ π‘¦π‘›βˆ’1

    β‹…|π‘₯|

    1/2

    π‘₯ βˆ’ 𝑦3/2

    𝑑𝑦 + βˆ«π‘…π‘–

    𝑓𝑖 (𝑦)

    π‘₯ βˆ’ π‘¦π‘›βˆ’1

    β‹…1𝑦

    𝑑𝑦

  • 6 Journal of Function Spaces

    ≲ 2(π‘˜βˆ’π‘–)/2

    2βˆ’π‘–π‘›π‘“π‘–

    𝐿𝑝(β‹…)(R𝑛)πœ’π‘–

    𝐿𝑝(β‹…)

    (R𝑛)

    + 𝐢2βˆ’π‘–π‘›π‘“π‘–

    𝐿𝑝(β‹…)(R𝑛)πœ’π‘–

    𝐿𝑝(β‹…)

    (R𝑛)

    ≲ 2βˆ’π‘–π‘›π‘“π‘–

    𝐿𝑝(β‹…)(R𝑛)

    πœ’

    𝐡𝑖

    𝐿𝑝(β‹…)

    (R𝑛).

    (41)

    By Lemmas 7 and 8, we have

    πœ‡Ξ©(𝑓𝑖)(π‘₯)πœ’π‘˜πΏπ‘(β‹…)(R𝑛)

    ≲ 2βˆ’π‘–π‘›π‘“π‘–

    𝐿𝑝(β‹…)(R𝑛)

    πœ’

    𝐡𝑖

    𝐿𝑝(β‹…)

    (R𝑛)

    πœ’

    π΅π‘˜

    𝐿𝑝(β‹…)(R𝑛)

    ≲𝑓𝑖

    𝐿𝑝(β‹…)(R𝑛)

    πœ’

    π΅π‘˜

    𝐿𝑝(β‹…)(R𝑛)πœ’

    𝐡𝑖

    𝐿𝑝(β‹…)(R𝑛)

    ≲ 2(π‘˜βˆ’π‘–)𝑛𝛿

    1𝑓𝑖

    𝐿𝑝(β‹…)(R𝑛).

    (42)

    Thus we get

    𝐺<≲ {

    βˆ’1

    βˆ‘

    π‘˜=βˆ’βˆž

    2π‘˜π›Ό(0)π‘ž

    (

    ∞

    βˆ‘

    𝑖=π‘˜+2

    2(π‘˜βˆ’π‘–)𝑛𝛿

    1𝑓𝑖

    𝐿𝑝(β‹…)(R𝑛))

    π‘ž

    }

    1/π‘ž

    β‰ˆ {

    βˆ’1

    βˆ‘

    π‘˜=βˆ’βˆž

    (

    ∞

    βˆ‘

    𝑖=π‘˜+2

    2𝛼(0)𝑖𝑓𝑖

    𝐿𝑝(β‹…)(R𝑛)2(π‘˜βˆ’π‘–)(𝑛𝛿

    1+𝛼(0))

    )

    π‘ž

    }

    1/π‘ž

    ,

    𝐺>≲ {

    ∞

    βˆ‘

    π‘˜=0

    (

    ∞

    βˆ‘

    𝑖=π‘˜+2

    2π›Όβˆž

    𝑖𝑓𝑖𝐿𝑝(β‹…)(R𝑛)2

    (π‘˜βˆ’π‘–)(𝑛𝛿1+π›Όβˆž

    ))

    π‘ž

    }

    1/π‘ž

    .

    (43)

    Using the same arguments as that for 𝐸<and 𝐸

    >, we get

    𝐺 = 𝐺<+ 𝐺

    >≲𝑓�̇�𝛼(β‹…),π‘ž

    𝑝(β‹…)(R𝑛)

    . (44)

    Hence the proof of Theorem 11 is completed.

    Proof of Theorem 12. We apply Proposition 5 again and get

    πœ‡

    π‘š

    Ξ©,𝑏(𝑓)

    �̇�𝛼(β‹…),π‘ž

    𝑝(β‹…)(R𝑛)

    β‰ˆ{2

    𝛼(0)π‘˜πœ‡

    π‘š

    Ξ©,𝑏(𝑓) πœ’

    π‘˜}β„“π‘ž

    <(𝐿𝑝(β‹…)

    )

    +{2

    π›Όβˆž

    π‘˜πœ‡

    π‘š

    Ξ©,𝑏(𝑓) πœ’

    π‘˜}β„“π‘ž

    >(𝐿𝑝(β‹…)

    )

    = 𝐽<+ 𝐽

    >.

    (45)

    Let 𝑓 ∈ �̇�𝛼(β‹…),π‘žπ‘(β‹…)

    (R𝑛), and write

    𝑓 (π‘₯) =

    ∞

    βˆ‘

    𝑖=βˆ’βˆž

    𝑓 (π‘₯) πœ’π‘– (π‘₯) =

    ∞

    βˆ‘

    𝑖=βˆ’βˆž

    𝑓𝑖 (π‘₯) . (46)

    By Minkowski’s inequality, we have

    𝐽<= {

    βˆ’1

    βˆ‘

    π‘˜=βˆ’βˆž

    2𝛼(0)π‘˜π‘ž

    πœ‡π‘š

    Ξ©,𝑏(𝑓) πœ’

    π‘˜

    π‘ž

    𝐿𝑝(β‹…)

    (R𝑛)}

    1/π‘ž

    ≲ {

    βˆ’1

    βˆ‘

    π‘˜=βˆ’βˆž

    2𝛼(0)π‘˜π‘ž

    (

    π‘˜βˆ’2

    βˆ‘

    𝑖=βˆ’βˆž

    πœ‡

    π‘š

    Ξ©,𝑏(𝑓

    𝑖) πœ’

    π‘˜

    𝐿𝑝(β‹…)(R𝑛))

    π‘ž

    }

    1/π‘ž

    + {

    βˆ’1

    βˆ‘

    π‘˜=βˆ’βˆž

    2𝛼(0)π‘˜π‘ž

    (

    π‘˜+1

    βˆ‘

    𝑖=π‘˜βˆ’1

    πœ‡

    π‘š

    Ξ©,𝑏(𝑓

    𝑖) πœ’

    π‘˜

    𝐿𝑝(β‹…)(R𝑛))

    π‘ž

    }

    1/π‘ž

    + {

    βˆ’1

    βˆ‘

    π‘˜=βˆ’βˆž

    2𝛼(0)π‘˜π‘ž

    (

    ∞

    βˆ‘

    𝑖=π‘˜+2

    πœ‡

    π‘š

    Ξ©,𝑏(𝑓

    𝑖) πœ’

    π‘˜

    𝐿𝑝(β‹…)(R𝑛))

    π‘ž

    }

    1/π‘ž

    = π‘ˆ<+ 𝑉

    <+π‘Š

    <.

    (47)

    By the same way, we obtain

    𝐽>= {

    ∞

    βˆ‘

    π‘˜=0

    2π›Όβˆž

    π‘˜π‘žπœ‡

    π‘š

    Ξ©,𝑏(𝑓) πœ’

    π‘˜

    π‘ž

    𝐿𝑝(β‹…)

    (R𝑛)}

    1/π‘ž

    ≲ {

    ∞

    βˆ‘

    π‘˜=0

    2π›Όβˆž

    π‘˜π‘ž(

    π‘˜βˆ’2

    βˆ‘

    𝑖=βˆ’βˆž

    πœ‡

    π‘š

    Ξ©,𝑏(𝑓

    𝑖) πœ’

    π‘˜

    𝐿𝑝(β‹…)(R𝑛))

    π‘ž

    }

    1/π‘ž

    + {

    ∞

    βˆ‘

    π‘˜=0

    2π›Όβˆž

    π‘˜π‘ž(

    π‘˜+1

    βˆ‘

    𝑖=π‘˜βˆ’1

    πœ‡

    π‘š

    Ξ©,𝑏(𝑓

    𝑖) πœ’

    π‘˜

    𝐿𝑝(β‹…)(R𝑛))

    π‘ž

    }

    1/π‘ž

    + {

    ∞

    βˆ‘

    π‘˜=0

    2π›Όβˆž

    π‘˜π‘ž(

    ∞

    βˆ‘

    𝑖=π‘˜+2

    πœ‡

    π‘š

    Ξ©,𝑏(𝑓

    𝑖) πœ’

    π‘˜

    𝐿𝑝(β‹…)(R𝑛))

    π‘ž

    }

    1/π‘ž

    = π‘ˆ>+ 𝑉

    >+π‘Š

    >.

    (48)

    Thus, we have

    πœ‡

    π‘š

    Ξ©,𝑏(𝑓)

    �̇�𝛼(β‹…),π‘ž

    𝑝(β‹…)(R𝑛)

    ≲ π‘ˆ + 𝑉 +π‘Š, (49)

    where π‘ˆ = π‘ˆ<+ π‘ˆ

    >, 𝑉 = 𝑉

    <+ 𝑉

    >, andπ‘Š = π‘Š

    <+π‘Š

    >.

    For 𝑉, by Lemma 10, we have

    𝑉 = 𝑉<+ 𝑉

    >

    ≲ {

    βˆ’1

    βˆ‘

    π‘˜=βˆ’βˆž

    2𝛼(0)π‘˜π‘žπ‘“π‘˜

    π‘ž

    𝐿𝑝(β‹…)

    (R𝑛)}

    1/π‘ž

    + {

    ∞

    βˆ‘

    π‘˜=0

    2π›Όβˆž

    π‘˜π‘žπ‘“π‘˜

    π‘ž

    𝐿𝑝(β‹…)

    (R𝑛)}

    1/π‘ž

    ≲{2

    𝛼(0)π‘˜π‘“πœ’

    π‘˜}β„“π‘ž

    <(𝐿𝑝(β‹…)

    )+{2

    π›Όβˆž

    π‘˜π‘“πœ’

    π‘˜}β„“π‘ž

    >(𝐿𝑝(β‹…)

    )

    β‰ˆπ‘“οΏ½Μ‡οΏ½π›Ό(β‹…),π‘ž

    𝑝(β‹…)(R𝑛)

    .

    (50)

  • Journal of Function Spaces 7

    For π‘ˆ, observe that if π‘₯ ∈ π‘…π‘˜, 𝑦 ∈ 𝑅

    𝑖, and 𝑖 ≀ π‘˜ βˆ’ 2, then

    πœ‡

    π‘š

    Ξ©,𝑏(𝑓

    𝑖) (π‘₯)

    ≲ (∫

    |π‘₯|

    0

    ∫|π‘₯βˆ’π‘¦|≀𝑑

    Ξ©(π‘₯ βˆ’ 𝑦)

    π‘₯ βˆ’ π‘¦π‘›βˆ’1

    [𝑏 (π‘₯) βˆ’ 𝑏 (𝑦)]π‘šπ‘“

    𝑖(𝑦)𝑑𝑦

    2

    𝑑𝑑

    𝑑3)

    1/2

    + (∫

    ∞

    |π‘₯|

    ∫|π‘₯βˆ’π‘¦|≀𝑑

    Ξ©(π‘₯ βˆ’ 𝑦)

    π‘₯ βˆ’ π‘¦π‘›βˆ’1

    [𝑏 (π‘₯) βˆ’ 𝑏 (𝑦)]π‘šπ‘“

    𝑖(𝑦)𝑑𝑦

    2

    𝑑𝑑

    𝑑3)

    1/2

    ≲ βˆ«π‘…π‘–

    𝑏 (π‘₯) βˆ’ 𝑏 (𝑦)π‘š 𝑓𝑖 (𝑦)

    π‘₯ βˆ’ 𝑦

    π‘›βˆ’1

    (∫|π‘₯βˆ’π‘¦|≀𝑑,|π‘₯|β‰₯𝑑

    𝑑𝑑

    𝑑3)

    1/2

    𝑑𝑦

    + βˆ«π‘…π‘–

    𝑏 (π‘₯) βˆ’ 𝑏 (𝑦)π‘š 𝑓𝑖 (𝑦)

    π‘₯ βˆ’ 𝑦

    π‘›βˆ’1

    (∫

    ∞

    |π‘₯|

    𝑑𝑑

    𝑑3)

    1/2

    𝑑𝑦

    ≲ βˆ«π‘…π‘–

    𝑏 (π‘₯) βˆ’ 𝑏 (𝑦)π‘š 𝑓𝑖 (𝑦)

    π‘₯ βˆ’ 𝑦

    π‘›βˆ’1

    β‹…

    𝑦1/2

    π‘₯ βˆ’ 𝑦3/2

    𝑑𝑦

    + βˆ«π‘…π‘–

    𝑏 (π‘₯) βˆ’ 𝑏 (𝑦)π‘š 𝑓𝑖 (𝑦)

    π‘₯ βˆ’ 𝑦

    π‘›βˆ’1

    β‹…1

    |π‘₯|𝑑𝑦

    ≲ 2(π‘–βˆ’π‘˜)/2

    2βˆ’π‘˜π‘›

    βˆ«π‘…π‘–

    𝑏 (π‘₯) βˆ’ 𝑏 (𝑦)π‘š 𝑓𝑖 (𝑦)

    𝑑𝑦

    + 2βˆ’π‘˜π‘›

    βˆ«π‘…π‘–

    𝑏 (π‘₯) βˆ’ 𝑏 (𝑦)π‘š 𝑓𝑖 (𝑦)

    𝑑𝑦

    ≲ 2βˆ’π‘˜π‘›

    βˆ«π‘…π‘–

    𝑏 (π‘₯) βˆ’ 𝑏 (𝑦)π‘š 𝑓𝑖 (𝑦)

    𝑑𝑦

    ≲ 2βˆ’π‘˜π‘›

    π‘š

    βˆ‘

    𝑗=0

    𝐢𝑗

    π‘š

    𝑏 (π‘₯) βˆ’ 𝑏𝐡

    𝑖

    π‘šβˆ’π‘—

    βˆ«π‘…π‘–

    𝑏𝐡𝑖

    βˆ’ 𝑏 (𝑦)

    𝑗 𝑓𝑖 (𝑦) 𝑑𝑦

    ≲ 2βˆ’π‘˜π‘›π‘“π‘–

    𝐿𝑝(β‹…)(R𝑛)

    π‘š

    βˆ‘

    𝑗=0

    𝐢𝑗

    π‘š

    𝑏 (π‘₯) βˆ’ 𝑏𝐡

    𝑖

    π‘šβˆ’π‘—(𝑏

    𝐡𝑖

    βˆ’ 𝑏)π‘—πœ’

    𝑖

    𝐿𝑝(β‹…)

    (R𝑛).

    (51)

    An application of Lemmas 7, 8, and 10 gives

    πœ‡

    π‘š

    Ξ©,𝑏(𝑓

    𝑖)πœ’

    π‘˜

    𝐿𝑝(β‹…)(R𝑛)

    ≲ 2βˆ’π‘˜π‘›π‘“π‘–

    𝐿𝑝(β‹…)(R𝑛)

    Γ—

    π‘š

    βˆ‘

    𝑗=0

    𝐢𝑗

    π‘š

    (𝑏(π‘₯) βˆ’ 𝑏

    𝐡𝑖

    )π‘šβˆ’π‘—

    πœ’π‘˜

    𝐿𝑝(β‹…)(R𝑛)

    (𝑏

    𝐡𝑖

    βˆ’ 𝑏)π‘—πœ’

    𝑖

    𝐿𝑝(β‹…)

    (R𝑛)

    ≲ 2βˆ’π‘˜π‘›π‘“π‘–

    𝐿𝑝(β‹…)(𝑅𝑛)

    Γ—

    π‘š

    βˆ‘

    𝑗=0

    𝐢𝑗

    π‘š(π‘˜ βˆ’ 𝑖)

    π‘šβˆ’π‘—β€–π‘β€–

    π‘šβˆ’π‘—

    BMOπœ’

    π΅π‘˜

    𝐿𝑝(β‹…)(R𝑛)‖𝑏‖

    𝑗

    BMOπœ’

    𝐡𝑖

    𝐿𝑝(β‹…)

    (R𝑛)

    ≲ (π‘˜ βˆ’ 𝑖 + 1)π‘š2

    βˆ’π‘˜π‘›π‘“π‘–πΏπ‘(β‹…)(R𝑛)

    πœ’

    π΅π‘˜

    𝐿𝑝(β‹…)(R𝑛)

    πœ’

    𝐡𝑖

    𝐿𝑝(β‹…)

    (R𝑛)

    ≲ (π‘˜ βˆ’ 𝑖 + 1)π‘šπ‘“π‘–

    𝐿𝑝(β‹…)(R𝑛)

    πœ’

    𝐡𝑖

    𝐿𝑝(β‹…)

    (R𝑛)πœ’

    π΅π‘˜

    𝐿𝑝(β‹…)

    (R𝑛)

    ≲ (π‘˜ βˆ’ 𝑖 + 1)π‘š2

    (π‘–βˆ’π‘˜)𝑛𝛿2𝑓𝑖

    𝐿𝑝(β‹…)(R𝑛).

    (52)For convenience below we put 𝜎 = 𝑛𝛿

    2βˆ’ 𝛼(0); if 1 < π‘ž <

    ∞, then we use Hölder’s inequality and obtain

    π‘ˆ<≲ {

    βˆ’1

    βˆ‘

    π‘˜=βˆ’βˆž

    (

    π‘˜βˆ’2

    βˆ‘

    𝑖=βˆ’βˆž

    2𝛼(0)𝑖𝑓𝑖

    𝐿𝑝(β‹…)(R𝑛)(π‘˜ βˆ’ 𝑖 + 1)π‘š2

    (π‘–βˆ’π‘˜)𝜎)

    π‘ž

    }

    1/π‘ž

    ≲{

    {

    {

    βˆ’1

    βˆ‘

    π‘˜=βˆ’βˆž

    (

    π‘˜βˆ’2

    βˆ‘

    𝑖=βˆ’βˆž

    2𝛼(0)π‘–π‘žπ‘“π‘–

    π‘ž

    𝐿𝑝(β‹…)

    (R𝑛)2

    (π‘–βˆ’π‘˜)πœŽπ‘ž/2)

    Γ— (

    π‘˜βˆ’2

    βˆ‘

    𝑖=βˆ’βˆž

    (π‘˜ βˆ’ 𝑖 + 1)π‘šπ‘ž

    2(π‘–βˆ’π‘˜)πœŽπ‘ž

    /2)

    π‘ž/π‘ž

    }

    }

    }

    1/π‘ž

    ≲ {

    βˆ’3

    βˆ‘

    𝑖=βˆ’βˆž

    2𝛼(0)π‘–π‘žπ‘“π‘–

    π‘ž

    𝐿𝑝(β‹…)

    (R𝑛)

    βˆ’1

    βˆ‘

    π‘˜=𝑖+2

    2(π‘–βˆ’π‘˜)πœŽπ‘ž/2

    }

    1/π‘ž

    ≲{2

    𝛼(0)π‘˜π‘“πœ’

    π‘˜}β„“π‘ž

    <(𝐿𝑝(β‹…)

    )

    ≲𝑓�̇�𝛼(β‹…),π‘ž

    𝑝(β‹…)(R𝑛)

    .

    (53)If 0 < π‘ž ≀ 1, then we get

    π‘ˆ<≲ {

    βˆ’1

    βˆ‘

    π‘˜=βˆ’βˆž

    π‘˜βˆ’2

    βˆ‘

    𝑖=βˆ’βˆž

    2𝛼(0)π‘–π‘žπ‘“π‘–

    π‘ž

    𝐿𝑝(β‹…)

    (R𝑛)(π‘˜ βˆ’ 𝑖 + 1)

    π‘šπ‘ž2

    (π‘–βˆ’π‘˜)πœŽπ‘ž}

    1/π‘ž

    β‰ˆ {

    βˆ’3

    βˆ‘

    𝑖=βˆ’βˆž

    2𝛼(0)π‘–π‘žπ‘“π‘–

    π‘ž

    𝐿𝑝(β‹…)

    (R𝑛)

    βˆ’1

    βˆ‘

    π‘˜=𝑖+2

    (π‘˜ βˆ’ 𝑖 + 1)π‘šπ‘ž2

    (π‘–βˆ’π‘˜)πœŽπ‘ž}

    1/π‘ž

    ≲{2

    𝛼(0)π‘˜π‘“πœ’

    π‘˜}β„“π‘ž

    <(𝐿𝑝(β‹…)

    )

    ≲𝑓�̇�𝛼(β‹…),π‘ž

    𝑝(β‹…)(R𝑛)

    .

    (54)Similarly, we put πœ‚ = 𝑛𝛿

    2βˆ’ 𝛼

    ∞; if 1 < π‘ž < ∞, by Hölder’s

    inequality, we obtain

    π‘ˆ>≲ {

    ∞

    βˆ‘

    π‘˜=0

    (

    π‘˜βˆ’2

    βˆ‘

    𝑖=βˆ’βˆž

    2π›Όβˆž

    𝑖𝑓𝑖𝐿𝑝(β‹…)(R𝑛)(π‘˜ βˆ’ 𝑖 + 1)

    π‘š2

    (π‘–βˆ’π‘˜)πœ‚)

    π‘ž

    }

    1/π‘ž

    ≲{

    {

    {

    ∞

    βˆ‘

    π‘˜=0

    (

    π‘˜βˆ’2

    βˆ‘

    𝑖=βˆ’βˆž

    2π›Όβˆž

    π‘–π‘žπ‘“π‘–

    π‘ž

    𝐿𝑝(β‹…)

    (R𝑛)2

    (π‘–βˆ’π‘˜)πœ‚π‘ž/2)

    Γ— (

    π‘˜βˆ’2

    βˆ‘

    𝑖=βˆ’βˆž

    (π‘˜ βˆ’ 𝑖 + 1)π‘šπ‘ž

    2(π‘–βˆ’π‘˜)πœ‚π‘ž

    /2)

    π‘ž/π‘ž

    }

    }

    }

    1/π‘ž

    ≲ {

    ∞

    βˆ‘

    π‘˜=0

    (

    π‘˜βˆ’2

    βˆ‘

    𝑖=βˆ’βˆž

    2π›Όβˆž

    π‘–π‘žπ‘“π‘–

    π‘ž

    𝐿𝑝(β‹…)

    (R𝑛)2

    (π‘–βˆ’π‘˜)πœ‚π‘ž/2)}

    1/π‘ž

    .

    (55)

  • 8 Journal of Function Spaces

    By the same arguments as 𝐸>, we get

    π‘ˆ>≲{2

    𝛼(0)π‘˜π‘“πœ’

    π‘˜}β„“π‘ž

    <(𝐿𝑝(β‹…)

    )+{2

    π›Όβˆž

    π‘˜π‘“πœ’

    π‘˜}β„“π‘ž

    >(𝐿𝑝(β‹…)

    )

    β‰ˆπ‘“οΏ½Μ‡οΏ½π›Ό(β‹…),π‘ž

    𝑝(β‹…)(R𝑛)

    .

    (56)

    If 0 < π‘ž ≀ 1, we obtain

    π‘ˆ>≲ {

    ∞

    βˆ‘

    π‘˜=0

    π‘˜βˆ’2

    βˆ‘

    𝑖=βˆ’βˆž

    2π›Όβˆž

    π‘–π‘žπ‘“π‘–

    π‘ž

    𝐿𝑝(β‹…)

    (R𝑛)(π‘˜ βˆ’ 𝑖 + 1)

    π‘šπ‘ž2

    (π‘–βˆ’π‘˜)πœ‚π‘ž}

    1/π‘ž

    β‰ˆ {

    βˆ’2

    βˆ‘

    𝑖=βˆ’βˆž

    2π›Όβˆž

    π‘–π‘žπ‘“π‘–

    π‘ž

    𝐿𝑝(β‹…)

    (R𝑛)

    ∞

    βˆ‘

    π‘˜=0

    (π‘˜ βˆ’ 𝑖 + 1)π‘šπ‘ž2

    (π‘–βˆ’π‘˜)πœ‚π‘ž

    +

    ∞

    βˆ‘

    𝑖=βˆ’1

    2π›Όβˆž

    π‘–π‘žπ‘“π‘–

    π‘ž

    𝐿𝑝(β‹…)

    (R𝑛)

    ∞

    βˆ‘

    π‘˜=𝑖+2

    (π‘˜ βˆ’ 𝑖 + 1)π‘šπ‘ž2

    (π‘–βˆ’π‘˜)πœ‚π‘ž}

    1/π‘ž

    ≲ {

    βˆ’2

    βˆ‘

    𝑖=βˆ’βˆž

    2𝛼(0)π‘–π‘žπ‘“π‘–

    π‘ž

    𝐿𝑝(β‹…)

    (R𝑛)+

    ∞

    βˆ‘

    𝑖=βˆ’1

    2π›Όβˆž

    π‘–π‘žπ‘“π‘–

    π‘ž

    𝐿𝑝(β‹…)

    (R𝑛)}

    1/π‘ž

    ≲{2

    𝛼(0)π‘˜π‘“πœ’

    π‘˜}β„“π‘ž

    <(𝐿𝑝(β‹…)

    )+{2

    π›Όβˆž

    π‘˜π‘“πœ’

    π‘˜}β„“π‘ž

    >(𝐿𝑝(β‹…)

    )

    β‰ˆπ‘“οΏ½Μ‡οΏ½π›Ό(β‹…),π‘ž

    𝑝(β‹…)(R𝑛)

    .

    (57)

    Thus, we haveπ‘ˆ = π‘ˆ

    <+ π‘ˆ

    >≲𝑓�̇�𝛼(β‹…),π‘ž

    𝑝(β‹…)(R𝑛)

    . (58)

    Forπ‘Š, if π‘₯ ∈ π‘…π‘˜, 𝑦 ∈ 𝑅

    𝑖, and 𝑖 β‰₯ π‘˜+2, as in the arguments

    for 𝐺 and π‘ˆ, we obtainπœ‡

    π‘š

    Ξ©,𝑏(𝑓

    𝑗)πœ’

    π‘˜

    𝐿𝑝(β‹…)(R𝑛)≲ (𝑖 βˆ’ π‘˜ + 1)

    π‘š2

    (π‘˜βˆ’π‘–)𝑛𝛿1

    𝑓

    𝑗

    𝐿𝑝(β‹…)(R𝑛). (59)

    Thus we get

    π‘Š<

    ≲ {

    βˆ’1

    βˆ‘

    π‘˜=βˆ’βˆž

    2π‘˜π›Ό(0)π‘ž

    (

    ∞

    βˆ‘

    𝑖=π‘˜+2

    (𝑖 βˆ’ π‘˜ + 1)π‘š2

    (π‘˜βˆ’π‘–)𝑛𝛿1𝑓𝑖

    𝐿𝑝(β‹…)(R𝑛))

    π‘ž

    }

    1/π‘ž

    β‰ˆ {

    βˆ’1

    βˆ‘

    π‘˜=βˆ’βˆž

    (

    ∞

    βˆ‘

    𝑖=π‘˜+2

    2𝛼(0)𝑖𝑓𝑖

    𝐿𝑝(β‹…)(R𝑛)

    Γ— (𝑖 βˆ’ π‘˜ + 1)π‘š2

    (π‘˜βˆ’π‘–)(𝑛𝛿1+𝛼(0))

    )

    π‘ž

    }

    1/π‘ž

    ,

    π‘Š>

    ≲ {

    ∞

    βˆ‘

    π‘˜=0

    (

    ∞

    βˆ‘

    𝑖=π‘˜+2

    2π›Όβˆž

    𝑖𝑓𝑖𝐿𝑝(β‹…)(R𝑛)(𝑖 βˆ’ π‘˜ + 1)

    π‘š2

    (π‘˜βˆ’π‘–)(𝑛𝛿1+π›Όβˆž

    ))

    π‘ž

    }

    1/π‘ž

    .

    (60)

    Similar to the estimates of π‘ˆ<and π‘ˆ

    >, we get

    π‘Š = π‘Š<+π‘Š

    >≲𝑓�̇�𝛼(β‹…),π‘ž

    𝑝(β‹…)(R𝑛)

    . (61)

    Hence the proof of Theorem 12 is completed.

    Conflict of Interests

    The author declares that there is no conflict of interestsregarding the publication of this paper.

    Acknowledgments

    The author would like to thank the referees for their time andvaluable comments. This work was supported by the NSF ofChina (Grant no. 11201003) and University NSR Project ofAnhui Province (Grant no. KJ2014A087).

    References

    [1] E. M. Stein, β€œOn the functions of Littlewood-Paley, Lusin, andMarcinkiewicz,” Transactions of the American MathematicalSociety, vol. 88, pp. 430–466, 1958.

    [2] A. Benedek, A.-P. Calderón, and R. Panzone, β€œConvolutionoperators on Banach space valued functions,” Proceedings of theNational Academy of Sciences of the United States of America,vol. 48, pp. 356–365, 1962.

    [3] Y. Ding, D. Fan, and Y. Pan, β€œWeighted boundedness for aclass of rough Marcinkiewicz integrals,” Indiana UniversityMathematics Journal, vol. 48, no. 3, pp. 1037–1055, 1999.

    [4] A. Torchinsky and S. L. Wang, β€œA note on the Marcinkiewiczintegral,” Colloquium Mathematicum, vol. 60-61, no. 1, pp. 235–243, 1990.

    [5] Y. Ding, S. Lu, and K. Yabuta, β€œOn commutators of Marcink-iewicz integrals with rough kernel,” Journal of MathematicalAnalysis and Applications, vol. 275, no. 1, pp. 60–68, 2002.

    [6] Y. Ding, S. Lu, and P. Zhang, β€œWeighted weak type estimates forcommutators of the Marcinkiewicz integrals,” Science in ChinaA, vol. 47, no. 1, pp. 83–95, 2004.

    [7] P. Zhang, β€œWeighted endpoint estimates for commutators ofMarcinkiewicz integrals,” Acta Mathematica Sinica, vol. 26, no.9, pp. 1709–1722, 2010.

    [8] S. Lu, β€œMarcinkiewicz integral with rough kernels,” Frontiers ofMathematics in China, vol. 3, no. 1, pp. 1–14, 2008.

    [9] Y. P. Chen and Y. Ding, β€œπΏπ‘ boundedness of the commutatorsof Marcinkiewicz integrals with rough kernels,” Forum Mathe-maticum, 2013.

    [10] Y. M. Chen, S. Levine, and M. Rao, β€œVariable exponent, lineargrowth functionals in image restoration,” SIAM Journal onApplied Mathematics, vol. 66, no. 4, pp. 1383–1406, 2006.

    [11] P. Harjulehto, P. Hästö, Ú. V. LeΜ‚, and M. Nuortio, β€œOverviewof differential equations with non-standard growth,” NonlinearAnalysis: Theory, Methods & Applications, vol. 72, no. 12, pp.4551–4574, 2010.

    [12] O. Kováčik and J. Rákosnı́k, β€œOn spaces 𝐿𝑝(π‘₯) and π‘Šπ‘˜,𝑝(π‘₯),”Czechoslovak Mathematical Journal, vol. 41, no. 4, pp. 592–618,1991.

    [13] D. Cruz-Uribe, A. Fiorenza, J. M. Martell, and C. Pérez, β€œTheboundedness of classical operators on variable 𝐿𝑝 spaces,”Annales Academiae Scientiarum Fennicae Mathematica, vol. 31,no. 1, pp. 239–264, 2006.

    [14] L. Diening, P. Harjulehto, P. Hästö, and M. Ruzicka, Lebesgueand Sobolev Spaces with Variable Exponents, vol. 2017 of LectureNotes in Mathematics, Springer, Heidelberg, Germany, 2011.

    [15] D. V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces:Foundations and Harmonic Analysis, Applied and NumericalHarmonic Analysis, Birkhäuser, Basel, Switzerland, 2013.

  • Journal of Function Spaces 9

    [16] M. Izuki, β€œHerz and amalgam spaces with variable exponent,the Haar wavelets and greediness of the wavelet system,” EastJournal on Approximations, vol. 15, no. 1, pp. 87–109, 2009.

    [17] M. Izuki, β€œCommutators of fractional integrals on Lebesgueand Herz spaces with variable exponent,” Rendiconti del CircoloMatematico di Palermo: Second Series, vol. 59, no. 3, pp. 461–472,2010.

    [18] H. B. Wang, Z. W. Fu, and Z. G. Liu, β€œHigher-order commu-tators of Marcinkiewicz integrals on variable Lebesgue spaces,”Acta Mathematica Scientia A, vol. 32, no. 6, pp. 1092–1101, 2012.

    [19] Z. G. Liu and H. B. Wang, β€œBoundedness of Marcinkiewiczintegrals on Herz spaces with variable exponent,”The JordanianJournal of Mathematics and Statistics, vol. 5, no. 4, pp. 223–239,2012.

    [20] A. Almeida and D. Drihem, β€œMaximal, potential and singulartype operators on Herz spaces with variable exponents,” Journalof Mathematical Analysis and Applications, vol. 394, no. 2, pp.781–795, 2012.

    [21] S. Z. Lu, D. C. Yang, and G. E. Hu, Herz Type Spaces and TheirApplications, Science Press, Beijing, China, 2008.

    [22] X. W. Li and D. C. Yang, β€œBoundedness of some sublinearoperators on Herz spaces,” Illinois Journal of Mathematics, vol.40, no. 3, pp. 484–501, 1996.

    [23] M. Izuki, β€œVector-valued inequalities onHERz spaces and char-acterizations of HERz-Sobolev spaces with variable exponent,”Glasnik Matematički, vol. 45, no. 65, pp. 475–503, 2010.

    [24] L. Wang and L. Shu, β€œHigher order commutators of Marcink-iewicz integral operator on Herz-Morrey spaces with variableexponent,” Journal of Mathematical Research with Applications,vol. 34, no. 2, pp. 175–186, 2014.

    [25] B. Dong and J. Xu, β€œNew Herz type Besov and Triebel-Lizorkinspaces with variable exponents,” Journal of Function Spaces andApplications, vol. 2012, Article ID 384593, 27 pages, 2012.

  • Submit your manuscripts athttp://www.hindawi.com

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical Problems in Engineering

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Differential EquationsInternational Journal of

    Volume 2014

    Applied MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical PhysicsAdvances in

    Complex AnalysisJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    OptimizationJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Operations ResearchAdvances in

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Function Spaces

    Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of Mathematics and Mathematical Sciences

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Algebra

    Discrete Dynamics in Nature and Society

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Decision SciencesAdvances in

    Discrete MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Stochastic AnalysisInternational Journal of