PISCES W fuzz experiments: A summary of work up to now. · PISCES Why do we care about fuzz? •W...

15
PISCES FNST/PFC/MASCO meeting, UCLA Aug. 2-6, 2010 PISCES W fuzz experiments: A summary of work up to now. M.J. Baldwin, R.P. Doerner, D. Nishijima University of California, San Diego, USA

Transcript of PISCES W fuzz experiments: A summary of work up to now. · PISCES Why do we care about fuzz? •W...

Page 1: PISCES W fuzz experiments: A summary of work up to now. · PISCES Why do we care about fuzz? •W is an excellent FW material. •Low sputter yield in detached plasma. •High melt

PISCES

FNST/PFC/MASCO meeting, UCLA Aug. 2-6, 2010

PISCES W fuzz experiments:A summary of work up to now.

M.J. Baldwin, R.P. Doerner, D. NishijimaUniversity of California, San Diego, USA

Page 2: PISCES W fuzz experiments: A summary of work up to now. · PISCES Why do we care about fuzz? •W is an excellent FW material. •Low sputter yield in detached plasma. •High melt

PISCES

Why do we care about fuzz?• W is an excellent FW material.

• Low sputter yield indetached plasma.

• High melt point (3695 K).

• Low D/T inventory >700 K.

• ITER divertor‐liner/domeare to be fabricatedfrom W.  TWsurf < 1000 K.

• In the DT phase, ITERdivertor will be‘all W metal’. TWsurf > 1000 K.

• But . . . . PMI research indicates that energetic He in contact w/ hot W will cause W fuzz.

• PISCES,  Baldwin et al. NF 48 (2008)

• NAGDIS‐II,  Takamura, et al. Plasma and Fusion Res. 51 (2006)

• LHD,  Tokitani et. al. JNM 337–339 (2005)

• LP RF devices, Baldwin et al. 2010 PSI San Diego P1‐1

• GLADIS device ‐ IPP Garching,  H Greuner(2009) personal comm.

• IEC device walls ‐ Univ. of Wisconsin,  Zenobia, JNM 389 (2009)

• PILOT PSI,   G. Wright, G deTemmerman, (2009) personal comm.

Page 3: PISCES W fuzz experiments: A summary of work up to now. · PISCES Why do we care about fuzz? •W is an excellent FW material. •Low sputter yield in detached plasma. •High melt

PISCES

What causes fuzz?

5.47 eV4.15 eV

0.24 eV

W. Schilling, in Point Defects and Defect Interactions in Metals,  Eds J.Takamura, M. Doyama, and M. Kiritani(North‐Holland, Amsterdam, 1982), p. 303.

In W, He will bind readily with:

• Vacancies (4.15 eV)Abd El Keriem et al. PR‐B 47 (1993) 14771 

• Impurities (1‐3 eV). Kornelsen et al. JNM 92 (1980) 79

• Hei‐V.Abd El Keriem et al. PR‐B 47 (1993) 14771 

• Interstititial He (~1 eV).Becquart et al. PRL 97 (2006) 196402‐1  (supported by calculation)

Page 4: PISCES W fuzz experiments: A summary of work up to now. · PISCES Why do we care about fuzz? •W is an excellent FW material. •Low sputter yield in detached plasma. •High melt

PISCES

What causes fuzz?

NAGDIS‐II: He plasmaD. Nishijima et al. JNM (2004) 329‐333 1029

• Surface morphology • Shallow depth• Micro‐scale

PISCES‐A: D2‐He plasmaM. Miyamoto et al. NF (2009) (in press)600 K, 1000 s, 2.0x1024 He+/m2, 55 eV He+

• Little morphology• Occasional blisters

10nm

(a) Bright field image (under focused image)

PISCES‐B: pure He plasmaM.J. Baldwin et al, NF 48 3 (2008) 0350011200 K, 4290 s, 2x1026 He+/m2, 25 eV He+

NAGDIS‐II: pure He plasmaN. Ohno et al., in IAEA‐TM, Vienna, 20061250 K, 36000 s, 3.5x1027 He+/m2, 11 eV He+

100 nm (VPS W on C)                     (TEM)     

~ 600 ‐ 700 K > 2000 K~ 900 – 1900 K

• Surface morphology • Evolving surface• Nano‐scale ‘fuzz’

Page 5: PISCES W fuzz experiments: A summary of work up to now. · PISCES Why do we care about fuzz? •W is an excellent FW material. •Low sputter yield in detached plasma. •High melt

PISCES

Are any W or W alloy grades resilient to fuzz?  Not yet.

PISCES, Baldwin et al. JNM (2010) in press

Page 6: PISCES W fuzz experiments: A summary of work up to now. · PISCES Why do we care about fuzz? •W is an excellent FW material. •Low sputter yield in detached plasma. •High melt

PISCES

Can it get worse?  Possibly.

PISCES,Baldwin et al.JNM (2010)in press

Page 7: PISCES W fuzz experiments: A summary of work up to now. · PISCES Why do we care about fuzz? •W is an excellent FW material. •Low sputter yield in detached plasma. •High melt

PISCES

What does fuzz do the W surface?

22000 s, 1120 K60 eV He+

PISCES‐Bpure He plasma 

~50 ITER shots

9000 s, 1120 K60 eV He+

PISCES‐Bpure He plasma

~20 ITER shots

2000 s, 1120 K60 eV He+

PISCES‐Bpure He plasma

~4 ITER shots

RN

061

5200

7

RN

092

7200

5

RN

061

8200

7

Comparable to

Page 8: PISCES W fuzz experiments: A summary of work up to now. · PISCES Why do we care about fuzz? •W is an excellent FW material. •Low sputter yield in detached plasma. •High melt

PISCES

Growth rate of Fuzz?  t1/2

t (s)0 5000 10000

Laye

r thi

ckne

ss, Δ

(μm

)0

5

Ts=1120 KHe

Ts=1320 KHe

Ts=1120 KD2-0.2He

• Δ=βt1/2, where β = 1.3×10–15m2s–1 at 1120 K.

• Alarming re‐growth rate, dΔ/dt= β/(2t1/2).

• Ablation, ELMS, etc causing reduced layer thickness δ, lead to re‐growth rate:(dΔ/dt)Δ= δ = β2/(2δ) depending on whether equilibrium can be maintained.

• Experiment to test this using pulsed laser heat loads underway.

Page 9: PISCES W fuzz experiments: A summary of work up to now. · PISCES Why do we care about fuzz? •W is an excellent FW material. •Low sputter yield in detached plasma. •High melt

PISCES

• ‘Fuzz’ layer growth after 3600 s in D2‐He and pure He plasmas shows a trend.

• Layer growthrate increasesexponentiallyfor ΓHe+ up to~7×1021 m‐2s‐1.

• Layer growthrate is optimal above this.c

Does D affect ‘fuzz’, since He is a reactor minority species?  No

Γ He+ (m-2s-1)1021 1022 1023

Laye

r thi

ckne

ss (

μm)

0.01

0.1

110

Ts= 1120 Kt = 3600 s

HeD2-He

ITER (Outer strike plate)A. Kukushkin, ITER Report, [ITER_D_27TKC6] 2008

Page 10: PISCES W fuzz experiments: A summary of work up to now. · PISCES Why do we care about fuzz? •W is an excellent FW material. •Low sputter yield in detached plasma. •High melt

PISCES

How does ‘fuzz’erode?  W/ lower Y.

• Fuzz produced on W by He plasma exposure over 800 s at 1150 K, Ei ~ 90 eV.

• Switch to He/Ar plasma at t = 0 s, & measure time evolution of W I emission in front of W target.

• Ysmooth(Ar+→W) ~0.05 @ Ei ~ 110 eV, by mass loss. (Agrees w/ TRIM).

• Yfuzzy= (0.05 / WI/ArII110 eV,  smooth) x WI/ArII

• Why is the sputtering yield reduced?

• Porosity?  Internal bubble?

• Not well understood.

Page 11: PISCES W fuzz experiments: A summary of work up to now. · PISCES Why do we care about fuzz? •W is an excellent FW material. •Low sputter yield in detached plasma. •High melt

PISCES

Is there a growth/erosion equilibrium.  Yes

0.9 μm

2.0 μm

2.2 μm

250 eV He+

200 eV He+

60 eV He+

0.01

0.1

1

10

100 1000 104

W fuzz @ 1120K

W fuzz growth Y PA = 3.4e-4 (250 eV)Y PA = 1.5e-4 (200 eV)

W fuzz layer thickness (nm)

x

Expected fuzz thicknessin one hour with no erosion(60 eV He+)

xx

• Growth rate ‐ Baldwin et al., NF 48(2008)

• W fuzz yield ‐Nishijima et al., PSI 19

• Exploring application of method to ITER W divertor conditions

Fuzz layers after 3600 s in He plasma at 1120 K

Page 12: PISCES W fuzz experiments: A summary of work up to now. · PISCES Why do we care about fuzz? •W is an excellent FW material. •Low sputter yield in detached plasma. •High melt

PISCES

Fuzz and gaps? LOS or NLOS?

PISCES-A He plasma on W (0.5, 1.0, 1.5 mm) gap target

Ts = 1100 KTexp = 3600 sEion ~ 70 eVΓHe+ = 1019 cm-2s-1

25 mm

SEM section

‘fuzz’

bulk

11 m

m

0.5 mm 1.0 mm 1.5 mm

(in gaps)FUZZ

(on surface)

(non LOS)

• Benchmark gap target produced in PA.

• Currently collaborating with D Boridin of Forschungszentrum Jülich to model observations.

Page 13: PISCES W fuzz experiments: A summary of work up to now. · PISCES Why do we care about fuzz? •W is an excellent FW material. •Low sputter yield in detached plasma. •High melt

PISCES

D Retention in fuzz?  Very low!HELIUM

Time (s)

500 1000 1500 2000

m/e

= 4

par

tial p

ress

ure

(x

10-9

Tor

r)

01

23

45

Temperature (K)400 600 800 1000 1200

D2 on W w/ 'fuzz' layer

D2 -He(10%) on W

D2 on W

He - V binding(bubbleprecursers)

DEUTERIUM

Time (s)

500 1000 1500 2000m/e

= 4

par

tial p

ress

ure

(x

10-9

Tor

r)-9

Tor

r)

05

1015

20

Temperature (K)400 600 800 1000 1200

D2 on W 'fuzz' [-.- x10-- D /m2]

D2 -He(10%) on W [1.1 x1020 D /m2]

D2 on W [5.0 x1020 D /m2]

Fluence[D+] ~5 x1025 m-2, Ts ~420 K, Ei ~30 eVHELIUM

Time (s)

1000 2000 3000

m/e

= 4

par

tial p

ress

ure

( x

10-9

Tor

r)

05

1015

20

Temperature (K)500 1000 1500

D2 only [no fuzz]

D2 -He(10%) [fuzz]

He only [fuzz]

He 2

-10 -

V

DEUTERIUM

Time (s)

1000 2000 3000m/e

= 4

par

tial p

ress

ure

( x

10-9

Tor

r)-9 T

orr)

01

23

45

Temperature (K)500 1000 1500

D2 only [no fuzz]

D2 -He(10%) [fuzz]

He only [fuzz]

Fluence ~2 x1026 m-2, Ts ~1120 K, Ei ~50 eV

He n

>10 -

V

He

inte

rstit

ial ?

• Little or no D is detected during TDS when He is used as a pretreatment or admixture to/in D plasma.

• D inventory below detection limit (~1018 D/m2) in cases where ‘fuzz’ was exposed to D or D:He plasma.

• Fuzz seems to be a remarkable permeation barrier.

Page 14: PISCES W fuzz experiments: A summary of work up to now. · PISCES Why do we care about fuzz? •W is an excellent FW material. •Low sputter yield in detached plasma. •High melt

PISCES

• Selected W samples exposed to the Magnetized Co‐axial Plasma Gun (MCPG) at Univ. of Hyogo, Japan.

• Energy density: ~0.3‐0.7 MJ/m2

• Pulse width: ~0.5 ms

• Ion energy for D+: ~30 eV

• ne ~1021 m‐3, Γi ~ 1‐2x1025 m‐2 s‐1

• Comparable to type I ELMs in ITER

How does fuzz take power loads?Initial tests encouraging.  

Page 15: PISCES W fuzz experiments: A summary of work up to now. · PISCES Why do we care about fuzz? •W is an excellent FW material. •Low sputter yield in detached plasma. •High melt

PISCES

Summary of fuzz PMI experiments.Pros Cons  What Next?

• Self limited t1/2

growth at surface.

• Erodes with low sputter yield w.r.tbulk W.

• Very low hydrogen isotope retention.

• Good permeation barrier.

• Seemingly resilient to power loads.

• Fuzz will manifest in long pulse high T reactors w/ FW W.

• Unknown surface properties w.r.t W.

• Potential for enhanced material loss during transients.

• Surface and potential deep GB destruction.

• Found in gaps.

• HIGH Z dust?

• Materials modeling to understand growth mechanisms.

• Resilience/erosion under continuous transient loads

• Develop mitigation strategies (T control, heavy alloying etc … ? ?)

• Can we live with fuzz:  Do the Pros outweigh Cons?