Quantum Ideas Notes Week 1

download Quantum Ideas Notes Week 1

of 29

Transcript of Quantum Ideas Notes Week 1

  • 7/27/2019 Quantum Ideas Notes Week 1

    1/29

    Quantum Ideas

    Syllabus:

    The success of classical physics, measurements in classical physics. The nature of light,the ultraviolet catastrophe, the photoelectric effect and the quantisation of radiation. Atomicspectral lines and the discrete energy levels of electrons in atoms, the Frank-Hertz ex-periment and the Bohr model of an atom.

    Magnetic dipoles in homogeneous and inhomogeneous magnetic fields and the Stern-Gerlach experiment showing the quantisation of the magnetic moment. The Uncertaintyprinciple by considering a microscope and the momentum of photons, zero point energy,stability and size of atoms. Measurements in quantum physics, the impossibility of measur-ing two orthogonal components of magnetic moments. The EPR paradox, entanglement,hidden variables, non-locality and Aspect's experiment, quantum cryptography and theBB84 protocol. Schrdinger's cat and the many-world interpretation of quantum mechan-ics. Interferometry with atoms and large molecules. Amplitudes, phases and wavefunc-tions. Interference of atomic beams, discussion of two-slit interference, Bragg diffraction ofatoms, quantum eraser experiments. A glimpse of quantum engineering and quantumcomputing. Schrdinger's equation and boundary conditions. Solution for a particle in an

    infinite potential well, to obtain discrete energy levels and wavefunctions.

    Quantum Ideas 2007 Axel Kuhn

  • 7/27/2019 Quantum Ideas Notes Week 1

    2/29

    Quantum

    Physics

    Failureof

    ClassicalPhysics

    Photoelectric

    Effect

    Blackbody

    Radiation

    Uncertainty

    Principle

    Plancks

    Hypothesis

    W

    ave-Particle

    D

    uality

    Paradoxainearly

    Gedanken-experiments

    Entanglement

    Superposition

    Probabilities

    Roleoftheobserver

    Break-downof

    the

    Wavefunction

    Many-worldinterpretation

    ModernApplications

    Quantum

    Cryptography

    Quantum

    Computing

    Stru

    ctureofMatter

    Ato

    mmodel(Bohr)

    Molecules,Solidstate,etc.

    Schrdingers

    Equation

    Interferenceof

    massiveparticles

    Quantised

    energylevels

    Q

    uantisation

    o

    fradiation

    DeBrogie

    Wavelength

    Spectrallines

    Quantum Ideas 2007 Axel Kuhn

  • 7/27/2019 Quantum Ideas Notes Week 1

    3/29

    Classical Physics:

    classical mechanics (Newton; F = m a)

    electricity and magnetism (Coulomb, Faraday, Maxwell)

    electromagnetic waves (rf ... light ... x-ray ... gamma)

    thermodynamics (energy conservation, equilibration, statistical mechanics)

    accurate measurement of all observables (position x(t)and momentum p(t) )

    Quantum Physics:

    probabilistic - not deterministic (Einstein: Good does not play dice)

    probability wave function (x,t) to describe a particle

    superposition and entanglement

    non-local behaviour (Spooky interaction at a distance that bothered Einstein)

    uncertainty principle: x p /2 and E t /2

    Quantum Ideas 2007 Axel Kuhn

  • 7/27/2019 Quantum Ideas Notes Week 1

    4/29

    Quantum Ideas 2007 Axel Kuhn

  • 7/27/2019 Quantum Ideas Notes Week 1

    5/29

    Quantum Ideas 2007 Axel Kuhn

  • 7/27/2019 Quantum Ideas Notes Week 1

    6/29

    Quantum Ideas 2007 Axel Kuhn

  • 7/27/2019 Quantum Ideas Notes Week 1

    7/29

    illumination with a mercury lamp, filtering a single spectral line.

    Cathode metal with a binding energy (or work function) of Ebind = 2.02 eV

    yellow, 578nm, 5.19E+14 Hz, Ekin = 0.13 eV

    green, 546nm, 5.50E+14 Hz, Ekin = 0.27 eV

    blue, 436nm, 6.88E+14 Hz, Ekin = 0.81 eV

    violet, 405nm, 7.41E+14 Hz, Ekin = 1.02 eV

    Plancks constant is obtained from the slope of the kinetic energy, Ekin()

    Quantum Ideas 2007 Axel Kuhn

  • 7/27/2019 Quantum Ideas Notes Week 1

    8/29

    Quantum Ideas 2007 Axel Kuhn

  • 7/27/2019 Quantum Ideas Notes Week 1

    9/29

    Hints for quantisation:

    a) threshold (minimum frequency required):

    resonance phenomenon quantised medium or light

    b) linear in the intensity (for =const).

    electron number proportional to photon number

    c) photo current insensitive to (provided h > Ebind)

    no change of the electron current if photon flux constant albeit the intensity is increasing: Iphoto

    d) no delay direct evidence!

    it lasts seconds until a single atom accumulates enough energy, so the radiation cannot be continuous

    Quantum Ideas 2007 Axel Kuhn

  • 7/27/2019 Quantum Ideas Notes Week 1

    10/29

    Quantum Ideas 2007 Axel Kuhn

  • 7/27/2019 Quantum Ideas Notes Week 1

    11/29

    Quantum Ideas 2007 Axel Kuhn

  • 7/27/2019 Quantum Ideas Notes Week 1

    12/29

    Quantum Ideas 2007 Axel Kuhn

  • 7/27/2019 Quantum Ideas Notes Week 1

    13/29

    Blackbody = Cavity?

    - Multiple reflections -> absorption of incident light

    - Thermal equilibrium -> Walls Cavity modes

    - Spectral energy density ()d

    R()d (Radiance through whole)

    - Boundary conditions: Nodes on the walls

    - Standing waves along x,y,z

    Consider a 2D problem and decompose into

    x = / cos() y = / sin()

    with nxx = 2L etc... ==> nx = (2L/) cos() and ny = (2L/) sin()

    square and add these conditions (generalise into 3D):

    (2L/)2 = nx2 + ny2 + nz2

    Quantum Ideas 2007 Axel Kuhn

  • 7/27/2019 Quantum Ideas Notes Week 1

    14/29

    Number of Modes in the cavity with frequencies smaller than :

    - sphere of radius R =(nx2 + ny2 + nz2) = 2L/ = 2L/c - mode number N() = 4/3R3 2/8 = ...

    - same for N(+d) = ...

    Mode number in the interval ...+d

    N = N(+d) - N() = 82 L3 / c3 d

    Spectral density per unit volume

    ()d = /L3 = 82 / c3 d

    Quantum Ideas 2007 Axel Kuhn

  • 7/27/2019 Quantum Ideas Notes Week 1

    15/29

    1/t*1.* "{&ZD Lutb- *,id7

    \"= )'/-x\7 =Vi*xLou- ,

    L#

    L

    f-)r,.n-L h n-,"l lL fzL '- tL ,*tt

    h" \, - ZLI h,o', ), --zLI h)r''rt = *"

    7L.,\

    ZLJ.qL;LJ

    -' hr' *

    -D 6 Lo f*,*C'J l" 3? ,

    R

    Quantum Ideas 2007 Axel Kuhn

  • 7/27/2019 Quantum Ideas Notes Week 1

    16/29

    Sil*'L i. lL h - slpaa svJ;u, IZ ,

    //,-Lu o( ,--L = l,/o/,* ,l lL 70.,81,'hor==\rll (fry..))= ( ts' 7'trLt .r3o3L64I

    8try" t,= a.'dytiJ',t=

    r?,t# ,l --,,Ln

    6N 0t)do=

    (ot:l:.t ryn{r.^+7'.,{u*( 9.-.9, Jrt

    ,({,t,Ju1-//u)#'(y')'-'=8o4u1,

    v 3Y'Jt'+ "(*L fu u--:L e'sb*,-I

    Z g'l.,-:,J'-'

    Quantum Ideas 2007 Axel Kuhn

  • 7/27/2019 Quantum Ideas Notes Week 1

    17/29

    Quantum Ideas 2007 Axel Kuhn

  • 7/27/2019 Quantum Ideas Notes Week 1

    18/29

    Blackbody Radiation

    Average energy per frequency mode, using the Boltzmann distribution P(E)

    E =

    En P(E)n=0

    P(E)n=0

    =

    h ne

    nhkT

    n=0

    enh

    kT

    n=0

    = h

    A

    B

    with B Bexp hkT( ) = 1

    and A Aexp h kT( )= Bexp h kT( )

    A

    B=

    1

    exp hkT( ) 1

    and E =h

    exp hkT( ) 1

    Quantum Ideas 2007 Axel Kuhn

  • 7/27/2019 Quantum Ideas Notes Week 1

    19/29

    Plancks law

    Spectral energy density (energy per unit volume in the frequency range...+d):

    ()d=82

    c3

    h

    exp hkT( ) 1

    =8h3

    c3

    1

    exp hkT( ) 1

    total energy density:

    = ()d= 85

    k

    4

    15(hc)3 T

    4= T4

    Quantum Ideas 2007 Axel Kuhn

  • 7/27/2019 Quantum Ideas Notes Week 1

    20/29

    Quantum Ideas 2007 Axel Kuhn

  • 7/27/2019 Quantum Ideas Notes Week 1

    21/29

    Quantum Ideas 2007 Axel Kuhn

  • 7/27/2019 Quantum Ideas Notes Week 1

    22/29

    Ao^*'l a,- ola q- Pt L-= h?^tt^J/ c = hg

    E;-,h,- ! = ,,o' PctIIl-]o' \

    = t*t ClL(*" ( s tttt

    De--Lnjt. ,"*(*rlL\ =%'7*" I iI.,"),o,ouin",u\"::f_ ?],+k tuL/...*Lo[u,*,eJ L k",J,

    14'"'r'*iltLt=?x-t glno u).t/.' i

    (G,t) = uflz(w-ailIv;lLa. ?rt)

    Quantum Ideas 2007 Axel Kuhn

  • 7/27/2019 Quantum Ideas Notes Week 1

    23/29

    Quantum Ideas 2007 Axel Kuhn

  • 7/27/2019 Quantum Ideas Notes Week 1

    24/29

    s&t?ro {_r"/-D d,.rk.- trLL* tJ,l-tU" +-J"{'-.6'ao'.gh|-, - "/.J** to.(-7;C.'->un-hn*"A!Jp-

    u:lLL"l-- rt "kn

    [n}ux{ut-

    ?os;"q?.*6 Ar 'I

    of =r^P,9^l

    CO',otte*{i*

    )'s;"o(tL-%*o\t.7, 2fi,*'a

    J*,J*r /Y

    s Zh(t.*re)

    z c)"(aL' er -

    n*T fair,'tq,.t.k,a-[=hf,=b= blt\t?^'=":h.-zutLc'< t I e^: ^1

    1i1t'+ 'aLn

    .* (I{- ,)2,o"L i-*)- rt^*a

    Quantum Ideas 2007 Axel Kuhn

  • 7/27/2019 Quantum Ideas Notes Week 1

    25/29

    I rrr '^ Vqu!/(e.-C(l"^:J

    \ / t= Ao L l-a-e), . ' tt . . . r14v"rolo-lQ Ao- 7"., / _ _-,ov

    c9

    a-/F0/t>' I

    - t2= Z.?3 - t0'- nelq

    Quantum Ideas 2007 Axel Kuhn

  • 7/27/2019 Quantum Ideas Notes Week 1

    26/29

    Quantum Ideas 2007 Axel Kuhn

  • 7/27/2019 Quantum Ideas Notes Week 1

    27/29

    Quantum Ideas 2007 Axel Kuhn

  • 7/27/2019 Quantum Ideas Notes Week 1

    28/29

    Hanbury-Brown and Twiss:

    Intensity correlation measurements

    - dead time of the detectors

    - beam splitter

    - pair of photon counters

    - cross correlation

    Single-photon emitters:

    - single atoms or ions

    - crystal defects (Quantum dots)

    Quantum Ideas 2007 Axel Kuhn

  • 7/27/2019 Quantum Ideas Notes Week 1

    29/29