Powering the nanoworld: DNA-based molecular motors

61
Powering the nanoworld: DNA- based molecular motors Bernard Yurke A. J. Turberfield University of Oxford J. C. Mitchell University of Oxford A. P. Mills Jr U. C. Riverside M. I. Blakey Bell Laboratories F. C. Simmel Ludwig-Maximilians University J. L. Neumann Rutgers University N. Langrana Rutgers University D. Lin Rutgers University R. J. Sanyal Princeton University Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey, USA

description

Powering the nanoworld: DNA-based molecular motors. Bernard Yurke. Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey, USA. A. J. Turberfield University of Oxford J. C. Mitchell University of Oxford A. P. Mills Jr U. C. Riverside - PowerPoint PPT Presentation

Transcript of Powering the nanoworld: DNA-based molecular motors

Page 1: Powering the nanoworld: DNA-based molecular motors

Powering the nanoworld: DNA-based molecular motors

Bernard Yurke

A. J. Turberfield University of OxfordJ. C. Mitchell University of OxfordA. P. Mills Jr U. C. RiversideM. I. Blakey Bell LaboratoriesF. C. Simmel Ludwig-Maximilians UniversityJ. L. Neumann Rutgers UniversityN. Langrana Rutgers UniversityD. Lin Rutgers UniversityR. J. Sanyal Princeton UniversityJ. R. Fresco Princeton University

Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey, USA

Page 2: Powering the nanoworld: DNA-based molecular motors

• DNA as a structural material

• DNA nanostructures

• DNA machines• Molecular tweezers• Nanoactuator

• Control of hybridization rate

Assembling nanostructures and nanomotors out of DNA

Page 3: Powering the nanoworld: DNA-based molecular motors

Double-stranded DNA

Linear representation:

5’ TGATCACTTAGAGCAAGC 3’ 3’ ACTAGTGAATCTCGTTCG 5’

base pairing

Page 4: Powering the nanoworld: DNA-based molecular motors

Two strands of DNA bind most strongly with each other when their base sequences are complementary.

Page 5: Powering the nanoworld: DNA-based molecular motors

Assembly of DNA based nanostructures via hybridization of complementary DNA sequences.

Page 6: Powering the nanoworld: DNA-based molecular motors

Chen and Seeman, Nature 350, 631 (1991).

Page 7: Powering the nanoworld: DNA-based molecular motors

DNA-based self-assembled masks

Gold particles depicted as being 2 nm in size.

Page 8: Powering the nanoworld: DNA-based molecular motors

DNA self-assembly for molecular electronics

Page 9: Powering the nanoworld: DNA-based molecular motors

Assembly of 2D lattices (tilings)(Winfree, ‘98)

Page 10: Powering the nanoworld: DNA-based molecular motors

Assembly of a Sierpinski Triangle’

Page 11: Powering the nanoworld: DNA-based molecular motors

P. Rothemund and E. Winfree, STOC 2000

Page 12: Powering the nanoworld: DNA-based molecular motors

Logical computation using algorithmic self-assembly of DNA triple-crossover molecules

yi = yi-1 XOR xi

Mao, et al. Nature 407, 493 (2000)

Page 13: Powering the nanoworld: DNA-based molecular motors

DNA nanotechnology

DNA directed assembly of gold nanoparticles(Mirkin ‘96, Alivisatos ‘96) andCdSe nanocrystals (Coffer ‘96)

Template directed assembly of metal wires (Braun ‘98)

Assemblyof proteins(Niemeyer ‘99)

Page 14: Powering the nanoworld: DNA-based molecular motors
Page 15: Powering the nanoworld: DNA-based molecular motors
Page 16: Powering the nanoworld: DNA-based molecular motors

Strand displacement via branch migration

Page 17: Powering the nanoworld: DNA-based molecular motors
Page 18: Powering the nanoworld: DNA-based molecular motors
Page 19: Powering the nanoworld: DNA-based molecular motors
Page 20: Powering the nanoworld: DNA-based molecular motors
Page 21: Powering the nanoworld: DNA-based molecular motors

Each step in the random walk takes about 10sec.

Page 22: Powering the nanoworld: DNA-based molecular motors
Page 23: Powering the nanoworld: DNA-based molecular motors
Page 24: Powering the nanoworld: DNA-based molecular motors
Page 25: Powering the nanoworld: DNA-based molecular motors
Page 26: Powering the nanoworld: DNA-based molecular motors
Page 27: Powering the nanoworld: DNA-based molecular motors
Page 28: Powering the nanoworld: DNA-based molecular motors
Page 29: Powering the nanoworld: DNA-based molecular motors
Page 30: Powering the nanoworld: DNA-based molecular motors
Page 31: Powering the nanoworld: DNA-based molecular motors
Page 32: Powering the nanoworld: DNA-based molecular motors
Page 33: Powering the nanoworld: DNA-based molecular motors
Page 34: Powering the nanoworld: DNA-based molecular motors
Page 35: Powering the nanoworld: DNA-based molecular motors
Page 36: Powering the nanoworld: DNA-based molecular motors
Page 37: Powering the nanoworld: DNA-based molecular motors
Page 38: Powering the nanoworld: DNA-based molecular motors
Page 39: Powering the nanoworld: DNA-based molecular motors

Reversible Gel

3mm

Page 40: Powering the nanoworld: DNA-based molecular motors

Artificial molecular motors

Artificial molecular motors may be used to accomplish tasks similar to biological molecular motors:

1. Transport substances

2. Provide motility

3. Allow the construction of shape changing materials

Page 41: Powering the nanoworld: DNA-based molecular motors

Kinesin: A Trucker of the Cell

Microtubule

Vesicle

Kinesin

Page 42: Powering the nanoworld: DNA-based molecular motors

DNA Replication

An assembly process with an error rate of 10-9

Alberts, Nature 421, 431 (2003)

Page 43: Powering the nanoworld: DNA-based molecular motors

Making machines from DNA

Utilizing the BZ transition of DNA (Mao et al, 1999):

B Z

Page 44: Powering the nanoworld: DNA-based molecular motors

DNA tweezersYurke, et al., Nature 406, 605 (2000)

Arms

Hinge

Motor

Page 45: Powering the nanoworld: DNA-based molecular motors

Fuel strand

Closing the tweezers

Page 46: Powering the nanoworld: DNA-based molecular motors

DNA hybridization can do mechanical work

0.43 nm

F

F

x

W = F x

The free energy available to do work when a base pair is formed, averaged over all types of base pairing, is

W = G = 78 meV.

The displacement resulting from forming a base pair is

x = 2 X 0.43 nm.

The stall force for a hybridization motor is thus F = G/x = 15 pN.

This is comparable to the stall force of biological molecular motors.

Page 47: Powering the nanoworld: DNA-based molecular motors

Attached fuel strand has single stranded extension.

Page 48: Powering the nanoworld: DNA-based molecular motors

Complement of fuel strand attaches to single stranded extension of fuel strand.

Page 49: Powering the nanoworld: DNA-based molecular motors

Tweezers are displaced from fuel strand via branch migration.

Page 50: Powering the nanoworld: DNA-based molecular motors

Waste product, consisting of the fuel strand hybridized with its complement, is produced each time the tweezers are cycled between their open and closed states.

Page 51: Powering the nanoworld: DNA-based molecular motors

Fluorescence resonant energy transfer (FRET) is used to follow the opening and closing of the tweezers

Page 52: Powering the nanoworld: DNA-based molecular motors

0 5000 100000

FF

open

closed

Time (s)

Flu

ore

sce

nce

inte

nsi

ty

Tweezer operation

Switching time: 13 s

Filter passband 535-545 nm

Page 53: Powering the nanoworld: DNA-based molecular motors

DNA nanoactuator

A: 40 basesB: 84 basesF: 48 bases

Simmel and Yurke, Phys Rev E 63, 041913 (2001).

Page 54: Powering the nanoworld: DNA-based molecular motors

Actuator operation

Page 55: Powering the nanoworld: DNA-based molecular motors

Simmel and Yurke, Applied Physics Letters 80, 883 (2002).

Page 56: Powering the nanoworld: DNA-based molecular motors
Page 57: Powering the nanoworld: DNA-based molecular motors

A DNA-device based on triplex binding

Page 58: Powering the nanoworld: DNA-based molecular motors
Page 59: Powering the nanoworld: DNA-based molecular motors

A robust DNA mechanical device

H. Yan, et al., Nature 415, 62 (2002).

Page 60: Powering the nanoworld: DNA-based molecular motors

A nanomotor made of a single DNA molecule

Jianwei J. Li, Weihong Tan, Nano Letters, 2002, in press

Page 61: Powering the nanoworld: DNA-based molecular motors

Conclusion

The molecular recognition properties of DNA can be used to

• build complicated structures by self-assembly• induce motion on the molecular scale

Therefore, DNA can provide both molecular scaffolding and molecular machinery for nanotechnology.