Rambus Seminar

41
Equalization & Clock Recovery for a 2.5-10 Gb/s 2PAM/4PAM Backplane Transceiver Cell May 2, 2003 Fred Chen Sr. Member of Technical Staff Rambus Inc.

Transcript of Rambus Seminar

Page 1: Rambus Seminar

Equalization & Clock Recovery for a 2.5-10 Gb/s 2PAM/4PAM Backplane Transceiver Cell

May 2, 2003Fred ChenSr. Member of Technical StaffRambus Inc.

Page 2: Rambus Seminar

UC Berkeley BWRC Seminar

Agenda

• The Backplane Environment

• PAM2 vs. PAM4 signaling

• Link Design

• Simulation & Measured Results

• Conclusions

Page 3: Rambus Seminar

UC Berkeley BWRC Seminar

The Backplane Environment

• There are many sources of Z and thus many possible sources of reflections• Board Material Loss• Counter Bored Backplane Vias

Back plane connector

Line card trace

Package

On-chip parasitic (termination resistance and device loading capacitance)

Line card via Back plane trace

Backplane via

Page 4: Rambus Seminar

UC Berkeley BWRC Seminar

Backplane Component Effects

PCB only

PCB + Connectors

PCB, Connectors,Via stubs & Devices

Device parasitics alone can cause add’l 5dB loss at high

frequencies

Page 5: Rambus Seminar

UC Berkeley BWRC Seminar

Variations Within a Backplane

• Four channels from a single FR4 backplane

• There are large variations between channels

Page 6: Rambus Seminar

UC Berkeley BWRC Seminar

Single Bit Response

0 1 2 3 4 5 6

x 10-9

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ns

VEqualized & Unequalized Single Bit Response

•Iimpact of reflections increases when relative to equalized eye•Wworst-case sequence can sum all reflections

0 1 2 3 4 5 6

x 10-9

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

ns

V

Page 7: Rambus Seminar

UC Berkeley BWRC Seminar

TXDATA

RXDATA

AT

AR

CR

CT

D

B

500 1000 1500 2000-10

-8

-6

-4

-2

0

2

4

6

8

10

gh-gh conn. (baseline) : Normalized Raw and eq pulse response: PR length aftermain 60

% o

f th

e re

ceiv

ed m

ain

A T,R

A2 T,R

B

C T,R D

500 1000 1500 2000-10

-8

-6

-4

-2

0

2

4

6

8

10

gh-gh conn. (baseline) : Normalized Raw and eq pulse response: PR length aftermain 60

% o

f th

e re

ceiv

ed m

ain

500 1000 1500 2000-10

-8

-6

-4

-2

0

2

4

6

8

10

gh-gh conn. (baseline) : Normalized Raw and eq pulse response: PR length aftermain 60

% o

f th

e re

ceiv

ed m

ain

A T,R

A2 T,R B

C T,R D

T

Reflection Sources

• Primary reflection sources are at the connector/backplane transition• Grouped in time – as a function of backplane length

Page 8: Rambus Seminar

UC Berkeley BWRC Seminar

(left) 2-PAM probability distribution function (PDF) showing the probability of an eye waveform for each voltage at the sample point (right) equalized eye with worst-case pattern. 6.4Gb/s over 20” backplane.

-15 -10 -5 0-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2V

olt

ag

e [

V]

log10

pdf0 0.5 1 1.5

x 10-10

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

sec

Eye With Worst Case Reflections

Page 9: Rambus Seminar

UC Berkeley BWRC Seminar

Agenda

• The Backplane Environment

• PAM2 vs. PAM4 signaling

• Link Design

• Simulation & Measured Results

• Conclusions

Page 10: Rambus Seminar

UC Berkeley BWRC Seminar

What is 4-PAM

• Binary (NRZ) is 2-PAM• 2-PAM uses 2-levels to send

one bit per symbol• Signaling rate = 2 x Nyquist

• 4-PAM uses 4-levels to send 2 bits per symbol

• Each level has 2 bit value• Signaling rate = 4 x Nyquist

00

01

11

10

1

0

1

0

Note : both can be either single-ended or differential

Page 11: Rambus Seminar

UC Berkeley BWRC Seminar

When Does 4-PAM Make Sense?

• First order : slope of S21• 3 eyes : 1 eye = 10db

• loss > 10db/octave : 4-PAM should be considered

0.0 1.0 2.0 3.0 4.0 5.0

Nyquist Frequency (GHz)

|H(f

)|

-20db

-40db

-60db

Page 12: Rambus Seminar

UC Berkeley BWRC Seminar

Agenda

• The Backplane Environment

• PAM2 vs. PAM4 signaling

• Link Design• Equalization• Clocking

• Simulation & Measured Results

• Conclusions

Page 13: Rambus Seminar

UC Berkeley BWRC Seminar

Equalization For Loss : Flatten Response

• Channel is band-limited• Equalization : boost high-frequencies relative to

lower frequencies

+

=

Page 14: Rambus Seminar

UC Berkeley BWRC Seminar

Transmit Linear Equalizer : SBR

0.0 0.3 0.6 0.9 1.2-0.3

-0.1

0.1

0.3

0.5

0.7

UnequalizedEqualization PulseEnd of Line

time (nsec)

Vo

ltag

e

Page 15: Rambus Seminar

UC Berkeley BWRC Seminar

Transmit and Receive Equalization

• Transmit and receive equalizers are combined to make a range restricted DFE• Tx equalizer functions as the feed-forward filter• Rx equalizer restricted in performance of loop

TAP SELLOGIC

TXDATA

3

RXDATA

Page 16: Rambus Seminar

UC Berkeley BWRC Seminar

Tx & Rx Equalization Ranges

TX Driver/Equalizer : 5 taps1(pre)+1(main)+3(post)

RX Equalizer5-17 taps after mainPick any 5 taps

Page 17: Rambus Seminar

UC Berkeley BWRC Seminar

2-PAM/4-PAM Transmitter

• Transmit either 2-PAM or 4-PAM using Gray code

2-PAM: LSB=0

00

TP

TN10

00

TP

TN01 11 10

4-PAM

4-PAMEncoder

[MSB,LSB] TNTP

A[0]

A[1]

A[2]

Page 18: Rambus Seminar

UC Berkeley BWRC Seminar

5-Tap 2P/4P Transmitter (Original)

• Simple 2P/4P transmitter: Total gate = 3W/L• 5-Tap 2P/4P transmitter: Total gate = 15W/L

TNTP

A[0]

A[1]

A[2]

1/z

1/z

...

A[0]

B[0]

1/z

E[0]

TNTP

W/L

W/L

W/L

W/L

W/L

W/L

WB[6:0]

WA[6:0]

WE[6:0]

Page 19: Rambus Seminar

UC Berkeley BWRC Seminar

5-Tap 2P/4P Shared Transmitter

Total gate = 3(5) = 15W/L Total gate = 3(7/8+5/8) = 4.5W/L

WB[6:0]

1/z

1/z

...

A[0]

B[0]

1/z

E[0]

TNTP

W/L

W/L

W/L

WE[6:0]

...A[0]...

Sh

are

dD

riv

er

Se

gm

en

ts (

7)

E[0]

De

dic

ate

d T

ap

Dri

ve

rs (

5)

AllocationLogic

WA[6:4] ...

WE[6:4]

A[0]

...WA[3:0]

W/8L

...A[0]

E[0]

W/8L

E[0]

WE[3:0]

W/8L

W/8L

TNTP

Page 20: Rambus Seminar

UC Berkeley BWRC Seminar

Receive Equalizer

Sampler

VariableDelay

CDR

PhaseMixer

UP/DOWNRx Data

0101...

Calibrate

TrainingSequence

ReceiveEqualizer

Tap Weights

Tap Select

Normal Rx Path

......

...

Page 21: Rambus Seminar

UC Berkeley BWRC Seminar

Dual Loop PLL/DLL Design

• Self-biased 4x or 5x RefClk Multiplier based on [Maneatis, Sidiropoulos, Horowitz]

• CDR is DLL w/PLL vectors & phase mixers• 2X oversampling per bit (edge + data)• Dual loop design avoids harmonic locking

PD

Low PassFilter VCO

Ref Clk

÷ 4,5

Phase MixersCDRLogic

RXData

RX Clk

TX Clk

Page 22: Rambus Seminar

UC Berkeley BWRC Seminar

Multi PAM clock recovery• Data can transition from and to any level• 2PAM CDR may lock to any of three strong

timing distributions

Page 23: Rambus Seminar

UC Berkeley BWRC Seminar

4-PAM Edges & CDR

• Timing errors possible if using a 2-PAM CDR on unrestricted 4-PAM data

Minor Major

10

11

01

00

MSB threshold

LSBthresholds

Page 24: Rambus Seminar

UC Berkeley BWRC Seminar

2-PAM/4-PAM CDR

• 2-PAM mode - uses major transitions • 4-PAM mode - uses minor transitions

Tran(2PAM) = MSBTran

Tran(4PAM) = (LSBTran * MSBTran) + (MSBTran * LSBTran)

MajorityVoter

CDR clkMSBTranDet

LSBTranDet

CDRtransitionselection

2PAM/4PAM Mode

Early/Late

Tran PhaseMixer

Page 25: Rambus Seminar

UC Berkeley BWRC Seminar

Complete Link Block Diagram

Serial to Parallel

Phase Control

Parallel to Serial

Vtt

TXP

TXNTX Data

SysClk

RefClk

1/4 or 1/5

1 or 1/2PLL

Vtt

RXP

RXN

RX Clk

RX Data

Tclk

RX Equalizer

Tap Weights

Phase Mixer

Phase MixerPhase MixerPhase Mixer Rclk

Rclk

Tap Selection

TX EQ

TX

Clocking

RX

Page 26: Rambus Seminar

UC Berkeley BWRC Seminar

Agenda

• The Backplane Environment

• PAM2 vs. PAM4 signaling

• Link Design

• Simulation & Measured Results

• Conclusions

Page 27: Rambus Seminar

UC Berkeley BWRC Seminar

Measured PLL (+TX) Jitter

2.3psec rms; 18psec p-p @ 3.2GHz(6.4Gbps @ 2P, 12.8Gbps @ 4P) 0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 1 2 3 4

PLL frequency [GHz]

RM

S J

itte

r [%

UI]

Includes on-chip noise

Page 28: Rambus Seminar

UC Berkeley BWRC Seminar

Measured 4-PAM CDR Performance

• 2-PAM CDR on 4-PAM data• 60ps p-p @ 8Gb/s

Phase

Phase

Cycle

• 4-PAM CDR uses only minor transitions

• Lower dither jitter• 35ps p-p @ 8Gb/s

Page 29: Rambus Seminar

UC Berkeley BWRC Seminar

System Level Simulink Model

Page 30: Rambus Seminar

UC Berkeley BWRC Seminar

Page 31: Rambus Seminar

UC Berkeley BWRC Seminar

TX Equalization EffectivenessU

n-f

old

ed:

10*

TF

old

ed

No EQ w/TX EQ

20” of FR4 & two connectors

Page 32: Rambus Seminar

UC Berkeley BWRC Seminar

2-PAM eye with no equalization at 6.4Gb/s over 20” BP

Page 33: Rambus Seminar

UC Berkeley BWRC Seminar

2-PAM eye with Tx equalization at 6.4Gb/s over 20” BP

Page 34: Rambus Seminar

UC Berkeley BWRC Seminar

10G Eyes & System Margin Shmoos

• 3”/20”/3” = 26” Trace + 2 Connectors• Tested to BER < 10-15

Page 35: Rambus Seminar

UC Berkeley BWRC Seminar

(left) 4-PAM PDF showing broad distributions and (right) eye including worst-case transitions at 10Gb/s over a 20” backplane.

-15 -10 -5 0-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Vo

lta

ge

[V

]

log10

pdf0 1 2

x 10-10

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

sec

Data Level Distribution With No Receive Equalization

Page 36: Rambus Seminar

UC Berkeley BWRC Seminar

(left) 4-PAM PDF showing narrowed distributions and (right) eye including worst-case transitions showing improvement of both distributions and eyes. 10Gb/s over 20” BP

-15 -10 -5 0-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Vo

lta

ge

[V

]

log10

pdf0 1 2

x 10-10

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

sec

Data Level Distribution With Receive Equalization

Page 37: Rambus Seminar

UC Berkeley BWRC Seminar

RX Equalization Effectiveness

• Measured system margin with device shmoo shows large improvement with RX Eq

20” of FR4 & two connectors

No RX Eq With RX Eq

Page 38: Rambus Seminar

UC Berkeley BWRC Seminar

Agenda

• The Backplane Environment

• PAM2 (NRZ) vs. PAM4 signaling

• Link Design

• Simulation & Measured Results

• Conclusions

Page 39: Rambus Seminar

UC Berkeley BWRC Seminar

Prototype System Evaluation

• Constructed line cards with commercially available and next generation connectors

• A complete matrix of backplanes was constructed• 5 connectors X 3 materials • Counterbored/Non-Counterbored vias

• System components (packages, vias, connectors, traces, etc.) were individually measured to construct complete channel models

Page 40: Rambus Seminar

UC Berkeley BWRC Seminar

2P/4P Performance by Configuration

2-PAM (NRZ) Maximum Performance (Gbps)

0

2

4

6

8

10

12

Top Bottom Top Bottom Top Bottom Top Bottom

20" 20" 10" 10" 20" 20" 10" 10"

FR4NoCB FR4NoCB FR4NoCB FR4NoCB Nelco6kCB Nelco6kCB Nelco6kCB Nelco6kCB

0 1 2 3 4 5 6 7

4-PAM Maximum Performance (Gbps)

0

2

4

6

8

10

12

Top Bottom Top Bottom Top Bottom Top Bottom

20" 20" 10" 10" 20" 20" 10" 10"

FR4NoCB FR4NoCB FR4NoCB FR4NoCB Nelco6kCB Nelco6kCB Nelco6kCB Nelco6kCB

0 1 2 3 4 5 6 7

Configuration Space

5 Different connectors

2 Different dielectrics

2 Different via types

2 Different Trace lengths

Top & Bottom Layers

Page 41: Rambus Seminar

UC Berkeley BWRC Seminar

Summary & Conclusions

• Backplane Environment is very challenging• Frequency dependent dielectric and skin loss • Many variations between channels• Reflection locations in time vary with length and Nyquist• Does not scale due to increasing need for complexity

• With the right silicon approaches copper backplanes can run at 10Gb/s

TX

RX

PLL Process 0.13 CMOS

Power 40mW / Gb

Area 1mm2

2-PAM Range 2 – 6.4 Gb/s

4-PAM Range 4 – 10 Gb/s